1
|
Dana PM, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Advances in Chitosan-based Drug Delivery Systems in Melanoma: A Narrative Review. Curr Med Chem 2024; 31:3488-3501. [PMID: 37202890 DOI: 10.2174/0929867330666230518143654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
Melanoma accounts for the minority of skin cancer cases. However, it has the highest mortality rate among the subtypes of skin cancer. At the early stages of the disease, patients show a good prognosis after the surgery, but developing metastases leads to a remarkable drop in patients' 5-year survival rate. Despite the advances made in the therapeutic approaches to this disease, melanoma treatment is still facing several obstacles. Systemic toxicity, water insolubility, instability, lack of proper biodistribution, inadequate cellular penetration, and rapid clearance are some of the challenges that should be addressed in the field of melanoma treatment. While various delivery systems have been developed to circumvent these challenges, chitosan-based delivery platforms have indicated significant success. Chitosan that is produced by the deacetylation of chitin can be formulated into different materials (e.g., nanoparticle, film, and hydrogel) due to its characteristics. Both in vitro and in vivo studies have reported that chitosan-based materials can be used in drug delivery systems while offering a solution for the common problems in this area, such as enhancing biodistribution and skin penetration as well as the sustained release of the drugs. Herein, we reviewed the studies concerning the role of chitosan as a drug delivery system in melanoma and discussed how these drug systems are used for delivering chemotherapeutic drugs (e.g., doxorubicin and paclitaxel), genes (e.g., TRAIL), and RNAs (e.g., miRNA199a and STAT3 siRNA) successfully. Furthermore, we take a look into the role of chitosan-based nanoparticles in neutron capture therapy.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Hanna DH, El-Mazaly MH, Mohamed RR. Synthesis of biodegradable antimicrobial pH-sensitive silver nanocomposites reliant on chitosan and carrageenan derivatives for 5-fluorouracil drug delivery toward HCT116 cancer cells. Int J Biol Macromol 2023; 231:123364. [PMID: 36693607 DOI: 10.1016/j.ijbiomac.2023.123364] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The current research relies on a one-pot green biosynthesis of silver nanoparticles (SNPs) with various ratios of silver (Ag) in the existence of N, N, N-trimethyl chitosan chloride (TMC) and carboxymethyl kappa-carrageenan (CMKC), to investigate the effectiveness of the synthesized silver nanocomposites (SNCs) as pH sensitive biodegradable carrier for orally intestinal delivery of 5-fluorouracil (5-FU) drug. FTIR, XRD, TEM and FE-SEM/EDX methods were utilized to demonstrate the structure of the prepared polyelectrolyte complex PEC (TMC/CMKC) and SNCs (TMC/CMKC/Ag). The results showed that the 5-FU encapsulation effectiveness inside all of the prepared SNCs samples was improved by increasing the concentration of Ag, reaching 92.16 ± 0.57 % with 3 % Ag. In vitro release behavior of 5-FU loaded SNC 3 % (TMC/CMKC/Ag 3 %), displayed slow and sustained release reaching 96.3 ± 0.81 % up to 24 h into pH 7.4 medium. The successful release of 5-FU from the loaded SNC 3 % was confirmed through occurrence of strong cytotoxicity, with an IC50 value of 31.15 μg/ml, and high % of apoptotic cells (30.66 %) within the treated HCT116 cells. Besides, SNC 3 % showed good biodegradability and antimicrobial properties against different bacterial strains. Overall, SNC 3 % can be suggested as an effective system for both controlled drug delivery and antibacterial action.
Collapse
Affiliation(s)
- Demiana H Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Marwa H El-Mazaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Riham R Mohamed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Sharma VK, Liu X, Oyarzún DA, Abdel-Azeem AM, Atanasov AG, Hesham AEL, Barik SK, Gupta VK, Singh BN. Microbial polysaccharides: An emerging family of natural biomaterials for cancer therapy and diagnostics. Semin Cancer Biol 2022; 86:706-731. [PMID: 34062265 DOI: 10.1016/j.semcancer.2021.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Microbial polysaccharides (MPs) offer immense diversity in structural and functional properties. They are extensively used in advance biomedical science owing to their superior biodegradability, hemocompatibility, and capability to imitate the natural extracellular matrix microenvironment. Ease in tailoring, inherent bio-activity, distinct mucoadhesiveness, ability to absorb hydrophobic drugs, and plentiful availability of MPs make them prolific green biomaterials to overcome the significant constraints of cancer chemotherapeutics. Many studies have demonstrated their application to obstruct tumor development and extend survival through immune activation, apoptosis induction, and cell cycle arrest by MPs. Synoptic investigations of MPs are compulsory to decode applied basics in recent inclinations towards cancer regimens. The current review focuses on the anticancer properties of commercially available and newly explored MPs, and outlines their direct and indirect mode of action. The review also highlights cutting-edge MPs-based drug delivery systems to augment the specificity and efficiency of available chemotherapeutics, as well as their emerging role in theranostics.
Collapse
Affiliation(s)
- Vivek K Sharma
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui, Shanghai 200032, China.
| | - Diego A Oyarzún
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahmed M Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Atanas G Atanasov
- Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Saroj K Barik
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom.
| | - Brahma N Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| |
Collapse
|
4
|
Karki S, Gohain MB, Yadav D, Ingole PG. Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: A review. Int J Biol Macromol 2021; 193:2121-2139. [PMID: 34780890 DOI: 10.1016/j.ijbiomac.2021.11.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/13/2023]
Abstract
Nanocomposite and bio-nanocomposite polymer materials/membranes have fascinated prominent attention in the energy as well as the medical sector. Their composites make them appropriate choices for various applications in the medical, energy and industrial sectors. Composite materials are subject of interest in the polymer industry. Different kinds of fillers, such as cellulose-based fillers, carbon black, clay nanomaterials, glass fibers, ceramic nanomaterial, carbon quantum dots, talc and many others have been incorporated into polymers to improve the quality of the final product. These results are dependent on a variety of factors; however, nanoparticle dispersion and distribution are major obstacles to fully using nanocomposites/bio-nanocomposites materials/membranes in various applications. This review examines the various nanocomposite and bio-nanocomposite materials applications in the energy and medical sector. The review also covers the variety of ways for increasing nanocomposite and bio-nanocomposite materials features, each with its own set of applications. Recent researches on composite materials have shown that polymeric nanocomposites and bio-nanocomposites are promising materials that have been intensively explored for many applications that include electronics, environmental remediation, energy, sensing (biosensor) and energy storage devices among other applications. In this review, we studied various nanocomposite and bio-nanocomposite materials, their controlling parameters to develop the product and examine their features and applications in the fields of energy and the medical sector.
Collapse
Affiliation(s)
- Sachin Karki
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Moucham Borpatra Gohain
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
5
|
Radiobiological Characterization of Canine Malignant Melanoma Cell Lines with Different Types of Ionizing Radiation and Efficacy Evaluation with Cytotoxic Agents. Int J Mol Sci 2019; 20:ijms20040841. [PMID: 30781345 PMCID: PMC6413050 DOI: 10.3390/ijms20040841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 01/19/2023] Open
Abstract
Canine malignant melanoma (CMM) is a locally and systemically aggressive cancer that shares many biological and clinical characteristics with human mucosal melanoma. Hypofractionated radiation protocols have been used to treat CMM but little is known about its radiation biology. This pilot study is designed to investigate response of CMM cell lines to various ionizing radiations and cytotoxic agents to better understand this canine cancer. Four CMM cell lines were evaluated by clonogenic survival assay under aerobic and hypoxic conditions and parameters such as alpha beta (α/β) ratio, oxygen enhancement ratio (OER), and relative biological effectiveness (RBE) were calculated after 137Cs, 6 megavoltage (MV) photon, or carbon ion irradiation. Six cytotoxic agents (cisplatin, camptothecin, mitomycin C, bleomycin, methtyl methanesulfonate and etoposide) were also assessed for their efficacy. Under aerobic condition with 6 MV photon, the α/β ratio of the four cell lines ranged from 0.3 to >100, indicating a wide variation of cellular sensitivity. The ratio increased under hypoxic condition compared to aerobic condition and this was more dramatic in 137Cs and 6 MV photon treatments. OER of carbon was lower than 137Cs at D10 in 3 of the 4 cell lines. The RBE values generally increased with the increase of LET. Different cell lines showed sensitivity/resistance to different cytotoxic agents. This study revealed that CMM has a wide range of radiosensitivity and that hypoxia can reduce it, indicating that widely used hypofractionated protocols may not be optimal for all CMM patients. Several cytotoxic agents that have never been clinically assessed can improve treatment outcome.
Collapse
|
6
|
Li F, Jiang T, Li Q, Ling X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am J Cancer Res 2017; 7:2350-2394. [PMID: 29312794 PMCID: PMC5752681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023] Open
Abstract
Camptothecin (CPT) was discovered from plant extracts more than 60 years ago. Since then, only two CPT analogues (irinotecan and topotecan) have been approved for cancer treatment, although several thousand CPT derivatives have been synthesized and many of them were actively studied in our research community over the past 6+ decades. In this review article, we briefly summarize: (1) the discovery and early development of CPTs, (2) the recognized CPT mechanism of action (MOA), (3) the synthesis of CPT and CPT analogues, and (4) the structure-activity relationship (SAR) of CPT and its analogues. Next, we provide evidence that certain CPT analogues can exert improved efficacy with low toxicity independently of topoisomerase I (Top1) inhibition; instead, these CPT analogues use novel MOAs by targeting important cancer survival-associated oncogenic proteins and/or by bypassing various treatment-resistant mechanisms. We then present a comprehensive review of the most advanced CPT analogues in clinical development, with the goal of resolving why no new CPTs have been FDA approved for cancer treatment, beyond irinotecan and topotecan. We argue that new CPT Top1 inhibitor drugs are unlikely being found to be significantly better than irinotecan and/or topotecan in terms of the overall antitumor activity and toxicity. The significance of CPT analogues that possess novel MOAs has not been sufficiently recognized so far. In our opinion, this is a research area with great potential to make a breakthrough for development of the next generation of CPT analogues that possess high efficacy (due to novel targets) and low toxicity (due to low inhibition of Top1 activity/function) for effective treatment of human disease, including cancer.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Cancer InstituteBuffalo, New York, USA
| | - Tao Jiang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China
| | - Qingyong Li
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of TechnologyHangzhou, China
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Cancer InstituteBuffalo, New York, USA
- Canget BioTekpharmaBuffalo, New York, USA
| |
Collapse
|
7
|
Affiliation(s)
- Kalyani Prusty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| |
Collapse
|
8
|
De M, Ghosh S, Sen T, Shadab M, Banerjee I, Basu S, Ali N. A Novel Therapeutic Strategy for Cancer Using Phosphatidylserine Targeting Stearylamine-Bearing Cationic Liposomes. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:9-27. [PMID: 29499959 PMCID: PMC5723379 DOI: 10.1016/j.omtn.2017.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
There is a pressing need for a ubiquitously expressed antigen or receptor on the tumor surface for successful mitigation of the deleterious side effects of chemotherapy. Phosphatidylserine (PS), normally constrained to the intracellular surface, is exposed on the external surface of tumors and most tumorigenic cell lines. Here we report that a novel PS-targeting liposome, phosphatidylcholine-stearylamine (PC-SA), induced apoptosis and showed potent anticancer effects as a single agent against a majority of cancer cell lines. We experimentally proved that this was due to a strong affinity for and direct interaction of these liposomes with PS. Complexation of the chemotherapeutic drugs doxorubicin and camptothecin in these vesicles demonstrated a manyfold enhancement in the efficacies of the drugs both in vitro and across three advanced tumor models without any signs of toxicity. Both free and drug-loaded liposomes were maximally confined to the tumor site with low tissue concentration. These data indicate that PC-SA is a unique and promising liposome that, alone and as a combination therapy, has anticancer potential across a wide range of cancer types.
Collapse
Affiliation(s)
- Manjarika De
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sneha Ghosh
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Triparna Sen
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Md Shadab
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Indranil Banerjee
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Santanu Basu
- Department of Oncology, ESI Hospital, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India.
| |
Collapse
|
9
|
Martínez-Campos E, Civantos A, Redondo JA, Guzmán R, Pérez-Perrino M, Gallardo A, Ramos V, Aranaz I. Cell Adhesion and Proliferation on Sulfonated and Non-Modified Chitosan Films. AAPS PharmSciTech 2017; 18:974-982. [PMID: 27634481 DOI: 10.1208/s12249-016-0619-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/15/2016] [Indexed: 11/30/2022] Open
Abstract
Three types of chitosan-based films have been prepared and evaluated: a non-modified chitosan film bearing cationizable aliphatic amines and two films made of N-sulfopropyl chitosan derivatives bearing both aliphatic amines and negative sulfonate groups at different ratios. Cell adhesion and proliferation on chitosan films of C2C12 pre-myoblastic cells and B16 cells as tumoral model have been tested. A differential cell behavior has been observed on chitosan films due to their different surface modification. B16 cells have shown lower vinculin expression when cultured on sulfonated chitosan films. This study shows how the interaction among cells and material surface can be modulated by physicochemical characteristics of the biomaterial surface, altering tumoral cell adhesion and proliferation processes.
Collapse
|
10
|
Wimardhani YS, Suniarti DF, Freisleben HJ, Wanandi SI, Siregar NC, Ikeda MA. Chitosan exerts anticancer activity through induction of apoptosis and cell cycle arrest in oral cancer cells. J Oral Sci 2016; 56:119-26. [PMID: 24930748 DOI: 10.2334/josnusd.56.119] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Chitosan, a multipurpose biomaterial, has been shown to exert effects against several types of cancer including oral cancer. However, the mechanisms underlying the anticancer activities of chitosan on oral squamous cell carcinoma (SCC) cells remain largely unknown. The present study aimed to compare the effects of low-molecular-weight chitosan (LMWC) and cisplatin on oral SCC Ca9-22 and non-cancer keratinocyte HaCaT cell lines. Cell viability and cell cycle profiles were measured by MTT assay and laser scanning cytometry, respectively. Apoptosis was examined by TUNEL assay and electron microscopy, followed by analysis of caspase activity. LMWC exhibited cytotoxic effects on Ca9-22, but not HaCaT cells, whereas cisplatin induced apoptosis in both types of cells. Exposure of Ca9-22 cells to LMWC led to G1/S cell cycle arrest and an increase of TUNEL-positive cells accompanied by an early apoptotic cell morphology and subtle increases of caspase activity. Short-term LMWC exposure was less cytotoxic to HaCaT cells than to Ca9-22 cells, and anticancer activity was exerted through induction of apoptosis and cell cycle arrest, suggesting that LMWC could be a promising natural anticancer agent with fewer side effects on normal cells.
Collapse
|
11
|
Ish-Shalom E, Meirow Y, Sade-Feldman M, Kanterman J, Wang L, Mizrahi O, Klieger Y, Baniyash M. Impaired SNX9 Expression in Immune Cells during Chronic Inflammation: Prognostic and Diagnostic Implications. THE JOURNAL OF IMMUNOLOGY 2015; 196:156-67. [PMID: 26608909 DOI: 10.4049/jimmunol.1402877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
Abstract
Chronic inflammation is associated with immunosuppression and downregulated expression of the TCR CD247. In searching for new biomarkers that could validate the impaired host immune status under chronic inflammatory conditions, we discovered that sorting nexin 9 (SNX9), a protein that participates in early stages of clathrin-mediated endocytosis, is downregulated as well under such conditions. SNX9 expression was affected earlier than CD247 by the generated harmful environment, suggesting that it is a potential marker sensing the generated immunosuppressive condition. We found that myeloid-derived suppressor cells, which are elevated in the course of chronic inflammation, are responsible for the observed SNX9 reduced expression. Moreover, SNX9 downregulation is reversible, as its expression levels return to normal and immune functions are restored when the inflammatory response and/or myeloid-derived suppressor cells are neutralized. SNX9 downregulation was detected in numerous mouse models for pathologies characterized by chronic inflammation such as chronic infection (Leishmania donovani), cancer (melanoma and colorectal carcinoma), and an autoimmune disease (rheumatoid arthritis). Interestingly, reduced levels of SNX9 were also observed in blood samples from colorectal cancer patients, emphasizing the feasibility of its use as a diagnostic and prognostic biomarker sensing the host's immune status and inflammatory stage. Our new discovery of SNX9 as being regulated by chronic inflammation and its association with immunosuppression, in addition to the CD247 regulation under such conditions, show the global impact of chronic inflammation and the generated immune environment on different cellular pathways in a diverse spectrum of diseases.
Collapse
Affiliation(s)
- Eliran Ish-Shalom
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and ImProDia Ltd., Herzliya Pituah 46723, Israel
| | - Yaron Meirow
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Moshe Sade-Feldman
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Julia Kanterman
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Lynn Wang
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | | | - Yair Klieger
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and ImProDia Ltd., Herzliya Pituah 46723, Israel
| | - Michal Baniyash
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| |
Collapse
|
12
|
Jayasooriya RGPT, Choi YH, Hyun JW, Kim GY. Camptothecin sensitizes human hepatoma Hep3B cells to TRAIL-mediated apoptosis via ROS-dependent death receptor 5 upregulation with the involvement of MAPKs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:959-67. [PMID: 25461556 DOI: 10.1016/j.etap.2014.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 05/26/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various types of malignant cancer cells, but several cancers have acquired potent resistance to TRAIL-induced cell death by unknown mechanisms. Camptothecin (CPT) is a quinolone alkaloid that induces cytotoxicity in a variety of cancer cell lines. However, it is not known whether CPT triggers TRAIL-induced cell death. In this study, we found that combined treatment with subtoxic doses of CPT and TRAIL (CPT-TRAIL) potentially enhanced apoptosis in a caspase-dependent manner. CPT-TRAIL effectively induced the expression of death receptor (DR) 5, which is a specific receptor of TRAIL, and treatment with a chimeric blocking antibody for DR5 reduced CPT-TRAIL-induced cell death, indicating that CPT functionally triggers DR5-mediated cell death in response to TRAIL. CPT-induced generation of reactive oxygen species (ROS) also preceded the upregulation of DR5 in response to TRAIL. The involvement of ROS in DR5 upregulation confirmed that pretreatment with antioxidants, including N-acetyl-L-cysteine and glutathione, significantly inhibits CPT-TRAIL-induced cell death by suppressing DR5 expression. The specific inhibitors of ERK and p38 also decreased CPT-TRAIL-induced cell death by blocking DR5 expression. In conclusion, our results suggest that CPT sensitizes cancer cells to TRAIL-mediated apoptosis via ROS and ERK/p38-dependent DR5 upregulation.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 614-050, Republic of Korea
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
13
|
Mohammad N, Malvi P, Meena AS, Singh SV, Chaube B, Vannuruswamy G, Kulkarni MJ, Bhat MK. Cholesterol depletion by methyl-β-cyclodextrin augments tamoxifen induced cell death by enhancing its uptake in melanoma. Mol Cancer 2014; 13:204. [PMID: 25178635 PMCID: PMC4175626 DOI: 10.1186/1476-4598-13-204] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/22/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite modern advances in treatment, skin cancer is still one of the most common causes of death in the western countries. Chemotherapy plays an important role in melanoma management. Tamoxifen has been used either alone or in- combination with other chemotherapeutic agents to treat melanoma. However, response rate of tamoxifen as a single agent has been comparatively low. In the present study, we investigated whether treatment with methyl-β-cyclodextrin (MCD), a cholesterol depleting agent, increases the efficacy of tamoxifen in melanoma cells. METHODS This was a two-part study that incorporated in vitro effects of tamoxifen and MCD combination by analyzing cell survival, apoptosis and cell cycle analysis and in vivo antitumor efficacy on tumor isografts in C57BL/6J mice. RESULTS MCD potentiated tamoxifen induced anticancer effects by causing cell cycle arrest and induction of apoptosis. Sensitization to tamoxifen was associated with down regulation of antiapoptotic protein Bcl-2, up-regulation of proapoptotic protein Bax, reduced caveolin-1 (Cav-1) and decreased pAkt/pERK levels. Co-administration of tamoxifen and MCD caused significant reduction in tumor volume and tumor weight in mice due to enhancement of drug uptake in the tumor. Supplementation with cholesterol abrogated combined effect of tamoxifen and MCD. CONCLUSION Our results emphasize a potential synergistic effect of tamoxifen with MCD, and therefore, may provide a unique therapeutic window for improvement in melanoma treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Manoj Kumar Bhat
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
14
|
Yuan L, Liu C, Chen Y, Zhang Z, Zhou L, Qu D. Antitumor activity of tripterine via cell-penetrating peptide-coated nanostructured lipid carriers in a prostate cancer model. Int J Nanomedicine 2013; 8:4339-50. [PMID: 24235831 PMCID: PMC3825686 DOI: 10.2147/ijn.s51621] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The purpose of this study was to evaluate the antitumor effect of cell-penetrating peptide-coated tripterine-loaded nanostructured lipid carriers (CT-NLC) on prostate tumor cells in vitro and in vivo. METHODS CT-NLC were developed to improve the hydrophilicity of tripterine. The antiproliferative effects of CT-NLC, tripterine-loaded nanostructured lipid carriers (T-NLC), and free tripterine in a human prostatic carcinoma cell line (PC-3) and a mouse prostate carcinoma cell line (RM-1) were evaluated using an MTT assay. The advantage of CT-NLC over T-NLC and free tripterine with regard to antitumor activity in vivo was evaluated in a prostate tumor-bearing mouse model. The induced tumor necrosis factor-alpha and interleukin-6 cytokine content was investigated by enzyme-linked immunosorbent assay to determine the effect of CT-NLC, T-NLC, and free tripterine on immune responses. Histologic and TUNEL assays were carried out to investigate the mechanisms of tumor necrosis and apoptosis. RESULTS CT-NLC, T-NLC, and free tripterine showed high antiproliferative activity in a dose-dependent manner, with an IC50 of 0.60, 0.81, and 1.02 μg/mL in the PC-3 cell line and 0.41, 0.54, and 0.89 μg/mL in the RM-1 cell line after 36 hours. In vivo, the tumor inhibition rates for cyclophosphamide, high-dose (4 mg/kg) and low-dose (2 mg/kg) tripterine, high-dose (4 mg/kg) and low-dose (2 mg/kg) T-NLC, high-dose (4 mg/kg) and low-dose (2 mg/kg) CT-NLC were 76.51%, 37.07%, 29.53%, 63.56%, 48.25%, 72.68%, and 54.50%, respectively, showing a dose-dependent pattern. The induced tumor necrosis factor-alpha and interleukin-6 cytokine content after treatment with CT-NLC and T-NLC was significantly higher than that of high-dose tripterine. Moreover, CT-NLC showed the expected advantage of inducing necrosis and apoptosis in prostate tumor cells. CONCLUSION CT-NLC noticeably enhanced antitumor activity in vitro and in vivo and showed dramatically improved cytotoxicity in normal cells in comparison with free tripterine. In summary, CT-NLC could be used as a promising drug delivery system for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ling Yuan
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Pérez-Torres A, Vera-Aguilera J, Hernaiz-Leonardo JC, Moreno-Aguilera E, Monteverde-Suarez D, Vera-Aguilera C, Estrada-Bárcenas D. The synthetic parasite-derived peptide GK1 increases survival in a preclinical mouse melanoma model. Cancer Biother Radiopharm 2013; 28:682-90. [PMID: 23841709 DOI: 10.1089/cbr.2012.1438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The therapeutic efficacy of a synthetic parasite-derived peptide GK1, an immune response booster, was evaluated in a mouse melanoma model. This melanoma model correlates with human stage IIb melanoma, which is treated with wide surgical excision; a parallel study employing a surgical treatment was carried out as an instructive goal. EXPERIMENTAL DESIGN C57BL/6 mice were injected subcutaneously in the flank with 2×10(5) B16-F10 murine melanoma cells. When the tumors reached 20 mm3, mice were separated into two different groups; the GK1 group, treated weekly with peritumoral injections of GK1 (10 μg/100 μL of sterile saline solution) and the control group, treated weekly with an antiseptic peritumoral injection of 100 μL of sterile saline solution without further intervention. All mice were monitored daily for clinical appearance, tumor size, and survival. Surgical treatment was performed in parallel when the tumor size was 20 mm3 (group A), 500 mm3 (group B), and >500 mm3 (group C). RESULTS The GK1 peptide effectively increased the mean survival time by 9.05 days, corresponding to an increase of 42.58%, and significantly delayed tumor growth from day 3 to 12 of treatment. In addition, tumor necrosis was significantly increased (p<0.05) in the treated mice. The overall survival rates obtained with surgical treatment at 6 months were 83.33% for group A, 40% for group B, and 0% for group C, with significant differences (p<0.05) among the groups. CONCLUSIONS The GK1 peptide demonstrated therapeutic properties in a mouse melanoma model, as treatment resulted in a significant increase in the mean survival time of the treated animals (42.58%). The potential for GK1 to be used as a primary or adjuvant component of chemotherapeutic cocktails for the treatment of experimental and human cancers remains to be determined, and surgical removal remains a challenge for any new experimental treatment of melanoma in mouse models.
Collapse
Affiliation(s)
- Armando Pérez-Torres
- 1 Department of Cell and Tissue Biology, Facultad de Medicina, Universidad Nacional Autónoma de México , Distrito Federal, Mexico City, México
| | | | | | | | | | | | | |
Collapse
|
16
|
Geisberger G, Gyenge EB, Maake C, Patzke GR. Trimethyl and carboxymethyl chitosan carriers for bio-active polymer-inorganic nanocomposites. Carbohydr Polym 2012; 91:58-67. [PMID: 23044105 DOI: 10.1016/j.carbpol.2012.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/17/2012] [Accepted: 08/04/2012] [Indexed: 01/28/2023]
Abstract
The carrier properties of carboxymethyl chitosan (CMC) and trimethyl chitosan (TMC) in combination with polyoxometalates (POMs) as inorganic drug prototypes are compared with respect to the influence of polymer matrix charge and structure on the emerging composites. A direct crosslinking approach with TMC and K(6)H(2)[CoW(11)TiO(40)]·13H(2)O ({CoW(11)TiO(40)}) as a representative anticancer POM affords nanocomposites with a size range of 50-90nm. The obtained POM-chitosan composites are characterized with a wide range of analytical methods, and POM encapsulation into positively charged TMC brings forward different nanocomposite morphologies and properties than CMC as a carrier material. Furthermore, uptake of fluorescein isothiocyanate (FITC) labeled POM-CMC and POM-TMC by HeLa cells was monitored, and the influence of chlorpromazine (CP) as inhibitor of the clathrin mediated pathway revealed different cellular uptake behavior of composites and pristine carriers. TMC/{CoW(11)TiO(40)} nanocomposites are taken up by HeLa cells after short incubation times around 30 min at low concentrations. The anticancer activity of pristine {CoW(11)TiO(40)} and its TMC-nanocomposites was investigated in vitro with MTT assays and compared to a reference POM.
Collapse
Affiliation(s)
- Georg Geisberger
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
17
|
Dai M, Xu X, Song J, Fu S, Gou M, Luo F, Qian Z. Preparation of camptothecin-loaded PCEC microspheres for the treatment of colorectal peritoneal carcinomatosis and tumor growth in mice. Cancer Lett 2011; 312:189-96. [PMID: 21943824 DOI: 10.1016/j.canlet.2011.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/07/2011] [Accepted: 08/08/2011] [Indexed: 02/05/2023]
Abstract
The aim of this study was to prepare PCL-PEG-PCL (PCEC) microspheres to protect camptothecin from hydrolysis, to extend its release time and to enhance its treatment efficacy on colorectal peritoneal carcinomatosis and tumor growth in mice. Camptothecin (CPT)-loaded PCL-PEG-PCL (PCEC) microspheres were prepared by oil-in-water emulsion solvent evaporation method. The particle size, morphological characteristics, encapsulation efficiency, in vitro drug release studies and in vitro cytotoxicity of CPT-loaded PCEC microspheres have been investigated. In vivo studies were carried out on Balb/c male mice bearing colorectal peritoneal carcinomatosis. CPT-loaded PCEC microspheres were applied to abdominal cavity of mice once a week. Free CPT was used as a positive control. On 14th day of treatment, mice were sacrificed and antitumor activities of CPT-loaded PCEC microspheres were evaluated. Compared with control group, a significant decrease in the number of tumor nodes was observed in group treated with CPT-loaded PCEC microspheres. Immunohistochemistry staining of tumor tissues with CD34 revealed that MVD positive cells were significantly reduced in CPT-loaded PCEC microspheres treated group in contrast to other groups (P<0.05). The CPT-loaded PCEC microspheres were considered potentially useful to treat the abdominal metastases of colon carcinoma.
Collapse
Affiliation(s)
- Mei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Yhee JY, Koo H, Lee DE, Choi K, Kwon IC, Kim K. Multifunctional Chitosan Nanoparticles for Tumor Imaging and Therapy. ADVANCES IN POLYMER SCIENCE 2011. [DOI: 10.1007/12_2011_119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|