1
|
Darmadi D, Aminov Z, Hjazi A, R R, Kazmi SW, Mustafa YF, Hosseen B, Sharma A, Alubiady MHS, Al-Abdeen SHZ. Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer. Exp Cell Res 2024; 442:114267. [PMID: 39313176 DOI: 10.1016/j.yexcr.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Beneen Hosseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | | | | |
Collapse
|
2
|
Li X, Ding J, Zhang X, Zhang X, Jiang X, Chen R, Cheng Y, Sun Y, Wan J, Zhang Y, Cao J, Han S. MicroRNAs in opisthorchiids and their definitive hosts: Current Status and Perspectives. Mol Biochem Parasitol 2024; 260:111636. [PMID: 38880486 DOI: 10.1016/j.molbiopara.2024.111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Opisthorchis felineus, Opisthorchis viverrini, and Clonorchis sinensis (family Opisthorchiidae) are parasitic flatworms that pose serious threats to humans in certain countries and cause opisthorchiasis/clonorchiasis. Opisthorchiid flukes parasitize the biliary tract of the host, causing cholangitis, cholecystitis, cholelithiasis and cholangiocarcinoma. In this review, we primarily focus on recent microRNAs (miRNAs) studies of opisthorchiid flukes and their definitive hosts. Many miRNAs are conserved and expressed in a developmentally stage specific manner in the three opisthorchiid flukes, which play important roles in the growth and development of Opisthorchiidae spp., as well as host-pathogen interactions. Some miRNAs might be potential biomarkers related to carcinogenesis of cholangiocarcinoma. Therefore, this review provides the basis for further investigating the roles of miRNAs in opisthorchiid flukes and their definitive hosts, as well as promoting the development of novel approaches to prevent and treat opisthorchiasis/clonorchiasis.
Collapse
Affiliation(s)
- Xiang Li
- Central Laboratory, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Ding
- West Coast New Area Center for Disease Prevention and Control, Qingdao, China
| | - Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xueli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xu Jiang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Rui Chen
- Department of orthopaedics, Affiliated Wuxi No. 2 Hospital, Wuxi, China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yifan Sun
- Department of Clinical Laboratory, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jie Wan
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, China.
| | - Su Han
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Parasitology, Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Raju B, Narendra G, Verma H, Silakari O. Identification of chemoresistance associated key genes-miRNAs-TFs in docetaxel resistant breast cancer by bioinformatics analysis. 3 Biotech 2024; 14:128. [PMID: 38590544 PMCID: PMC10998825 DOI: 10.1007/s13205-024-03971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
The present study aimed to identify the differentially expressed genes (DEGs) and enriched pathways in docetaxel (DTX) resistant breast cancer cell lines by bioinformatics analysis. The microarray dataset GSE28784 was obtained from gene expression omnibus (GEO) database. The differentially expressed genes (DEGs), gene ontology (GO), and Kyoto Encyclopedia of gene and genome (KEGG) pathway analyses were performed with the help of GEO2R and DAVID tools. Furthermore, the protein-protein interaction (PPI) and hub-gene network of DEGs were constructed using STRING and Cytohubba tools. The prognostic values of hub genes were calculated with the help of the Kaplan-Meier plotter database. From the GEO2R analysis, 222 DEGs were identified of which 120 are upregulated and 102 are downregulated genes. In the PPIs network, five up-regulated genes including CCL2, SPARC, CYR61, F3, and MFGE8 were identified as hub genes. It was observed that low expression of six hub genes CXCL8, CYR61, F3, ICAM1, PLAT, and THBD were significantly correlated with poor overall survival of BC patients in survival analysis. miRNA analysis identified that hsa-mir-16-5p, hsa-mir-335-5p, hsa-mir-124-3p, hsa-mir-20a-5p, and hsa-mir-155-5p are the top 5 interactive miRNAs that are commonly interacting with more hub genes with degree score of greater than five. Additionally, drug-gene interaction analysis was performed to identify drugs which are could potentially elevate/lower the expression levels of hub genes. In summary, the gene-miRNAs-TFs network and subsequent correlation of candidate drugs with hub genes may improve individualized diagnosis and help select appropriate combination therapy for DTX-resistant BC in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03971-2.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| |
Collapse
|
4
|
Kubeczko M, Tudrej P, Tyszkiewicz T, Krzywon A, Oczko-Wojciechowska M, JarzĄb M. Liquid biopsy utilizing miRNA in patients with advanced breast cancer treated with cyclin‑dependent kinase 4/6 inhibitors. Oncol Lett 2024; 27:181. [PMID: 38464342 PMCID: PMC10921259 DOI: 10.3892/ol.2024.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) are the mainstay of treatment of hormone receptor+/human epidermal growth factor receptor 2-patients with advanced breast cancer (ABC). Despite improvements in overall survival, most patients experience disease progression. Biomarkers derived from a liquid biopsy are appealing for their potential to detect resistance to treatment earlier than computed tomography imaging. However, clinical data concerning microRNAs (miRNAs/miRs) in the context of CDK4/6is are lacking. Thus, the present study assessed the use of miRNAs in patients with ABC treated with CDK4/6is. Patients treated for ABC with CDK4/6is between June and August 2022 were eligible. miRNA expression analyses were performed using a TaqMan™ low-density miRNA array. A total of 80 consecutive patients with ABC treated with CDK4/6is at Maria Sklodowska-Curie National Research Institute of Oncology (Gliwice, Poland) were assessed, with 14 patients diagnosed with progressive disease at the time of sampling, 55 patients exhibited clinical benefit from CDK4/6i treatment and 11 patients were at the beginning of CDK4/6i treatment. Patients with disease progression had significantly higher levels of miR-21 (P=0.027), miR-34a (P=0.011), miR-193b (P=0.032), miR-200a (P=0.027) and miR-200b (P=0.003) compared with patients who benefitted from CDK4/6i treatment. Significantly higher levels of miR-34a expression were observed in patients with progressive disease than in patients beginning treatment (P=0.031). The present study demonstrated the potential innovative role of circulating miRNAs during CDK4/6i treatment. Plasma-based expression of miR-21, -34a, -193b, -200a and -200b effectively distinguished patients with ABC who responded to CDK4/6i treatment from patients who were resistant. However, longitudinal studies are required to verify the predictive and prognostic potential of miRNA.
Collapse
Affiliation(s)
- Marcin Kubeczko
- Breast Cancer Center, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Patrycja Tudrej
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Tomasz Tyszkiewicz
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Aleksandra Krzywon
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - MaŁgorzata Oczko-Wojciechowska
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - MichaŁ JarzĄb
- Breast Cancer Center, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| |
Collapse
|
5
|
Lee SH, Brianna. Association of microRNA-21 expression with breast cancer subtypes and its potential as an early biomarker. Pathol Res Pract 2024; 254:155073. [PMID: 38218039 DOI: 10.1016/j.prp.2023.155073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
Breast cancer has become the most diagnosed cancer worldwide in 2020 with high morbidity and mortality rates. The alarming increase in breast cancer incidence has sprung many researchers to focus on developing novel screening tests to identify early breast cancer which will allow clinicians to provide timely and effective treatments. With much evidence supporting the notion that the deregulation of miRNAs (a class of non-coding RNA) greatly contributes to cancer initiation and progression, the promising role of miRNAs as cancer biomarkers is gaining traction in the research world. Among the upregulated miRNAs identified in breast carcinogenesis, miR-21 was shown to be significantly expressed in breast cancer tissues and bodily fluids of breast cancer patients. Therein, this review paper aims to provide an overview of breast cancer, the role and significance of miR-21 in breast cancer pathogenesis, and its potential as a breast cancer biomarker. The paper also discusses the current types of tumor biomarkers and their limitations, the presence of miR-21 in extracellular vesicles and plasma, screening methods available for miRNA detection along with some challenges faced in developing diagnostic miR-21 testing for breast cancer to provide readers with a comprehensive outlook based on using miR-21 in clinical settings.
Collapse
Affiliation(s)
- Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Brianna
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Darul Ehsan, Selangor 47500, Malaysia
| |
Collapse
|
6
|
Attachaipanich T, Chattipakorn SC, Chattipakorn N. Current evidence regarding the cellular mechanisms associated with cancer progression due to cardiovascular diseases. J Transl Med 2024; 22:105. [PMID: 38279150 PMCID: PMC10811855 DOI: 10.1186/s12967-023-04803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024] Open
Abstract
Several large cohort studies in cardiovascular disease (CVD) patients have shown an increased incidence of cancer. Previous studies in a myocardial infarction (MI) mouse model reported increased colon, breast, and lung cancer growth. The potential mechanisms could be due to secreted cardiokines and micro-RNAs from pathological hearts and immune cell reprogramming. A study in a MI-induced heart failure (HF) mouse demonstrated an increase in cardiac expression of SerpinA3, resulting in an enhanced proliferation of colon cancer cells. In MI-induced HF mice with lung cancer, the attenuation of tumor sensitivity to ferroptosis via the secretion of miR-22-3p from cardiomyocytes was demonstrated. In MI mice with breast cancer, immune cell reprogramming toward the immunosuppressive state was shown. However, a study in mice with renal cancer reported no impact of MI on tumor growth. In addition to MI, cardiac hypertrophy was shown to promote the growth of breast and lung cancer. The cardiokine potentially involved, periostin, was increased in the cardiac tissue and serum of a cardiac hypertrophy model, and was reported to increase breast cancer cell proliferation. Since the concept that CVD could influence the initiation and progression of several types of cancer is quite new and challenging regarding future therapeutic and preventive strategies, further studies are needed to elucidate the potential underlying mechanisms which will enable more effective risk stratification and development of potential therapeutic interventions to prevent cancer in CVD patients.
Collapse
Affiliation(s)
- Tanawat Attachaipanich
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
7
|
Lopez-Gonzalez L, Sanchez Cendra A, Sanchez Cendra C, Roberts Cervantes ED, Espinosa JC, Pekarek T, Fraile-Martinez O, García-Montero C, Rodriguez-Slocker AM, Jiménez-Álvarez L, Guijarro LG, Aguado-Henche S, Monserrat J, Alvarez-Mon M, Pekarek L, Ortega MA, Diaz-Pedrero R. Exploring Biomarkers in Breast Cancer: Hallmarks of Diagnosis, Treatment, and Follow-Up in Clinical Practice. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:168. [PMID: 38256428 PMCID: PMC10819101 DOI: 10.3390/medicina60010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Breast cancer is a prevalent malignancy in the present day, particularly affecting women as one of the most common forms of cancer. A significant portion of patients initially present with localized disease, for which curative treatments are pursued. Conversely, another substantial segment is diagnosed with metastatic disease, which has a worse prognosis. Recent years have witnessed a profound transformation in the prognosis for this latter group, primarily due to the discovery of various biomarkers and the emergence of targeted therapies. These biomarkers, encompassing serological, histological, and genetic indicators, have demonstrated their value across multiple aspects of breast cancer management. They play crucial roles in initial diagnosis, aiding in the detection of relapses during follow-up, guiding the application of targeted treatments, and offering valuable insights for prognostic stratification, especially for highly aggressive tumor types. Molecular markers have now become the keystone of metastatic breast cancer diagnosis, given the diverse array of chemotherapy options and treatment modalities available. These markers signify a transformative shift in the arsenal of therapeutic options against breast cancer. Their diagnostic precision enables the categorization of tumors with elevated risks of recurrence, increased aggressiveness, and heightened mortality. Furthermore, the existence of therapies tailored to target specific molecular anomalies triggers a cascade of changes in tumor behavior. Therefore, the primary objective of this article is to offer a comprehensive review of the clinical, diagnostic, prognostic, and therapeutic utility of the principal biomarkers currently in use, as well as of their clinical impact on metastatic breast cancer. In doing so, our goal is to contribute to a more profound comprehension of this complex disease and, ultimately, to enhance patient outcomes through more precise and effective treatment strategies.
Collapse
Affiliation(s)
- Laura Lopez-Gonzalez
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.L.-G.); (A.M.R.-S.); (S.A.-H.); (R.D.-P.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
| | - Alicia Sanchez Cendra
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain; (A.S.C.); (C.S.C.); (E.D.R.C.); (J.C.E.)
| | - Cristina Sanchez Cendra
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain; (A.S.C.); (C.S.C.); (E.D.R.C.); (J.C.E.)
| | | | - Javier Cassinello Espinosa
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain; (A.S.C.); (C.S.C.); (E.D.R.C.); (J.C.E.)
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Oscar Fraile-Martinez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Cielo García-Montero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Ana María Rodriguez-Slocker
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.L.-G.); (A.M.R.-S.); (S.A.-H.); (R.D.-P.)
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Soledad Aguado-Henche
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.L.-G.); (A.M.R.-S.); (S.A.-H.); (R.D.-P.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
| | - Jorge Monserrat
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Melchor Alvarez-Mon
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Leonel Pekarek
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain; (A.S.C.); (C.S.C.); (E.D.R.C.); (J.C.E.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Miguel A. Ortega
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.L.-G.); (A.M.R.-S.); (S.A.-H.); (R.D.-P.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| |
Collapse
|
8
|
Jiang X, Shi R, Ma R, Tang X, Gong Y, Yu Z, Shi Y. The role of microRNA in psoriasis: A review. Exp Dermatol 2023; 32:1598-1612. [PMID: 37382420 DOI: 10.1111/exd.14871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease that involves a complex interplay between infiltrated immune cells and keratinocytes. Great progress has been made in the research on the molecular mechanism of coding and non-coding genes, which has helped in clinical treatment. However, our understanding of this complex disease is far from clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that are involved in post-transcriptional regulation, characterised by their role in mediating gene silencing. Recent studies on miRNAs have revealed their important role in the pathogenesis of psoriasis. We reviewed the current advances in the study of miRNAs in psoriasis; the existing research has found that dysregulated miRNAs in psoriasis notably affect keratinocyte proliferation and/or differentiation processes, as well as inflammation progress. In addition, miRNAs also influence the function of immune cells in psoriasis, including CD4+ T cells, dendritic cells, Langerhans cells and so on. In addition, we discuss possible miRNA-based therapy for psoriasis, such as the topical delivery of exogenous miRNAs, miRNA antagonists and miRNA mimics. Our review highlights the potential role of miRNAs in the pathogenesis of psoriasis, and we expect more research progress with miRNAs in the future, which will help us understand this complex skin disease more accurately.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rongcan Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rui Ma
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Xinyi Tang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Zengyang Yu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Siu MC, Voisey J, Zang T, Cuttle L. MicroRNAs involved in human skin burns, wound healing and scarring. Wound Repair Regen 2023; 31:439-453. [PMID: 37268303 DOI: 10.1111/wrr.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
MicroRNAs are small, non-coding RNAs that regulate gene expression, and consequently protein synthesis. Downregulation and upregulation of miRNAs and their corresponding genes can alter cell apoptosis, proliferation, migration and fibroproliferative responses following a thermal injury. This review summarises the evidence for altered human miRNA expression post-burn, and during wound healing and scarring. In addition, the most relevant miRNA targets and their roles in potential pathways are described. Previous studies using molecular techniques have identified 197 miRNAs associated with human wound healing, burn wound healing and scarring. Five miRNAs alter the expression of fibroproliferative markers, proliferation and migration of fibroblasts and keratinocytes post-burn: hsa-miR-21 and hsa-miR-31 are increased after wounding, and hsa-miR-23b, hsa-miR-200b and hsa-let-7c are decreased. Four of these five miRNAs are associated with the TGF-β pathway. In the future, large scale, in vivo, longitudinal human studies utilising a range of cell types, ethnicity and clinical healing outcomes are fundamental to identify burn wound healing and scarring specific markers. A comprehensive understanding of the underlying pathways will facilitate the development of clinical diagnostic or prognostic tools for better scar management and the identification of novel treatment targets for improved healing outcomes in burn patients.
Collapse
Affiliation(s)
- Man Ching Siu
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health Research, QUT, Brisbane, Queensland, Australia
| | - Joanne Voisey
- Centre for Genomics and Personalised Health Research, QUT, Brisbane, Queensland, Australia
| | - Tuo Zang
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Leila Cuttle
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Kumar V, Haldar S, Saini S, Ghosh S, Dhankhar P, Roy P. Pterostilbene-isothiocyanate reduces miR-21 level by impeding Dicer-mediated processing of pre-miR-21 in 5-fluorouracil and tamoxifen-resistant human breast cancer cell lines. 3 Biotech 2023; 13:193. [PMID: 37205177 PMCID: PMC10185726 DOI: 10.1007/s13205-023-03582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
Converging evidences identifies that microRNA-21 (miR-21) is responsible for drug resistance in breast cancer. This study aims to evaluate the miR-21-modulatory potential of a hybrid compound, pterostilbene-isothiocyanate (PTER-ITC), in tamoxifen-resistant MCF-7 (TR/MCF-7) and 5-fluorouracil-resistant MDA-MB 231 (5-FUR/MDA-MB 231) breast cancer cell lines, established by repeated exposure to gradually increasing the concentrations of tamoxifen and 5-fluorouracil, respectively. The outcome of this study shows that PTER-ITC effectively reduced the TR/MCF-7 (IC50: 37.21 µM) and 5-FUR/MDA-MB 231 (IC50: 47.00 µM) cell survival by inducing apoptosis, inhibiting cell migration, colony and spheroid formations in TR/MCF-7 cells, and invasiveness of 5-FUR/MDA-MB 231 cells. Most importantly, PTER-ITC significantly reduced the miR-21 expressions in these resistant cell lines. Moreover, the downstream tumor suppressor target gene of miR-21 such as PTEN, PDCD4, TIMP3, TPM1, and Fas L were upregulated after PTER-ITC treatment, as observed from transcriptional (RT-qPCR) and translational (immunoblotting) data. In silico and miR-immunoprecipitation (miR-IP) results showed reduced Dicer binding to pre-miR-21, after PTER-ITC treatment, indicating inhibition of miR-21 biogenesis. Collectively, the significance of this study is indicated by preliminary evidence for miR-21-modulatory effects of PTER-ITC that highlights the potential of this hybrid compound as an miR-21-targeting therapeutic agent.
Collapse
Affiliation(s)
- Viney Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667 India
| | - Swati Haldar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667 India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand India
- Present Address: Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand India
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667 India
| | - Souvik Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667 India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand India
| | - Poonam Dhankhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667 India
- Present Address: Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA USA
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667 India
| |
Collapse
|
11
|
Ho V, Baker JR, Willison KR, Barnes PJ, Donnelly LE, Klug DR. Single cell quantification of microRNA from small numbers of non-invasively sampled primary human cells. Commun Biol 2023; 6:458. [PMID: 37100999 PMCID: PMC10133449 DOI: 10.1038/s42003-023-04845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Expression levels of microRNAs (miRNAs) in single cells are low and conventional miRNA detection methods require amplification that can be complex, time-consuming, costly and may bias results. Single cell microfluidic platforms have been developed; however, current approaches are unable to absolutely quantify single miRNA molecules expressed in single cells. Herein, we present an amplification-free sandwich hybridisation assay to detect single miRNA molecules in single cells using a microfluidic platform that optically traps and lyses individual cells. Absolute quantification of miR-21 and miR-34a molecules was achieved at a single cell level in human cell lines and validated using real-time qPCR. The sensitivity of the assay was demonstrated by quantifying single miRNA molecules in nasal epithelial cells and CD3+ T-cells, as well as nasal fluid collected non-invasively from healthy individuals. This platform requires ~50 cells or ~30 µL biofluid and can be extended for other miRNA targets therefore it could monitor miRNA levels in disease progression or clinical studies.
Collapse
Affiliation(s)
- Vanessa Ho
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK
| | - Jonathan R Baker
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK
| | - Keith R Willison
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK.
| | - David R Klug
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
| |
Collapse
|
12
|
Bahramy A, Zafari N, Rajabi F, Aghakhani A, Jayedi A, Khaboushan AS, Zolbin MM, Yekaninejad MS. Prognostic and diagnostic values of non-coding RNAs as biomarkers for breast cancer: An umbrella review and pan-cancer analysis. Front Mol Biosci 2023; 10:1096524. [PMID: 36726376 PMCID: PMC9885171 DOI: 10.3389/fmolb.2023.1096524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Background: Breast cancer (BC) is the most common cancer in women. The incidence and morbidity of BC are expected to rise rapidly. The stage at which BC is diagnosed has a significant impact on clinical outcomes. When detected early, an overall 5-year survival rate of up to 90% is possible. Although numerous studies have been conducted to assess the prognostic and diagnostic values of non-coding RNAs (ncRNAs) in breast cancer, their overall potential remains unclear. In this field of study, there are various systematic reviews and meta-analysis studies that report volumes of data. In this study, we tried to collect all these systematic reviews and meta-analysis studies in order to re-analyze their data without any restriction to breast cancer or non-coding RNA type, to make it as comprehensive as possible. Methods: Three databases, namely, PubMed, Scopus, and Web of Science (WoS), were searched to find any relevant meta-analysis studies. After thoroughly searching, the screening of titles, abstracts, and full-text and the quality of all included studies were assessed using the AMSTAR tool. All the required data including hazard ratios (HRs), sensitivity (SENS), and specificity (SPEC) were extracted for further analysis, and all analyses were carried out using Stata. Results: In the prognostic part, our initial search of three databases produced 10,548 articles, of which 58 studies were included in the current study. We assessed the correlation of non-coding RNA (ncRNA) expression with different survival outcomes in breast cancer patients: overall survival (OS) (HR = 1.521), disease-free survival (DFS) (HR = 1.33), recurrence-free survival (RFS) (HR = 1.66), progression-free survival (PFS) (HR = 1.71), metastasis-free survival (MFS) (HR = 0.90), and disease-specific survival (DSS) (HR = 0.37). After eliminating low-quality studies, the results did not change significantly. In the diagnostic part, 22 articles and 30 datasets were retrieved from 8,453 articles. The quality of all studies was determined. The bivariate and random-effects models were used to assess the diagnostic value of ncRNAs. The overall area under the curve (AUC) of ncRNAs in differentiated patients is 0.88 (SENS: 80% and SPEC: 82%). There was no difference in the potential of single and combined ncRNAs in differentiated BC patients. However, the overall potential of microRNAs (miRNAs) is higher than that of long non-coding RNAs (lncRNAs). No evidence of publication bias was found in the current study. Nine miRNAs, four lncRNAs, and five gene targets showed significant OS and RFS between normal and cancer patients based on pan-cancer data analysis, demonstrating their potential prognostic value. Conclusion: The present umbrella review showed that ncRNAs, including lncRNAs and miRNAs, can be used as prognostic and diagnostic biomarkers for breast cancer patients, regardless of the sample sources, ethnicity of patients, and subtype of breast cancer.
Collapse
Affiliation(s)
- Afshin Bahramy
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Zafari
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Aghakhani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Mir Saeed Yekaninejad, , ; Masoumeh Majidi Zolbin, ,
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Mir Saeed Yekaninejad, , ; Masoumeh Majidi Zolbin, ,
| |
Collapse
|
13
|
Wang C, Xu H, Liao X, Wang W, Wu W, Li W, Niu L, Li Z, Li A, Sun Y, Huang W, Song F. Hypertension Promotes the Proliferation and Migration of ccRCC Cells by Downregulation of TIMP3 in Tumor Endothelial Cells through the miR-21-5p/TGFBR2/P38/EGR1 Axis. Mol Cancer Res 2023; 21:62-75. [PMID: 36125433 DOI: 10.1158/1541-7786.mcr-22-0089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/15/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023]
Abstract
Recent studies have demonstrated that hypertension correlates with tumorigenesis and prognosis of clear-cell renal cell carcinoma (ccRCC); however, the underlying molecular mechanisms remain unclear. By analyzing bulk and single-cell RNA sequencing data and experimental examining of surgical excised ccRCC samples, we found that tissue inhibitors of metalloproteinases 3 (TIMP3), a pivotal paracrine factor in suppressing tumor progression, was significantly reduced in the tumor endothelial cells of patients with hypertensive ccRCC. Besides, in tumor xenograft of NCG mouse model, compared with saline normotensive group the expression of TIMP3 was significantly decreased in the angiotensin II-induced hypertension group. Treating human umbilical vein endothelial cells (HUVEC) with the plasma of patients with hypertensive ccRCC and miR-21-5p, elevated in the plasma of patients with hypertensive ccRCC, reduced the expression of TIMP3 compared with normotensive and control littermates. We also found that the inhibition of TIMP3 expression by miR-21-5p was not through directly targeting at 3'UTR of TIMP3 but through suppressing the expression of TGFβ receptor 2 (TGFBR2). In addition, the knockout of TGFBR2 reduced TIMP3 expression in HUVECs through P38/EGR1 (early growth response protein 1) signaling axis. Moreover, via coculture of ccRCC cell lines with HUVECs and mouse tumor xenograft model, we discovered that the TIMP3 could suppress the proliferation and migration of ccRCC. IMPLICATIONS Overall, our findings shed new light on the role of hypertension in promoting the progression of ccRCC and provide a potential therapeutic target for patients with ccRCC with hypertension.
Collapse
Affiliation(s)
- Chenguang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Haibo Xu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, Guangdong, China
| | - Xinhui Liao
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Weiming Wang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, Guangdong, China
| | - Wanjun Wu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, Guangdong, China
| | - Wujiao Li
- Clinical laboratory, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Liman Niu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, Guangdong, China
| | - Zhichao Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, Guangdong, China
| | - Aolin Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, Guangdong, China
| | - Yangyang Sun
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Weiren Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, Guangdong, China
| | - Fei Song
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Bai Y, Xiong Y, Zhang YY, Cheng L, Liu H, Xu K, Wu YY, Field J, Wang XD, Zhou LM. Tangeretin Synergizes with 5-Fluorouracil to Induce Autophagy through MicroRNA-21 in Colorectal Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1681-1701. [PMID: 35848125 DOI: 10.1142/s0192415x22500719] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Combining innocuous natural products with cytotoxic agents may enhance the effectiveness of chemotherapy. Tangeretin is a citrus flavonoid that has antineoplastic properties, but its mechanism of action is still unknown. Here, we used a high throughput-screening (HTS) platform to screen for drugs that may synergize with tangeretin and confirmed the top hits against colorectal cancer (CRC) cells in vitro and in vivo. 5-Fluorouracil (5-FU) and PI3K/Akt inhibitors have come out as top hits that show a strong synergy effect with tangeretin by HTS. We further confirmed the synergistic effect of tangeretin with 5-FU against CRC cells in vitro and in vivo. Since 5-FU can increase microRNA-21 (miR-21) expression and activate PI3K/Akt signaling, we addressed if tangeretin acted at this level. In 5-FU treated cells, tangeretin inhibited miR-21 induction, rescued the expression of the target PTEN, reduced Akt activation, and induced autophagy. Together, our data indicated that a natural product, such as tangeretin, can modulate miR-21 expression and that this pathway might be a potential therapeutic target for CRC. Combining tangeretin with 5-FU may be useful in the clinic, since 5-FU is the current first line drug for treating CRC.
Collapse
Affiliation(s)
- Yang Bai
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Department of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Department of Pharmacy, Chengdu Shangjinnanfu Hospital, Chengdu, Sichuan 611730, P. R. China
| | - Yao Xiong
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yuan-Yuan Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Lin Cheng
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hui Liu
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ke Xu
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yi-Ying Wu
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan 610083, P. R. China
| | - Jeffrey Field
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiao-Dong Wang
- Department of Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Li-Ming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,985 Science and Technology Platform for Innovative Drugs, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
15
|
Yu S, Zhou Y, Niu L, Qiao Y, Yan Y. Mesenchymal stem cell-derived exosome mir-342-3p inhibits metastasis and chemo-resistance of breast cancer through regulating ID4. Genes Genomics 2022; 44:539-550. [PMID: 35023068 DOI: 10.1007/s13258-021-01200-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/27/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The mesenchymal stem cell-derived exosome (MSCs-exo) carrying microRNAs have been proved to regulate tumor biological activities. Clarifying molecular mechanism and identifying predictive microRNAs will be of great value in anti-tumor therapy improvement. OBJECTIVE We aimed to investigate the regulatory role of microRNA-342-3p (miR-342-3p) in MSCs-exo on breast cancer. METHODS Breast cancer tissues and cell lines were used to evaluate miR-342-3p expression in patients with or without lymph node/distal organ metastasis. The impact of MSCs-exo expression on tumor cell chemo-resistance and invasion/migration was measured. Dual-luciferase reporter gene assay was applied to identify binding site. Inhibitor of differentiation 4 (ID4) siRNA and miR-342-3p inhibitor transfection was conducted to further explore the miR-342-3p/ID4 axis on chemo-resistance and metastasis of breast cancer cells. RESULTS Breast cancer cells revealed significantly lower level of miR-342-3p in patients with metastatic diseases. miR-342-3p suppressed invasive and chemo-resistant behavior of breast cancer tumor cells. Binding site between miR-342-3p and ID4 was proved. ID4 could reverse the influence of miR-342-3p on chemo-resistance. The tumor inhibition effect of IDA siRNA in vivo was also identified. CONCLUSIONS This study demonstrated that miR-342-3p acted as potential tumor suppressor by inhibiting metastasis and chemo-resistance of breast cancer cells through targeting ID4. This study might provide potential therapy targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shuyao Yu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Shaanxi Province, 710061, Xi'an, China
| | - Yuhui Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Shaanxi Province, 710061, Xi'an, China
| | - Ligang Niu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Shaanxi Province, 710061, Xi'an, China
| | - Yan Qiao
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Shaanxi Province, 710061, Xi'an, China
| | - Yu Yan
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Shaanxi Province, 710061, Xi'an, China.
| |
Collapse
|
16
|
Synthetic Circular miR-21 Sponge as Tool for Lung Cancer Treatment. Int J Mol Sci 2022; 23:ijms23062963. [PMID: 35328383 PMCID: PMC8955967 DOI: 10.3390/ijms23062963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Lung cancer is the most common cancer in the world and several miRNAs are associated with it. MiRNA sponges are presented as tools to inhibit miRNAs. We designed a system to capture miRNAs based on circular RNAs (circRNA). To demonstrate its usefulness, we chose miR-21, which is upregulated and implicated in lung cancer. We constructed a miR-21 sponge and inserted it into a vector that facilitates circular RNA production (Circ-21) to study its effect on growth, colony formation, and migration in lung cancer cell lines and multicellular tumor spheroids (MTS). Circ-21 induced a significant and time-dependent decrease in the growth of A549 and LL2 cells, but not in L132 cells. Furthermore, A549 and LL2 cells transfected with Circ-21 showed a lower number of colonies and migration than L132. Similar findings were seen in A549 and LL2 Circ-21 MTS, which showed a significant decrease in volume growth, but not in L132 Circ-21 MTS. Based on this, the miR-21 circular sponge may suppress the processes of tumorigenesis and progression. Therefore, our system based on circular sponges seems to be effective, as a tool for the capture of other miRNAs.
Collapse
|
17
|
Tissue Inhibitor of Metalloproteases 3 (TIMP-3): In Vivo Analysis Underpins Its Role as a Master Regulator of Ectodomain Shedding. MEMBRANES 2022; 12:membranes12020211. [PMID: 35207132 PMCID: PMC8878240 DOI: 10.3390/membranes12020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/06/2023]
Abstract
The proteolytical cleavage of transmembrane proteins with subsequent release of their extracellular domain, so-called ectodomain shedding, is a post-translational modification that plays an essential role in several biological processes, such as cell communication, adhesion and migration. Metalloproteases are major proteases in ectodomain shedding, especially the disintegrin metalloproteases (ADAMs) and the membrane-type matrix metalloproteases (MT-MMPs), which are considered to be canonical sheddases for their membrane-anchored topology and for the large number of proteins that they can release. The unique ability of TIMP-3 to inhibit different families of metalloproteases, including the canonical sheddases (ADAMs and MT-MMPs), renders it a master regulator of ectodomain shedding. This review provides an overview of the different functions of TIMP-3 in health and disease, with a major focus on the functional consequences in vivo related to its ability to control ectodomain shedding. Furthermore, herein we describe a collection of mass spectrometry-based approaches that have been used in recent years to identify new functions of sheddases and TIMP-3. These methods may be used in the future to elucidate the pathological mechanisms triggered by the Sorsby’s fundus dystrophy variants of TIMP-3 or to identify proteins released by less well characterized TIMP-3 target sheddases whose substrate repertoire is still limited, thus providing novel insights into the physiological and pathological functions of the inhibitor.
Collapse
|
18
|
Onco-miR-21 Promotes Stat3-Dependent Gastric Cancer Progression. Cancers (Basel) 2022; 14:cancers14020264. [PMID: 35053428 PMCID: PMC8773769 DOI: 10.3390/cancers14020264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNA-21 (miR-21) is a small, non-coding RNA overexpressed in gastric cancer and many other solid malignancies, where it exhibits both pro-and anti-tumourigenic properties. However, the pathways regulating miR-21 and the consequences of its inhibition in gastric cancer remain incompletely understood. By exploiting the spontaneous Stat3-dependent formation of inflammation-associated gastric tumors in Gp130F/F mice, we functionally established miR-21 as a Stat3-controlled driver of tumor growth and progression. We reconciled our discoveries by identifying several conserved Stat3 binding motifs upstream of the miR-21 gene promoter, and showed that the systemic administration of a miR-21-specific antisense oligonucleotide antagomir reduced the established gastric tumor burden in Gp130F/F mice. We molecularly delineated the therapeutic benefits of miR-21 inhibition with the functional restoration of PTEN in vitro and in vivo, alongside an attenuated epithelial-to-mesenchymal transition and the extracellular matrix remodeling phenotype of tumors. We corroborated our preclinical findings by correlating high STAT3 and miR-21 expression with the reduced survival probability of gastric cancer patients. Collectively, our results provide a molecular framework by which miR-21 mediates inflammation-associated gastric cancer progression, and establish miR-21 as a robust therapeutic target for solid malignancies characterized by excessive Stat3 activity.
Collapse
|
19
|
Manetti AC, Maiese A, Baronti A, Mezzetti E, Frati P, Fineschi V, Turillazzi E. MiRNAs as New Tools in Lesion Vitality Evaluation: A Systematic Review and Their Forensic Applications. Biomedicines 2021; 9:1731. [PMID: 34829960 PMCID: PMC8615694 DOI: 10.3390/biomedicines9111731] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Wound vitality demonstration is one of the most challenging fields in forensic pathology. In recent years, researchers focused on the application of histological and immunohistochemical staining in this sphere of study. It is based on the detection of inflammation, red cell infiltration, and tissue alterations at the histological examination, all of which are supposedly present in antemortem rather than post-mortem wounds. Nevertheless, some doubts about the reliability of those markers have arisen. Furthermore, the lack of a standardized protocol and the operator dependency of this approach make the proper interpretation of its results difficult. Moreover, a differential miRNAs expression has been demonstrated in antemortem and post-mortem wounds. Herein, a systematic review concerning the current knowledge about the use of miRNAs in lesion vitality evaluation is carried out, to encourage researchers to deepen this peculiar study area. A compendium about the potential miRNAs that may be further investigated as vitality markers is also provided. The aim is to collect all available data about this topic to direct further studies on this field and highlight the future applications of miRNAs in forensic pathology. We found 20 articles and a total of 51 miRNAs that are involved in inflammation and wound healing. Further studies are certainly needed to deepen the role of miRNAs in inflammatory processes in lesioned skin and to evaluate their reliability in distinguishing between antemortem and post-mortem lesions.
Collapse
Affiliation(s)
- Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Arianna Baronti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy;
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| |
Collapse
|
20
|
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNA, posttranscriptionally regulate the expression of genes. Aberrant expression of miRNA is reported in various types of cancer. Since the first report of oncomiR-21 involvement in the glioma, its upregulation was reported in multiple cancers and was allied with high oncogenic property. In addition to the downregulation of tumor suppressor genes, the miR-21 is also associated with cancer resistance to various chemotherapy. The recent research is appraising miR-21 as a promising cancer target and biomarker for early cancer detection. In this review, we briefly explain the biogenesis and regulation of miR-21 in cancer cells. Additionally, the review features the assorted genes/pathways regulated by the miR-21 in various cancer and cancer stem cells.
Collapse
|
21
|
Argote Camacho AX, González Ramírez AR, Pérez Alonso AJ, Rejón García JD, Olivares Urbano MA, Torné Poyatos P, Ríos Arrabal S, Núñez MI. Metalloproteinases 1 and 3 as Potential Biomarkers in Breast Cancer Development. Int J Mol Sci 2021; 22:ijms22169012. [PMID: 34445715 PMCID: PMC8396449 DOI: 10.3390/ijms22169012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer continues to be one of the main causes of morbidity and mortality globally and was the leading cause of cancer death in women in Spain in 2020. Early diagnosis is one of the most effective methods to lower the incidence and mortality rates of breast cancer. The human metalloproteinases (MMP) mainly function as proteolytic enzymes degrading the extracellular matrix and plays important roles in most steps of breast tumorigenesis. This retrospective cohort study shows the immunohistochemical expression levels of MMP-1, MMP-2, MMP-3, and MMP-9 in 154 women with breast cancer and 42 women without tumor disease. The samples of breast tissue are assessed using several tissue matrices (TMA). The percentages of staining (≤50%–>50%) and intensity levels of staining (weak, moderate, or intense) are considered. The immunohistochemical expression of the MMP-1-intensity (p = 0.043) and MMP-3 percentage (p = 0.018) and intensity, (p = 0.025) present statistically significant associations with the variable group (control–case); therefore, expression in the tumor tissue samples of these MMPs may be related to the development of breast cancer. The relationships between these MMPs and some clinicopathological factors in breast cancer are also evaluated but no correlation is found. These results suggest the use of MMP-1 and MMP-3 as potential biomarkers of breast cancer diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Pablo Torné Poyatos
- Department of Surgery and Its Specialties, University of Granada, 18012 Granada, Spain;
| | - Sandra Ríos Arrabal
- Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain;
- Correspondence: (S.R.A.); (M.I.N.); Tel.: +34-958-242077 (S.R.A.); +34-958-242077 (M.I.N.)
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain;
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute, ibs.Granada, 18012 Granada, Spain
- Correspondence: (S.R.A.); (M.I.N.); Tel.: +34-958-242077 (S.R.A.); +34-958-242077 (M.I.N.)
| |
Collapse
|
22
|
Raghu A, Magendhra Rao AKD, Rajkumar T, Mani S. Prognostic Implications of microRNA-155, -133a, -21 and -205 in Breast Cancer Patients' Plasma. Microrna 2021; 10:206-218. [PMID: 34238179 DOI: 10.2174/2211536610666210707114843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/26/2021] [Accepted: 04/14/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Breast cancer, being a heterogenous disease at the intra-tumoral and intertumoral levels, presents challenges in following the progress of the disease. Tumour-secreted aberrantly expressed miRNAs obtained from peripheral blood represent a non-invasive alternative resource for detecting and monitoring the development of the disease. This study evaluates the expression of miR-155, miR-133a, miR-21 and miR-205 as non-invasive, prognostic and follow-up markers for breast cancer. METHODS Plasma expression levels of miR-155, miR-133a, miR-21 and miR-205 were measured using real-time PCR in breast cancer patients (n=63) at presentation, healthy controls (n=25), and in post-treatment samples of 31 patients. A meta-analysis was performed using 43 studies identified from PubMed, Google Scholar and Scopus databases. Hedge's g values were used to calculate the overall effect size. RESULTS Plasma miR-21 levels were higher in breast cancer patients at presentation compared to controls, while no difference was observed for miR-155, miR-133a and miR-205. These results were further supported by the meta-analysis. The altered levels of miR-155 during tamoxifen treatment indicated a potential role for miR-155 in monitoring treatment response. Further, high expressions of at least three miRNAs correlated with poor overall survival in the breast cancer patients. CONCLUSION Plasma levels of miR-155, miR-133a, miR-21 and miR-205 may be useful as prognostic and follow-up markers for breast cancer with further validation in a large cohort of patients.
Collapse
Affiliation(s)
- Aarthy Raghu
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600036,India
| | | | | | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600036,India
| |
Collapse
|
23
|
Petrović N, Nakashidze I, Nedeljković M. Breast Cancer Response to Therapy: Can microRNAs Lead the Way? J Mammary Gland Biol Neoplasia 2021; 26:157-178. [PMID: 33479880 DOI: 10.1007/s10911-021-09478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/17/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is a leading cause of death among women with malignant diseases. The selection of adequate therapies for highly invasive and metastatic BCs still represents a major challenge. Novel combinatorial therapeutic approaches are urgently required to enhance the efficiency of BC treatment. Recently, microRNAs (miRNAs) emerged as key regulators of the complex mechanisms that govern BC therapeutic resistance and susceptibility. In the present review we aim to critically examine how miRNAs influence BC response to therapies, or how to use miRNAs as a basis for new therapeutic approaches. We summarized recent findings in this rapidly evolving field, emphasizing the challenges still ahead for the successful implementation of miRNAs into BC treatment while providing insights for future BC management.The goal of this review was to propose miRNAs, that might simultaneously improve the efficacy of all four therapies that are the backbone of current BC management (radio-, chemo-, targeted, and hormone therapy). Among the described miRNAs, miR-21 and miR-16 emerged as the most promising, closely followed by miR-205, miR-451, miR-182, and miRNAs from the let-7 family. miR-21 inhibition might be the best choice for future improvement of invasive BC treatment.New therapeutic strategies of miRNA-based agents alongside current standard treatment modalities could greatly benefit BC patients. This review represents a guideline on how to navigate this elaborate puzzle.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001, Belgrade, Serbia.
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Irina Nakashidze
- Department of Biology, Natural Science and Health Care, Batumi Shota Rustaveli State University, Ninoshvili str. 35, 6010, Batumi, Georgia
| | - Milica Nedeljković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| |
Collapse
|
24
|
Ramanto KN, Widianto KJ, Wibowo SSH, Agustriawan D. The regulation of microRNA in each of cancer stage from two different ethnicities as potential biomarker for breast cancer. Comput Biol Chem 2021; 93:107497. [PMID: 34029828 DOI: 10.1016/j.compbiolchem.2021.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
miRNA has recently emerged as a potential biomarker for breast cancer. Even though many studies have identified ethnic variation affecting miRNA regulation, the effect of cancer stage within specific ethnicities on miRNA epigenetic remains unclear. The present study is designed to investigate miRNA regulation from two distinct ethnicities in specific cancer stages (non-Hispanic white and non-Hispanic black) using the TCGA dataset. Differentially expressed miRNAs were calculated by using the edgeR package. miRNAs with the highest or lowest log fold Change from each cancer stage were selected as a potential biomarker. miRNA-gene interaction was analyzed by using spearman correlation analysis, CLUEGO, and DIANA-mirpath. The association of biomarker candidates with diagnostic and prognostic performance was assessed using ROC and Kaplan-Meier survival analysis. miRNA-gene interaction analysis revealed the involvement of selected miRNAs in cancer progression. From eleven selected aberrant miRNAs, four of the miRNAs (hsa-mir-495, hsa-mir-592, hsa-mir-6501, and hsa-mir-937) are significantly detrimental to breast cancer diagnosis and prognosis. Hence, our result provides valuable information to explore miRNA's role in each cancer stage between non-Hispanic white and non-Hispanic black.
Collapse
Affiliation(s)
- Kevin Nathanael Ramanto
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Kresnodityo Jatiputro Widianto
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Stefanus Satrio Hadi Wibowo
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - David Agustriawan
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia.
| |
Collapse
|
25
|
Mansoori B, Duijf PHG, Mohammadi A, Safarzadeh E, Ditzel HJ, Gjerstorff MF, Cho WCS, Baradaran B. MiR-142-3p targets HMGA2 and suppresses breast cancer malignancy. Life Sci 2021; 276:119431. [PMID: 33785332 DOI: 10.1016/j.lfs.2021.119431] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
MicroRNAs (miRNAs) have the ability to regulate gene expression programs in cells. Hence, altered expression of miRNAs significantly contributes to breast cancer development and progression. Here, we demonstrate that the miRNA miR-142-3p directly targets the 3' untranslated region of HMGA2, which encodes an onco-embryonic protein that is overexpressed in most cancers, including breast cancer. Down regulation of miR-142-3p predicting poor patient survival in grade 3 breast cancer (P-value = 0.045). MiR-142-3p downregulates HMGA2 mRNA and protein levels. Higher miR-142-3p and lower HMGA2 expressed are found in breast cancer versus normal breast tissue (P-value<0.05), and their levels inversely correlate in breast cancers (P-value = 1.46 × 10-4). We demonstrate that miR-142-3p induces apoptosis and G2/M cell cycle arrest in breast cancer cells. In addition, it inhibits breast cancer stem cell properties and decreases SOX2, NANOG, ALDH and c-Myc expression. MiR-142-3p also decreases cell proliferation through inhibition of the ERK/AKT/STAT3 signaling pathways. Finally, pathway analyses of patient samples suggest that these mechanisms also acting in the tumors of breast cancer patients. Thus, our work identifies HMGA2 as a direct miR-142-3p target and indicates that miR-142-3p is an important suppressor of breast cancer oncogenesis. This identifies miR-142-3p may candidate as a therapeutic molecule for breast cancer treatment.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark; Aging Research Institute, Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Elham Safarzadeh
- Department of Microbiology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
|
27
|
CEA, CA 15-3, and miRNA expression as potential biomarkers in canine mammary tumors. Chromosome Res 2021; 29:175-188. [PMID: 33638118 DOI: 10.1007/s10577-021-09652-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The most often detected tumor in intact bitches is mammary tumors and represents a significant clinical problem throughout the world. Mammary neoplasms in canine have heterogeneous morphology, so the choice of the most appropriate biomarker is the biggest challenge in CMT detection. We performed a retrospective analysis and evaluated the canine cancer antigens and miRNA expression profiles as potential biomarkers. Sixty dogs based on histological examination divided into three groups, viz., dogs with a benign mammary tumor, malignant mammary tumor, and control/healthy. The CA 15-3 was found more sensitive than CEA but detection of both will increase sensitivity. miR-21 expression differed significantly in all three groups. miR-29b expression differed significantly between the control and benign group and control and malignant group. The miR-21 overexpression and miR-29b downregulation with CMT are associated with clinical stage and can be used as non-invasive diagnostic and prognostic biomarkers. Hence, evaluation of CA 15-3 along with CEA would be a non-invasive technique for detecting canine mammary tumors. Evaluation of deregulated circulating miR-21 could be a valuable prognostic marker for early detection of mammary tumors in canines while miR-29b can add sensitivity in the detection of the canine mammary tumors if evaluated with miR-21.
Collapse
|
28
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
29
|
Luo T, Liu Q, Tan A, Duan L, Jia Y, Nong L, Tang J, Zhou W, Xie W, Lu Y, Yu Q, Liu Y. Mesenchymal Stem Cell-Secreted Exosome Promotes Chemoresistance in Breast Cancer via Enhancing miR-21-5p-Mediated S100A6 Expression. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:283-293. [PMID: 33294586 PMCID: PMC7689030 DOI: 10.1016/j.omto.2020.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Emerging evidence has shown the role of mesenchymal stem cell-derived exosome (MSC-exo) in inducing resistance of cancer cells to chemotherapy. However, it remains unclear whether the change of MSC-exo in response to chemotherapy also contributes to chemoresistance. In this study, we investigated the effect of a standard-of-care chemotherapeutic agent, doxorubicin (Dox), on MSC-exo and its contribution to the development of Dox resistance in breast cancer cells (BCs). We found that the exosome secreted by Dox-treated MSCs (Dt-MSC-exo) induced a higher degree of Dox resistance in BCs when compared with non-treated MSC-exo. By analysis of the MSC-exo-induced transcriptome change in BCs, we identified S100A6, a chemoresistant gene, as a top-ranked gene induced by MSC-exo in BCs, which was further enhanced by Dt-MSC-exo. Furthermore, we found that Dox induced the expression of miR-21-5p in MSCs and MSC-exo, which was required for the expression of S100A6 in BCs. Importantly, silencing of miR-21-5p expression in MSCs and MSC-exo abolished the resistance of BCs to Dox, indicating an exosomal miR-21-5p-regulated S100A6 in chemoresistance. Our study thus uncovered a novel mechanistic insight into the role of MSC-secreted exosome in the development of chemoresistance in the tumor microenvironment.
Collapse
Affiliation(s)
- Tao Luo
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Qiaoyuan Liu
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Aihua Tan
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Lixia Duan
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Yuxian Jia
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Li Nong
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Jing Tang
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Wenxian Zhou
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Weimin Xie
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Yongkui Lu
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Qiang Yu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Yan Liu
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| |
Collapse
|
30
|
Kudela E, Samec M, Koklesova L, Liskova A, Kubatka P, Kozubik E, Rokos T, Pribulova T, Gabonova E, Smolar M, Biringer K. miRNA Expression Profiles in Luminal A Breast Cancer-Implications in Biology, Prognosis, and Prediction of Response to Hormonal Treatment. Int J Mol Sci 2020; 21:ijms21207691. [PMID: 33080858 PMCID: PMC7589921 DOI: 10.3390/ijms21207691] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer, which is the most common malignancy in women, does not form a uniform nosological unit but represents a group of malignant diseases with specific clinical, histopathological, and molecular characteristics. The increasing knowledge of the complex pathophysiological web of processes connected with breast cancercarcinogenesis allows the development of predictive and prognostic gene expressionand molecular classification systems with improved risk assessment, which could be used for individualized treatment. In our review article, we present the up-to-date knowledge about the role of miRNAs and their prognostic and predictive value in luminal A breast cancer. Indeed, an altered expression profile of miRNAs can distinguish not only between cancer and healthy samples, but they can classify specific molecular subtypes of breast cancer including HER2, Luminal A, Luminal B, and TNBC. Early identification and classification of breast cancer subtypes using miRNA expression profilescharacterize a promising approach in the field of personalized medicine. A detection of sensitive and specific biomarkers to distinguish between healthy and early breast cancer patients can be achieved by an evaluation of the different expression of several miRNAs. Consequently, miRNAs represent a potential as good diagnostic, prognostic, predictive, and therapeutic biomarkers for patients with luminal A in the early stage of BC.
Collapse
Affiliation(s)
- Erik Kudela
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
- Correspondence: ; Tel.: +421-9-0230-0017
| | - Marek Samec
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Erik Kozubik
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Tomas Rokos
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Terezia Pribulova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Eva Gabonova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (M.S.)
| | - Marek Smolar
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (M.S.)
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| |
Collapse
|
31
|
Yang J, Bahcecioglu G, Zorlutuna P. The Extracellular Matrix and Vesicles Modulate the Breast Tumor Microenvironment. Bioengineering (Basel) 2020; 7:E124. [PMID: 33050609 PMCID: PMC7712041 DOI: 10.3390/bioengineering7040124] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence has shown multiple roles of the tumor microenvironment (TME) components, specifically the extracellular matrix (ECM), in breast cancer development, progression, and metastasis. Aside from the biophysical properties and biochemical composition of the breast ECM, the signaling molecules are extremely important in maintaining homeostasis, and in the breast TME, they serve as the key components that facilitate tumor progression and immune evasion. Extracellular vesicles (EVs), the mediators that convey messages between the cells and their microenvironment through signaling molecules, have just started to capture attention in breast cancer research. In this comprehensive review, we first provide an overview of the impact of ECM in breast cancer progression as well as the alterations occurring in the TME during this process. The critical importance of EVs and their biomolecular contents in breast cancer progression and metastasis are also discussed. Finally, we discuss the potential biomedical or clinical applications of these extracellular components, as well as how they impact treatment outcomes.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
32
|
Ibrahim AM, Said MM, Hilal AM, Medhat AM, Abd Elsalam IM. Candidate circulating microRNAs as potential diagnostic and predictive biomarkers for the monitoring of locally advanced breast cancer patients. Tumour Biol 2020; 42:1010428320963811. [PMID: 33028151 DOI: 10.1177/1010428320963811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed at investigating the expression of candidate microRNAs (miRs), at initial diagnosis, during neoadjuvant chemotherapy, and after the tumor resection in locally advanced breast cancer patients. Plasma samples were collected from locally advanced breast cancer patients (n = 30) and healthy subjects (n = 20) for the detection of candidate miRs' expression using the real-time quantitative polymerase chain reaction. At initial locally advanced breast cancer diagnosis, the expression of miR-21, miR-181a, and miR-10b was significantly increased, whereas that of miR-145 and let-7a was significantly decreased, compared to the healthy individuals. The diagnostic accuracy of miR-21 was superior to both carcinoembryonic antigen and carcinoma antigen 15-3 as diagnostic biomarkers for locally advanced breast cancer. By the end of the treatment, the expression of altered miRs rebound to control values. The expression levels of candidate plasma miRs are useful diagnostic biomarkers, as well as monitoring a proper response for locally advanced breast cancer patients to the treatment. Furthermore, miR-10b and miR-21 can be considered as predictive biomarkers for progression-free survival.
Collapse
Affiliation(s)
- Alaa M Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.,Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mahmoud M Said
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amany M Hilal
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Amina M Medhat
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ibrahim M Abd Elsalam
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
33
|
Asgharzade S, Sheikhshabani SH, Ghasempour E, Heidari R, Rahmati S, Mohammadi M, Jazaeri A, Amini-Farsani Z. The effect of oleuropein on apoptotic pathway regulators in breast cancer cells. Eur J Pharmacol 2020; 886:173509. [PMID: 32889065 DOI: 10.1016/j.ejphar.2020.173509] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
In spite of advancements in breast cancer therapy, this disease is still one of the significant causes of women fatalities globally. Dysregulation of miRNA plays a pivotal role in the initiation and progression of cancer. Therefore, the administration of herbal compounds with anticancer effects through controlling microRNA expression can be considered as a promising therapy for cancer. Oleuropein is the most prevalent phenolic compound in olive. Given its domestic consumption, low cost, and nontoxicity for human beings, oleuropein can be used in combination with the standard chemotherapy drugs. To this end, we examined the effect of oleuropein on two breast cancer cell lines (MCF7 and MDA-MB-231). Our findings revealed that oleuropein significantly decreased cell viability in a dose- and time-dependent manner, while it increased the apoptosis in MCF7 and MDA-MB-231 cells. In the presence of oleuropein, the expression levels of miR-125b, miR-16, miR-34a, p53, p21, and TNFRS10B increased, while that of bcl-2, mcl1, miR-221, miR-29a and miR-21 decreased. The findings pointed out that oeluropein may induce apoptosis via not only increasing the expression of pro-apoptotic genes and tumor suppressor miRNAs, but also decreasing the expression of anti-apoptotic genes and oncomiR. Consequently, oleuropein can be regarded as a suitable herbal medication for cancer therapy.
Collapse
Affiliation(s)
- Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord, University of Medical Sciences, Shahrekord, Iran
| | | | - Elham Ghasempour
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord, University of Medical Sciences, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord, University of Medical Sciences, Shahrekord, Iran
| | - Shima Rahmati
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Ali Jazaeri
- Department of Biology, College of Science, Shiraz University, Shiraz, Iran
| | - Zeinab Amini-Farsani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord, University of Medical Sciences, Shahrekord, Iran; Department of Biology, University of Sistan and Bluchestan, Zahedan, Iran.
| |
Collapse
|
34
|
Khalife H, Skafi N, Fayyad-Kazan M, Badran B. MicroRNAs in breast cancer: New maestros defining the melody. Cancer Genet 2020; 246-247:18-40. [PMID: 32805688 DOI: 10.1016/j.cancergen.2020.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs, short non-coding single-stranded RNAs, are important regulators and gatekeepers of the coding genes in the human genome. MicroRNAs are highly conserved among species and expressed in different tissues and cell types. They are involved in almost all the biological processes as apoptosis, proliferation, cell cycle arrest and differentiation. Playing all these roles, it is not surprising that the deregulation of the microRNA profile causes a number of diseases including cancer. Breast cancer, the most commonly diagnosed malignancy in women, accounts for the highest cancer-related deaths worldwide. Different microRNAs were shown to be up or down regulated in breast cancer. MicroRNAs can function as oncogenes or tumor suppressors according to their targets. In this review, the most common microRNAs implicated in breast cancer are fully illustrated with their targets. Besides, the review highlights the effect of exosomal microRNA on breast cancer and the effect of microRNAs on drug and therapies resistance as well as the miRNA-based therapeutic strategies used until today.
Collapse
Affiliation(s)
- Hoda Khalife
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| | - Najwa Skafi
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Bassam Badran
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| |
Collapse
|
35
|
Kong XJ, Ji X, He T, Xie LH, Zhang YZ, Lv H, Ding C, Li JR. A Green-Emission Metal-Organic Framework-Based Nanoprobe for Imaging Dual Tumor Biomarkers in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35375-35384. [PMID: 32657122 DOI: 10.1021/acsami.0c10038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The modular nature of metal-organic frameworks (MOFs) permits their tunable structure and function for target application, such as in biomedicine. Herein, a green-emission Zr(IV)-MOF (BUT-88) was constructed from a customized luminescent carbazolyl ligand. BUT-88 represents the first bcu-type MOF with both organic linker and metal node in eight connections and shows medium-sized pores, rich accessible linking sites, and good water stability and biocompatibility. In virtue of these merits, BUT-88 was then fabricated into a MOF-based fluorescent nanoprobe, drDNA-BUT-88. Using it, the live-cell imaging of dual tumor biomarkers was achieved for the first time upon a MOF-based probe, offering enhanced detection precision in early cancer diagnosis. Particularly, the probe showed efficient ratiometric fluorescent sensing toward the cytoplasmic biomarker microRNA-21, further improving the detection accuracy at the cellular level. In this work, the elaborate combination of MOF engineering and the fluorescent detection technique has contributed a facile biosensing platform, unlocking more possibilities of MOF chemistry.
Collapse
Affiliation(s)
- Xiang-Jing Kong
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoting Ji
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tao He
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yong-Zheng Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Haoyuan Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
36
|
Sereno M, Videira M, Wilhelm I, Krizbai IA, Brito MA. miRNAs in Health and Disease: A Focus on the Breast Cancer Metastatic Cascade towards the Brain. Cells 2020; 9:E1790. [PMID: 32731349 PMCID: PMC7463742 DOI: 10.3390/cells9081790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that mainly act by binding to target genes to regulate their expression. Due to the multitude of genes regulated by miRNAs they have been subject of extensive research in the past few years. This state-of-the-art review summarizes the current knowledge about miRNAs and illustrates their role as powerful regulators of physiological processes. Moreover, it highlights their aberrant expression in disease, including specific cancer types and the differential hosting-metastases preferences that influence several steps of tumorigenesis. Considering the incidence of breast cancer and that the metastatic disease is presently the major cause of death in women, emphasis is put in the role of miRNAs in breast cancer and in the regulation of the different steps of the metastatic cascade. Furthermore, we depict their involvement in the cascade of events underlying breast cancer brain metastasis formation and development. Collectively, this review shall contribute to a better understanding of the uniqueness of the biologic roles of miRNAs in these processes, to the awareness of miRNAs as new and reliable biomarkers and/or of therapeutic targets, which can change the landscape of a poor prognosis and low survival rates condition of advanced breast cancer patients.
Collapse
Affiliation(s)
- Marta Sereno
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
| | - Mafalda Videira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
37
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
38
|
Hu H, Tang J, Liu C, Cen Y. MiR-23b Promotes the Migration of Keratinocytes Through Downregulating TIMP3. J Surg Res 2020; 254:102-109. [PMID: 32422429 DOI: 10.1016/j.jss.2020.03.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/18/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Wound healing is a complex process aiming at repairing the damaged skin. MiR-23b has been reported to be upregulated during wound healing. In this study, we intended to explore the working mechanism of miR-23b during wound healing. METHODS Quantitative real-time polymerase chain reaction was performed to detect the enrichment of miR-23b and tissue inhibitor of metalloproteinase-3 (TIMP3) in HaCaT cells. Scratch wound assay was carried out to measure the migration of HaCaT cells. The target of miR-23b was predicted by microT-CDS software, and the combination was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. The abundance of TIMP3 protein was detected by Western blot assay. RESULTS The abundance of miR-23b was positively related to the concentration and time of transforming growth factor β1 treatment in HaCaT cells. MiR-23b promoted the migration of keratinocytes. TIMP3 was a direct target of miR-23b and was negatively regulated by miR-23b. TIMP3 inhibited the migration of keratinocytes. MiR-23b accelerated the migration of keratinocytes by downregulating the abundance of TIMP3. CONCLUSIONS MiR-23b promoted the migration of keratinocytes partly through reducing the enrichment of TIMP3. MiR-23b might be a promising target for the treatment of wound healing-associated diseases.
Collapse
Affiliation(s)
- Hua Hu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Tang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
39
|
Mohammadniaei M, Koyappayil A, Sun Y, Min J, Lee MH. Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens Bioelectron 2020; 159:112208. [PMID: 32364932 DOI: 10.1016/j.bios.2020.112208] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/06/2023]
Abstract
Multiple and sensitive detection of oncomiRs for accurate cancer diagnostics is still a challenge. Here, a synergetic amplification strategy was introduced by combining a MXene-based electrochemical signal amplification and a duplex-specific nuclease (DSN)-based amplification system for rapid, attomolar and concurrent quantification of multiple microRNAs on a single platform in total plasma. Synthesized MXene-Ti3C2Tx modified with 5 nm gold nanoparticles (AuNPs) was casted on a dual screen-printed gold electrode to host vast numbers of DNA probes identically co-immobilized on dedicated electrodes. Interestingly, presence of MXene provided biofouling resistance and enhanced the electrochemical signals by almost 4 folds of magnitude, attributed to its specious surface area and remarkable charge mobility. The 5 nm AuNPs were perfectly distributed within the whole flaky architect of the MXene to give rise to the electrochemical performance of MXene and provide the thiol-Au bonding feature. This synergetic strategy reduced the DSN-based biosensors' assay time to 80 min, provided multiplexability, antifouling activity, substantial sensitivity and specificity (single mutation recognition). The limit of detection of the proposed biosensor for microRNA-21 and microRNA-141 was respectively 204 aM and 138 aM with a wide linear range from 500 aM to 50 nM. As a proof of concept, this newly-developed strategy was coupled with a 96-well adaptive sensing device to successfully profile three cancer plasma samples based on their altered oncomiR abundances.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK, 2800, Denmark
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK, 2800, Denmark
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea.
| |
Collapse
|
40
|
Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velázquez IA, González-Barrios R, Contreras-Espinosa L, Montiel-Manríquez R, Castro-Hernández C, Fragoso-Ontiveros V, Álvarez-Gómez RM, Herrera LA. The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:409-420. [PMID: 32244168 PMCID: PMC7118281 DOI: 10.1016/j.omtn.2020.03.003] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding transcripts that posttranscriptionally regulate gene expression via base-pairing complementarity. Their role in cancer can be related to tumor suppression or oncogenic function. Moreover, they have been linked to processes recognized as hallmarks of cancer, such as apoptosis, invasion, metastasis, and proliferation. Particularly, one of the first oncomiRs found upregulated in a variety of cancers, such as gliomas, breast cancer, and colorectal cancer, was microRNA-21 (miR-21). Some of its target genes associated with cancer are PTEN (phosphatase and tensin homolog), PDCD4 (programmed cell death protein 4), RECK (reversion-inducing cysteine-rich protein with Kazal motifs), and STAT3 (signal transducer activator of transcription 3). As a result, miR-21 has been proposed as a plausible diagnostic and prognostic biomarker, as well as a therapeutic target for several types of cancer. Currently, research and clinical trials to inhibit miR-21 through anti-miR-21 oligonucleotides and ADM-21 are being conducted. As all of the evidence suggests, miR-21 is involved in carcinogenic processes; therefore, inhibiting it could have effects on more than one type of cancer. However, whether miR-21 can be used as a tissue-specific biomarker should be analyzed with caution. Consequently, the purpose of this review is to outline the available information and recent advances regarding miR-21 as a potential biomarker in the clinical setting and as a therapeutic target in cancer to highlight its importance in the era of precision medicine.
Collapse
Affiliation(s)
- Diana Bautista-Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Abraham Pedroza-Torres
- CONACYT-Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | | | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Verónica Fragoso-Ontiveros
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Rosa María Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico; Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Tlalpan, CP 14610, Mexico City, Mexico.
| |
Collapse
|
41
|
Ntanasis-Stathopoulos I, Fotiou D, Terpos E. CCL3 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1231:13-21. [PMID: 32060842 DOI: 10.1007/978-3-030-36667-4_2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Within the tumor microenvironment, chemokines play a key role in immune cell trafficking regulation and immune landscape formulation. CCL3 or macrophage inflammatory protein-1α (MIP-1α), an important chemokine implicated in both immune surveillance and tolerance, has emerged as a prognostic biomarker in both solid and hematological malignancies. CCL3 exerts both antitumor and pro-tumor behavior which is context dependent highlighting the complexity of the underlying interrelated signaling cascades. Current CCL3-directed therapeutic approaches are investigational and further optimization is required to increase efficacy and minimize adverse events.
Collapse
Affiliation(s)
- Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Despoina Fotiou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
42
|
Tfaily MA, Nassar F, Sellam LS, Amir-Tidadini ZC, Asselah F, Bourouba M, Rihab N. miRNA expression in advanced Algerian breast cancer tissues. PLoS One 2020; 15:e0227928. [PMID: 32040529 PMCID: PMC7010257 DOI: 10.1371/journal.pone.0227928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is one of the commonest cancers among Algerian females. Compared to Western populations, the median age of diagnosis of breast cancer is much lower in Algeria. The objective of this study is to explore the expression of several miRNAs reported to be deregulated in breast cancer. The miRNAs miR-21, miR-125b, miR-100, miR-425-5p, miR-200c, miR-183 and miR-182 were studied on tumor and normal adjacent Algerian breast tissues using quantitative reverse transcription real time PCR, and the results were analyzed according to clinical characteristics. Compared to the normal adjacent tissues, miR-21, miR-183, miR-182, miR-425-5p and miR-200c were found to be upregulated while miR-100 and miR-125b were insignificantly deregulated. A positive correlation was noted among miR-183, miR-182 and miR-200c and among miR-425-5p, miR-183, miR-200c and miR-21. Further global miRNA microarray profiling studies can aid in finding ethnic specific miRNA biomarkers in the Algerian breast cancer population.
Collapse
Affiliation(s)
- Mohamad Ali Tfaily
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Nassar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Leila-Sarah Sellam
- Department of Cell and Molecular Biology, Team Cytokines and Nitric oxide synthases, Faculty of Biology, University of Sciences and Technology Houari Boumediene USTHB, Algiers, Algeria
| | | | - Fatima Asselah
- Central Laboratory for Anatomopathology, Mustapha Pacha Hospital, Algiers, Algeria
| | - Mehdi Bourouba
- Department of Cell and Molecular Biology, Team Cytokines and Nitric oxide synthases, Faculty of Biology, University of Sciences and Technology Houari Boumediene USTHB, Algiers, Algeria
- * E-mail: (RN); (MB)
| | - Nasr Rihab
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- * E-mail: (RN); (MB)
| |
Collapse
|
43
|
Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer. Gene 2020; 738:144453. [PMID: 32035242 DOI: 10.1016/j.gene.2020.144453] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) is the most common cancer among women that is responsible for the most of the cancer-related death in worldwide. Drug resistance is remaining as a significant clinical obstacle to treat BC patients effectively. Therefore, to help overcome this problem, it is necessary to understand the mechanisms of drug resistance. microRNAs classify as highly conserved non-coding RNAs (~22 nucleotides) and interact with mRNAs-coding genes for direct post-transcriptional repression. It has been reported that miR-21 is overexpressed and also acts as oncomiR in many human malignancies by targeting of several tumor suppressor genes-associated with apoptosis, proliferation and metastasis. Specifically, it has been reported that miR-21 is responsible for the drug resistance and its overexpression is related to the development of Multi Drug Resistance (MDR) in breast cancer. In this review, we discussed about the role of miR-21 on the drug resistance of breast cancer.
Collapse
|
44
|
Prabhu KS, Raza A, Karedath T, Raza SS, Fathima H, Ahmed EI, Kuttikrishnan S, Therachiyil L, Kulinski M, Dermime S, Junejo K, Steinhoff M, Uddin S. Non-Coding RNAs as Regulators and Markers for Targeting of Breast Cancer and Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12020351. [PMID: 32033146 PMCID: PMC7072613 DOI: 10.3390/cancers12020351] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is regarded as a heterogeneous and complicated disease that remains the prime focus in the domain of public health concern. Next-generation sequencing technologies provided a new perspective dimension to non-coding RNAs, which were initially considered to be transcriptional noise or a product generated from erroneous transcription. Even though understanding of biological and molecular functions of noncoding RNA remains enigmatic, researchers have established the pivotal role of these RNAs in governing a plethora of biological phenomena that includes cancer-associated cellular processes such as proliferation, invasion, migration, apoptosis, and stemness. In addition to this, the transmission of microRNAs and long non-coding RNAs was identified as a source of communication to breast cancer cells either locally or systemically. The present review provides in-depth information with an aim at discovering the fundamental potential of non-coding RNAs, by providing knowledge of biogenesis and functional roles of micro RNA and long non-coding RNAs in breast cancer and breast cancer stem cells, as either oncogenic drivers or tumor suppressors. Furthermore, non-coding RNAs and their potential role as diagnostic and therapeutic moieties have also been summarized.
Collapse
Affiliation(s)
- Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Correspondence: ; Tel.: +974-4439-0966
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar; (A.R.); (S.D.)
| | | | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow 226003, India;
| | - Hamna Fathima
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Eiman I. Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Qatar College of Pharmacy, Qatar University, Doha 3050, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Qatar College of Pharmacy, Qatar University, Doha 3050, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar; (A.R.); (S.D.)
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology, Weill Cornell Medicine, Qatar Foundation, Education City, Doha 24144, Qatar
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| |
Collapse
|
45
|
Zhang P, Fu H, Du S, Wang F, Yang J, Cai W, Liu D. Click RNA for Rapid Capture and Identification of Intracellular MicroRNA Targets. Anal Chem 2019; 91:15740-15747. [PMID: 31714070 DOI: 10.1021/acs.analchem.9b03943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rapid capture and identification of the intracellular target genes of microRNAs (miRNAs) are the key to understanding miRNA functions and development of RNA-based therapeutics. However, developing biochemical tools that can fish out the target genes of miRNAs in live cells is a significant technical challenge. Here, we report a remarkably simple yet powerful technology capable of loading virtually any miRNA into Ago2 of the RNA-induced silencing complexes (RISCs). This surprising discovery enables rapid capture and identification of target mRNAs and long noncoding RNAs. It is achieved by linking dibenzocyclooctyne (DBCO), a classical chemical moiety in copper-free click chemistry, to the 3' end of miRNAs. DBCO serves as a high-affinity tag to the Ago2 protein, thus boosting the formation of RISCs with miRNA target genes in living cells. Upon cell lysing, DBCO's routine function in click chemistry allows rapid enrichment of target genes for analysis without the need of additional molecular handles. A series of miR-21 and miR-27a target genes that were previously unknown were pulled down from various cell lines and identified with qRT-PCR, demonstrating the utility of this innovative technology in both transcriptomic research and RNA-based studies.
Collapse
Affiliation(s)
- Pengjuan Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China.,Hebei University of Environmental Engineering , Qinhuangdao 066102 , Hebei , China
| | - Haohao Fu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Shuangli Du
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Fengchao Wang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Jie Yang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Wensheng Cai
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| |
Collapse
|
46
|
MicroRNAs Contribute to Breast Cancer Invasiveness. Cells 2019; 8:cells8111361. [PMID: 31683635 PMCID: PMC6912645 DOI: 10.3390/cells8111361] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer statistics in 2018 highlight an 8.6 million incidence in female cancers, and 4.2 million cancer deaths globally. Moreover, breast cancer is the most frequent malignancy in females and twenty percent of these develop metastasis. This provides only a small chance for successful therapy, and identification of new molecular markers for the diagnosis and prognostic prediction of metastatic disease and development of innovative therapeutic molecules are therefore urgently required. Differentially expressed microRNAs (miRNAs) in cancers cause multiple changes in the expression of the tumorigenesis-promoting genes which have mostly been investigated in breast cancers. Herein, we summarize recent data on breast cancer-specific miRNA expression profiles and their participation in regulating invasive processes, in association with changes in cytoskeletal structure, cell-cell adhesion junctions, cancer cell-extracellular matrix interactions, tumor microenvironments, epithelial-to-mesenchymal transitions and cancer cell stem abilities. We then focused on the epigenetic regulation of individual miRNAs and their modified interactions with other regulatory genes, and reviewed the function of miRNA isoforms and exosome-mediated miRNA transfer in cancer invasiveness. Although research into miRNA’s function in cancer is still ongoing, results herein contribute to improved metastatic cancer management.
Collapse
|
47
|
Wang J, Lin Y, Jiang T, Gao C, Wang D, Wang X, Wei Y, Liu T, Zhu L, Wang P, Qi F. Up-regulation of TIMP-3 and RECK decrease the invasion and metastasis ability of colon cancer. Arab J Gastroenterol 2019; 20:127-134. [PMID: 31558368 DOI: 10.1016/j.ajg.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND STUDY AIMS Although the function of microRNA21 (miR-21) in the invasion and metastasis of colon cancer has been extensively studied, the mechanisms of invasion and migration related pathways between and its targets are still not elucidated. This study explored the mechanisms of the pathway between miR-21 and the target genes in vitro and in vivo. MATERIALS AND METHODS We transfected pmiRZip21 or Leti3 into colon cancer cells. The levels of miR-21 expression, mRNA transcription and protein of target genes were analysed by TaqMan microRNA assays, RT-PCR and western blot, respectively. Scratch migration and trans-well assays were used to evaluate metastasis and invasion. To build a subcutaneous tumour animal model, detect the level of miR-21 and the target genes and then identify the mechanisms in vivo. RESULTS MiR-21 expression levels in colon cancer cells transfected with pmiRZip21 in vivo or in vitro were decreased (P < 0.05). The mRNA and protein levels of TIMP-3 and RECK were up-regulated after inhibiting miR-21 in vitro and in vivo (P < 0.05), but those of BMPR-II and PCDH17 were not. In pmiRZip21-transfected colon cancer cells, invasion and migration were significantly decreased both in vitro and vivo (P < 0.05). CONCLUSIONS Up-regulation of TIMP-3 and RECK, by inhibiting miR-21 expression can decrease tumour invasion and metastasis ability in vitro and in vivo, and has potential as a possible target site in anti-tumour therapy. More effects in vivo have to be investigated in further research.
Collapse
Affiliation(s)
- Jinmiao Wang
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, 154 An-Shan Road, Heping District, Tianjin 300052, PR China
| | - Yunshou Lin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Tao Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Duowei Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiaodong Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Ying Wei
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Liwei Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Pengzhi Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
48
|
An ARF6-Exportin-5 axis delivers pre-miRNA cargo to tumour microvesicles. Nat Cell Biol 2019; 21:856-866. [PMID: 31235936 PMCID: PMC6697424 DOI: 10.1038/s41556-019-0345-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Tumor-derived microvesicles (TMVs) comprise a class of extracellular vesicles released from tumor cells that are now understood to facilitate communication between the tumor and the surrounding microenvironment. Despite their significance, the regulatory mechanisms governing the trafficking of bioactive cargos to TMVs at the cell surface remain poorly defined. Here we describe a molecular pathway for the delivery of microRNA (miRNA) cargo to nascent TMVs involving the dissociation of a pre-miRNA/Exportin-5 complex from Ran-GTP following nuclear export, and its subsequent transfer to a cytoplasmic shuttle comprised of ARF6-GTP and GRP1. As such, ARF6 activation increases pre-miRNA cargo contained within TMVs via a process that requires casein kinase 2-mediated phosphorylation of Ran-GAP1. Further, TMVs were found to contain pre-miRNA processing machinery including Dicer and Argonaute 2, which allow for cell-free pre-miRNA processing within shed vesicles. These findings offer cellular targets to block the loading and processing of pre-miRNAs within TMVs.
Collapse
|
49
|
Peng H, Li H. The encouraging role of long noncoding RNA small nuclear RNA host gene 16 in epithelial‐mesenchymal transition of bladder cancer via directly acting on miR‐17‐5p/metalloproteinases 3 axis. Mol Carcinog 2019; 58:1465-1480. [DOI: 10.1002/mc.23028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/08/2019] [Accepted: 04/10/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Hao Peng
- Department of Urologic SurgeryZhoukou Central HospitalZhoukou Henan China
| | - Hao Li
- Department of Urologic SurgeryZhoukou Central HospitalZhoukou Henan China
| |
Collapse
|
50
|
Guan C, Zhang L, Wang S, Long L, Zhou H, Qian S, Ma M, Bai F, Meng QH, Lyu J. Upregulation of MicroRNA-21 promotes tumorigenesis of prostate cancer cells by targeting KLF5. Cancer Biol Ther 2019; 20:1149-1161. [PMID: 31002531 DOI: 10.1080/15384047.2019.1599659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prostate cancer (PCa) is the second frequently newly diagnosed cancer in men. Androgen deprivation therapy has been widely used to inhibit PCa growth but eventually fails in many patients. Androgen receptor and its downstream molecules like microRNAs could be promising therapeutic targets. We aimed to investigate the involvement of miR-21 in PCa tumorigenesis. We found that miR-21 was an unfavorable factor and correlated positively with tumor grade in PCa patients from TCGA database. MiR-21 was more highly expressed in androgen-independent PCa cells than in androgen-dependent PCa cells. Overexpression of miR-21 promoted androgen-dependent and -independent PCa cell proliferation, migration, invasion, and resistance to apoptosis. Furthermore, increased miR-21 expression promoted mouse xenograft growth. We identified nine genes differentially expressed in PCa tumors and normal tissue which could be potential targets of miR-21 by bioinformatic analyses. We demonstrate that miR-21 directly targeted KLF5 and inhibited KLF5 mRNA and protein levels in PCa. STRING and functional enrichment analysis results suggest that GSK3B might be regulated by KLF5. Our findings demonstrate that miR-21 promotes the tumorigenesis of PCa cells by directly targeting KLF5. These biological effects are mediated through upregulation of GSK3B and activation of the AKT signaling pathway.
Collapse
Affiliation(s)
- Chen Guan
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Lingling Zhang
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Sixuan Wang
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Luye Long
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Huaibin Zhou
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Shihan Qian
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Mengni Ma
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Fumao Bai
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Qing H Meng
- b Department of Laboratory Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jianxin Lyu
- a Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| |
Collapse
|