1
|
Malek Mohammadi M, Rismanchi H, Esmailzadeh S, Farahani A, Hedayati N, Alimohammadi M, Mafi A, Farahani N, Hushmandi K. The emerging role of circular RNAs in cisplatin resistance in ovarian cancer: From molecular mechanism to future potential. Noncoding RNA Res 2024; 9:1280-1291. [PMID: 39040815 PMCID: PMC11261309 DOI: 10.1016/j.ncrna.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ovarian cancer (OC) is the most common cause of death in female cancers. The prognosis of OC is very poor due to delayed diagnosis and identification of most patients in advanced stages, metastasis, recurrence, and resistance to chemotherapy. As chemotherapy with platinum-based drugs such as cisplatin (DDP) is the main treatment in most OC cases, resistance to DDP is an important obstacle to achieving satisfactory therapeutic efficacy. Consequently, knowing the different molecular mechanisms involved in resistance to DDP is necessary to achieve new therapeutic approaches. According to numerous recent studies, non-coding RNAs (ncRNAs) could regulate proliferation, differentiation, apoptosis, and chemoresistance in many cancers, including OC. Most of these ncRNAs are released by tumor cells into human fluid, allowing them to be used as tools for diagnosis. CircRNAs are ncRNA family members that have a role in the initiation, progression, and chemoresistance regulation of various cancers. In the current study, we investigated the roles of several circRNAs and their signaling pathways on OC progression and also on DDP resistance during chemotherapy.
Collapse
Affiliation(s)
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Mamun M, Zheng YC, Wang N, Wang B, Zhang Y, Pang JR, Shen DD, Liu HM, Gao Y. Decoding CLU (Clusterin): Conquering cancer treatment resistance and immunological barriers. Int Immunopharmacol 2024; 137:112355. [PMID: 38851158 DOI: 10.1016/j.intimp.2024.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
One major obstacle in the treatment of cancer is the presence of proteins resistant to cancer therapy, which can impede the effectiveness of traditional approaches such as radiation and chemotherapy. This resistance can lead to disease progression and cause treatment failure. Extensive research is currently focused on studying these proteins to create tailored treatments that can circumvent resistance mechanisms. CLU (Clusterin), a chaperone protein, has gained notoriety for its role in promoting resistance to a wide range of cancer treatments, including chemotherapy, radiation therapy, and targeted therapy. The protein has also been discovered to have a role in regulating the immunosuppressive environment within tumors. Its ability to influence oncogenic signaling and inhibit cell death bolster cancer cells resistant against treatments, which poses a significant challenge in the field of oncology. Researchers are actively investigating to the mechanisms by which CLU exerts its resistance-promoting effects, with the ultimate goal of developing strategies to circumvent its impact and enhance the effectiveness of cancer therapies. By exploring CLU's impact on cancer, resistance mechanisms, tumor microenvironment (TME), and therapeutic strategies, this review aims to contribute to the ongoing efforts to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Maa Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jing-Ru Pang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Dan-Dan Shen
- Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
3
|
Martín-García D, García-Aranda M, Redondo M. Therapeutic Potential of Clusterin Inhibition in Human Cancer. Cells 2024; 13:665. [PMID: 38667280 PMCID: PMC11049052 DOI: 10.3390/cells13080665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Clusterin (CLU) protein is involved in various pathophysiological processes including carcinogenesis and tumor progression. In recent years, the role of the secretory isoform has been demonstrated in tumor cells, where it inhibits apoptosis and favors the acquisition of resistance to conventional treatments used to treat cancer. To determine the possible therapeutic potential of inhibiting this protein, numerous studies have been carried out in this field. In this article, we present the existing knowledge to date on the inhibition of this protein in different types of cancer and analyze the importance it could have in the development of new therapies targeted against this disease.
Collapse
Affiliation(s)
- Desirée Martín-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
4
|
Denisenko E, de Kock L, Tan A, Beasley AB, Beilin M, Jones ME, Hou R, Muirí DÓ, Bilic S, Mohan GRKA, Salfinger S, Fox S, Hmon KPW, Yeow Y, Kim Y, John R, Gilderman TS, Killingbeck E, Gray ES, Cohen PA, Yu Y, Forrest ARR. Spatial transcriptomics reveals discrete tumour microenvironments and autocrine loops within ovarian cancer subclones. Nat Commun 2024; 15:2860. [PMID: 38570491 PMCID: PMC10991508 DOI: 10.1038/s41467-024-47271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is genetically unstable and characterised by the presence of subclones with distinct genotypes. Intratumoural heterogeneity is linked to recurrence, chemotherapy resistance, and poor prognosis. Here, we use spatial transcriptomics to identify HGSOC subclones and study their association with infiltrating cell populations. Visium spatial transcriptomics reveals multiple tumour subclones with different copy number alterations present within individual tumour sections. These subclones differentially express various ligands and receptors and are predicted to differentially associate with different stromal and immune cell populations. In one sample, CosMx single molecule imaging reveals subclones differentially associating with immune cell populations, fibroblasts, and endothelial cells. Cell-to-cell communication analysis identifies subclone-specific signalling to stromal and immune cells and multiple subclone-specific autocrine loops. Our study highlights the high degree of subclonal heterogeneity in HGSOC and suggests that subclone-specific ligand and receptor expression patterns likely modulate how HGSOC cells interact with their local microenvironment.
Collapse
Affiliation(s)
- Elena Denisenko
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia.
| | - Leanne de Kock
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Adeline Tan
- Anatomical Pathology Department, Clinipath, Sonic Healthcare, Perth, WA, 6017, Australia
| | - Aaron B Beasley
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Maria Beilin
- Department of Gynaecological Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, 12 Salvado Rd, Subiaco, WA, 6008, Australia
| | - Matthew E Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | - Dáithí Ó Muirí
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | - Sanela Bilic
- Department of Gynaecological Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, 12 Salvado Rd, Subiaco, WA, 6008, Australia
| | - G Raj K A Mohan
- Department of Gynaecological Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, 12 Salvado Rd, Subiaco, WA, 6008, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA, 6160, Australia
| | | | - Simon Fox
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | - Khaing P W Hmon
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | - Yen Yeow
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | | | - Rhea John
- NanoString Technologies, Seattle, WA, USA
| | | | | | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Paul A Cohen
- Division of Obstetrics and Gynaecology, Medical School, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- Institute for Health Research, The University of Notre Dame Australia, 32 Mouat Street Fremantle, Fremantle, WA, 6160, Australia.
| | - Yu Yu
- Division of Obstetrics and Gynaecology, Medical School, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- Curtin Medical School, Curtin University, 410 Koorliny Way, Bentley, WA, 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University B305, Bentley, WA, 6102, Australia.
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia.
| |
Collapse
|
5
|
You J, Han Y, Qiao H, Han Y, Lu X, Lu Y, Wang X, Kai H, Zheng Y. Hsa_circ_0063804 enhances ovarian cancer cells proliferation and resistance to cisplatin by targeting miR-1276/CLU axis. Aging (Albany NY) 2022; 14:4699-4713. [PMID: 35687899 PMCID: PMC9217714 DOI: 10.18632/aging.203474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Purpose: This article researched circ_0063804 effects on ovarian cancer (OC) development and resistance to cisplatin, aiming to provide a new target for OC therapy. Methods: A total of 108 OC patients participated in this study. The circle structure of circ_0063804 was investigated using RNase R. Circ_0063804 expression in OC cells were up-regulated or down-regulated by transfection. Cell proliferation was assessed by cell counting kit-8 assay and colony formation assay. Flow cytometry was used to detect apoptosis. OC cells resistance to cisplatin was explored through MTT assay. Luciferase reporter assay was performed. qRT-PCR and Western blot was applied to research genes expression. Xenograft tumor experiment was conducted using nude mice. Ki67 expression in xenograft tumor was detected by immunohistochemistry. Results: Circ_0063804 expression was up-regulated in OC patients and indicated poor prognosis (P < 0.05). Circ_0063804 had a stable circle structure. Circ_0063804 enhanced proliferation, resistance to cisplatin and reduced apoptosis of OC cells (P < 0.01). miR-1276 was down-regulated in OC patients and sponged by circ_0063804. CLU was directly inhibited by miR-1276 and up-regulated in OC patients. Circ_0063804 exacerbated malignant phenotype and resistance to cisplatin of OC cells in vitro by enhancing CLU expression via sponging miR-1276 (P < 0.01). Circ_0063804 silencing inhibited OC cells growth, resistance to cisplatin and Ki67 expression in vivo (P < 0.01). Conclusion: Circ_0063804 promoted OC cells proliferation and resistance to cisplatin by enhancing CLU expression via sponging miR-1276.
Collapse
Affiliation(s)
- Jun You
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuwen Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haifeng Qiao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yun Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoyan Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yiling Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haili Kai
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yanli Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
6
|
Clusterin role in hepatocellular carcinoma patients treated with oxaliplatin. Biosci Rep 2021; 40:222073. [PMID: 32039450 PMCID: PMC7033306 DOI: 10.1042/bsr20200071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/11/2023] Open
Abstract
Aim: To explore the prognostic value of clusterin (CLU) in hepatocellular carcinoma (HCC) patients treated with oxaliplatin (OXA). Methods: Relative expression of plasma CLU mRNA was examined via fluorescence quantitative real-time PCR (qRT-PCR), and CLU protein level in tissue samples was detected through immunohistochemistry. Chi-square test was used to analyze the relationship between CLU mRNA expression and clinical features of HCC patients treated with OXA. Kaplan–Meier method was performed to assess overall survival for the patients, and prognostic value of CLU in HCC patients was estimated via Cox regression analysis. Results:CLU expression in plasma and tissue specimens was significantly higher among HCC patients than in non-malignant controls (P < 0.001 for both). Moreover, elevated CLU mRNA was closely related to tumor stage, lymph node metastasis and response to OXA (P < 0.05). HCC patients with high CLU expression showed poor response to OXA. In addition, low CLU levels predicted long overall survival time among the study subjects (20.8 vs. 36.6 months, P < 0.001). CLU was an independent prognostic indicator for HCC patients treated with OXA (HR = 2.587, 95%CI = 1.749–3.828, P < 0.001). Conclusion:CLU may be a novel prognostic marker for HCC patients treated with OXA.
Collapse
|
7
|
Comprehensive Identification of Potential Crucial Genes and miRNA-mRNA Regulatory Networks in Papillary Thyroid Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6752141. [PMID: 33521130 PMCID: PMC7817291 DOI: 10.1155/2021/6752141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022]
Abstract
Background Thyroid cancer is the most common endocrine malignancy, with a recent global increase of 20% in age-related incidence. Ultrasonography and ultrasonography-guided fine-needle aspiration biopsy (FNAB) are the most widely used diagnostic tests for thyroid nodules; however, it is estimated that up to 25% of thyroid biopsies are cytologically inconclusive. Molecular markers can help guide patient-oriented and targeted treatment of thyroid nodules and thyroid cancer. Methods Datasets related to papillary thyroid cancer (PTC) or thyroid carcinoma (GSE129562, GSE3678, GSE54958, GSE138042, and GSE124653) were downloaded from the GEO database and analysed using the Limma package of R software. For functional enrichment analysis, the Kyoto Encyclopedia of Genes and Genomes pathway analysis and Gene Ontology were applied to differentially expressed genes (DEGs) using the Metascape website. A protein-protein interaction (PPI) network was built from the STRING database. Gene expression, protein expression, immunohistochemistry, and potential functional gene survival were analysed using the GEPIA website, the Human Protein Atlas website, and the UALCAN website. Potential target miRNAs were predicted using the miRDB and Starbase datasets. Results We found 219 upregulated and 310 downregulated DEGs, with a cut-off of p < 0.01 and ∣log FC | >1.5. The DEGs in papillary thyroid cancer were mainly enriched in extracellular structural organisation. At the intersection of the PPI network and Metascape MCODEs, the hub genes in common were identified as FN1, APOE, CLU, and SDC2. In the targeted regulation network of miRNA-mRNA, the hsa-miR-424-5p was found to synchronously modulate two hub genes. Survival analysis showed that patients with high expression of CLU and APOE had better prognosis. Conclusions CLU and APOE are involved in the molecular mechanism of papillary thyroid cancer. The hsa-miR-424-5p might have the potential to reverse the processes of papillary thyroid cancer by modulating the hub genes. These are potential targets for the treatment of patients with papillary thyroid cancer.
Collapse
|
8
|
Hunter SM, Dall GV, Doyle MA, Lupat R, Li J, Allan P, Rowley SM, Bowtell D, Campbell IG, Gorringe KL. Molecular comparison of pure ovarian fibroma with serous benign ovarian tumours. BMC Res Notes 2020; 13:349. [PMID: 32698852 PMCID: PMC7376903 DOI: 10.1186/s13104-020-05194-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/17/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Ovarian fibromas and adenofibromas are rare ovarian tumours. They are benign tumours composed of spindle-like stromal cells (pure fibroma) or a mixture of fibroblast and epithelial components (adenofibroma). We have previously shown that 40% of benign serous ovarian tumours are likely primary fibromas due to the neoplastic alterations being restricted to the stromal compartment of these tumours. We further explore this finding by comparing benign serous tumours to pure fibromas. RESULTS Performing copy number aberration (CNA) analysis on the stromal component of 45 benign serous tumours and 8 pure fibromas, we have again shown that trisomy of chromosome 12 is the most common aberration in ovarian fibromas. CNAs were more frequent in the pure fibromas than the benign serous tumours (88% vs 33%), however pure fibromas more frequently harboured more than one CNA event compared with benign serous tumours. As these extra CNA events observed in the pure fibromas were unique to this subset our data indicates a unique tumour evolution. Gene expression analysis on the two cohorts was unable to show gene expression changes that differed based on tumour subtype. Exome analysis did not reveal any recurrently mutated genes.
Collapse
Affiliation(s)
- Sally M Hunter
- Cancer Genomics Program, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Genevieve V Dall
- Cancer Genomics Program, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Maria A Doyle
- Bioinformatics Core Facility Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Richard Lupat
- Bioinformatics Core Facility Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Jason Li
- Bioinformatics Core Facility Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Prue Allan
- Anatomical Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Simone M Rowley
- Cancer Genomics Program, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - David Bowtell
- Cancer Genomics Program, Peter MacCallum Cancer Centre, East Melbourne, Australia.,The Department of Pathology, University of Melbourne, Parkville, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | | | - Ian G Campbell
- Cancer Genomics Program, Peter MacCallum Cancer Centre, East Melbourne, Australia.,The Department of Pathology, University of Melbourne, Parkville, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Kylie L Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, East Melbourne, Australia. .,The Department of Pathology, University of Melbourne, Parkville, Australia. .,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia. .,Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, VIC, 8006, Australia.
| |
Collapse
|
9
|
Hoter A, Naim HY. Heat Shock Proteins and Ovarian Cancer: Important Roles and Therapeutic Opportunities. Cancers (Basel) 2019; 11:E1389. [PMID: 31540420 PMCID: PMC6769485 DOI: 10.3390/cancers11091389] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is a serious cause of death in gynecological oncology. Delayed diagnosis and poor survival rates associated with late stages of the disease are major obstacles against treatment efforts. Heat shock proteins (HSPs) are stress responsive molecules known to be crucial in many cancer types including ovarian cancer. Clusterin (CLU), a unique chaperone protein with analogous oncogenic criteria to HSPs, has also been proven to confer resistance to anti-cancer drugs. Indeed, these chaperone molecules have been implicated in diagnosis, prognosis, metastasis and aggressiveness of various cancers. However, relative to other cancers, there is limited body of knowledge about the molecular roles of these chaperones in ovarian cancer. In the current review, we shed light on the diverse roles of HSPs as well as related chaperone proteins like CLU in the pathogenesis of ovarian cancer and elucidate their potential as effective drug targets.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
10
|
Zhang X, Liu C, Li K, Wang K, Zhang Q, Cui Y. Meta-analysis of efficacy and safety of custirsen in patients with metastatic castration-resistant prostate cancer. Medicine (Baltimore) 2019; 98:e14254. [PMID: 30732140 PMCID: PMC6380863 DOI: 10.1097/md.0000000000014254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Custirsen is the second-generation antisense oligonucleotide (ASO), which can reduce cellular levels of clusterin to increase the cytotoxic effect of chemotherapeutic drugs. Our study assessed the efficacy and safety of custirsen in patients with metastatic castration-resistant prostate cancer (mCRPC).We conducted a comprehensive search to identify all the randomized controlled trials (RCTs) of custirsen for the treatment of mCRPC. The reference lists of the retrieved studies were investigated.Three publications involving a total of 1709 patients were used in the analysis. We found that overall survival (OS) (P = .25) was not statistically significant in the comparison. Safety assessments indicated custirsen were often associated with complications resulting from neutropenia (P < .001), anaemia (P < .001), thrombocytopenia (P < .001), and diarrhea (P = .002).Our meta-analysis shows that custirsen has no obvious effect on improving the OS of patients with mCRPC. Adverse reactions were more common among those patients treated with custirsen as compared to those treated with placebo.
Collapse
Affiliation(s)
- Xuebao Zhang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai
| | - Chu Liu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai
| | - Kui Li
- Department of Urology Surgery, The People's Hospital of Yucheng, Yucheng
| | - Ke Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiqiang Zhang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai
| |
Collapse
|
11
|
Ming X, Bao C, Hong T, Yang Y, Chen X, Jung YS, Qian Y. Clusterin, a Novel DEC1 Target, Modulates DNA Damage-Mediated Cell Death. Mol Cancer Res 2018; 16:1641-1651. [PMID: 30002194 DOI: 10.1158/1541-7786.mcr-18-0070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/28/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022]
Abstract
Differentiated embryonic chondrocyte expressed gene 1 (DEC1, also known as Sharp2/Stra13/BHLHE40) is a basic helix-loop-helix transcription factor that plays an important role in circadian rhythms, cell proliferation, apoptosis, cellular senescence, hypoxia response, and epithelial-to-mesenchymal transition of tumor cells. Secretory clusterin (sCLU) is a cytoprotective protein that guards against genotoxic stresses. Here, clusterin (CLU) was identified as a novel target gene of DEC1 and suppresses DNA damage-induced cell death in tumor cells. Mechanistically, based on chromatin immunoprecipitation and luciferase assays, DEC1 binds to and activates the promoter of the CLU gene. DEC1 and DNA-damaging agents induce sCLU expression, whereas DEC1 knockdown decreases the expression of sCLU upon DNA damage. Moreover, the data demonstrate that DEC1 inhibits, whereas sCLU knockdown enhances, DNA damage-induced cell death in MCF7 breast cancer cells. Given that DEC1 and sCLU are frequently overexpressed in breast cancers, these data provide mechanistic insight into DEC1 as a prosurvival factor by upregulating sCLU to reduce the DNA damage-induced apoptotic response. Together, this study reveals sCLU as a novel target of DEC1 which modulates the sensitivity of the DNA damage response.Implications: DEC1 and sCLU are frequently overexpressed in breast cancer, and targeting the sCLU-mediated cytoprotective signaling pathway may be a novel therapeutic approach. Mol Cancer Res; 16(11); 1641-51. ©2018 AACR.
Collapse
Affiliation(s)
- Xin Ming
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Chenyi Bao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Tao Hong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Ying Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xinbin Chen
- The Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
12
|
Wang X, Zou F, Zhong J, Yue L, Wang F, Wei H, Yang G, Jin T, Dong X, Li J, Xiu P. Secretory Clusterin Mediates Oxaliplatin Resistance via the Gadd45a/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma. J Cancer 2018; 9:1403-1413. [PMID: 29721050 PMCID: PMC5929085 DOI: 10.7150/jca.23849] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/25/2018] [Indexed: 12/12/2022] Open
Abstract
Purpose: Systemic therapy has often been used for patients with advanced hepatocellular carcinoma (HCC). However, due to drug resistance, the use of cytotoxic chemotherapy in the treatment of patients with advanced HCC has typically demonstrated low response rates. Secretory clusterin (sCLU) is expressed in aggressive late-stage tumors and associated with resistance to chemotherapy, including that in HCC cases. The present research aimed to investigate the biological role of sCLU in HCC. Methods: sCLU expression in HCC and normal tissues was examined using immunohistochemical staining, followed by analysis of the correlation between sCLU expression and clinical indicators. In addition, the role and internal mechanism of sCLU in cell proliferation and apoptosis were investigated in HCC cells. Results: sCLU expression was significantly upregulated in HCC tissues; and was associated with histological grade and poor overall survival. The levels of sCLU were significantly increased in Bel7402, SMMC7721 and resistant HCC cells (Bel7404-OR). Inhibiting the activity of sCLU enhanced the chemosensitivity of Bel7402 and SMMC7721 cells. Downregulation of sCLU could increase the expression of Gadd45a in HCC cells. Overexpression of sCLU contributed to drug resistance in Bel7402, SMMC7721 and Bel7404-OR cells; whereas, overexpression of Gadd45a alone overcame drug resistance in the cells above. No significant expression changes of sCLU and Gadd45a were observed in HCC cells after the interference of a selective inhibitor of the PI3K/Akt signaling pathway. However, regulation of the expression of Gadd45a could influence the phosphorylation level of Akt; and further regulate the expression of Bcl-2 and Bax proteins involved in the mitochondrial apoptosis pathways. Conclusions: The results demonstrate that sCLU/Gadd45a/PI3K/Akt signaling represents a novel pathway that could regulate drug resistance in a one-way manner in HCC cells.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Fang Zou
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China.,Department of Emergency Surgery, The People's Hospital of Linyi City, Linyi 276000, China
| | - Jingtao Zhong
- Department of General Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academic of Medicine Science, Jinan 250117, Shandong, China
| | - Longtao Yue
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Fuhai Wang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Honglong Wei
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Guangsheng Yang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Tao Jin
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Xiaofeng Dong
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Jie Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Peng Xiu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| |
Collapse
|
13
|
Zhong J, Yu X, Dong X, Lu H, Zhou W, Li L, Li Z, Sun P, Shi X. Downregulation of secreted clusterin potentiates the lethality of sorafenib in hepatocellular carcinoma in association with the inhibition of ERK1/2 signals. Int J Mol Med 2018; 41:2893-2900. [PMID: 29436591 DOI: 10.3892/ijmm.2018.3463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/02/2018] [Indexed: 11/06/2022] Open
Abstract
Secretory clusterin (sCLU) is overexpressed in cancer and is associated with resistance to chemotherapy in several types of cancer, including hepatocellular carcinoma (HCC). Sorafenib (SOR), a multikinase inhibitor of Raf/mitogen‑activated protein kinase kinase/extracellular signal‑regulated kinase (ERK) signaling and the receptor tyrosine kinase, is recognized as the standard therapeutic strategy for patients with advanced HCC. However, the role of sCLU in the resistance of HCC to SOR remains to be fully elucidated. In the present study, sCLU was silenced by CLU short hairpin (sh)RNA in Bel‑7402 and SMMC‑7721 cell lines, following which the cells were treated with SOR. Cell proliferation was determined using a CCK‑8 assay. Apoptosis was quantified using flow cytometry. The production of sCLU, B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X sprotein and phosphorylated (p)ERK1/2 was analyzed using western blot analysis. The results showed that sCLU was overexpressed in three HCC cell lines. The downregulation of sCLU by CLU shRNA synergistically increased SOR sensitivity in the Bel‑7402 and SMMC‑7721 cells, and potentiated SOR‑induced cell apoptosis. In addition, silencing sCLU or combination with PD98059 decreased the SOR‑induced activation of pERK1/2. These findings indicate a novel treatment strategy for HCC.
Collapse
Affiliation(s)
- Jingtao Zhong
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Xiaoming Yu
- Department of Ophthalmology, Shandong Provincial Third Hospital, Jinan, Shandong 250031, P.R. China
| | - Xiaofeng Dong
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Hong Lu
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, P.R. China
| | - Wuyuan Zhou
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Lei Li
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Zhongchao Li
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Pengfei Sun
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| | - Xuetao Shi
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
14
|
Clusterin inhibition mediates sensitivity to chemotherapy and radiotherapy in human cancer. Anticancer Drugs 2017; 28:702-716. [PMID: 28471806 DOI: 10.1097/cad.0000000000000507] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since its discovery in 1983, the protein clusterin (CLU) has been isolated from almost all human tissues and fluids and linked to the development of different physiopathological processes, including carcinogenesis and tumor progression. During the last few years, several studies have shown the cytoprotective role of secretory CLU in tumor cells, inhibiting their apoptosis and enhancing their resistance to conventional treatments including hormone depletion, chemotherapy, and radiotherapy. In an effort to determine the therapeutic potential that the inhibition of this protein could have on the development of new strategies for cancer treatment, numerous studies have been carried out in this field, with results, in most cases, satisfactory but sometimes contradictory. In this document, we summarize for the first time the current knowledge of the effects that CLU inhibition has on sensitizing tumor cells to conventional cancer treatments and discuss its importance in the development of new strategies against cancer.
Collapse
|
15
|
Chu Y, Lai YH, Lee MC, Yeh YJ, Wu YK, Tsao W, Huang CY, Wu S. Calsyntenin-1, clusterin and neutrophil gelatinase-associated lipocalin are candidate serological biomarkers for lung adenocarcinoma. Oncotarget 2017; 8:107964-107976. [PMID: 29296216 PMCID: PMC5746118 DOI: 10.18632/oncotarget.22438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 10/28/2017] [Indexed: 01/06/2023] Open
Abstract
It has been drawn attention that secreted proteins with signal peptide from cancer cells provide new potential biomarkers of cancer. In this study, three lung adenocarcinoma cell lines and serum samples from 20 patients were used for identifying potential serologic tumor biomarker with proteomic and bioinformatics approaches. One-dimensional electrophoresis, and identified with mass spectrometry and database research were performed. We found17 secreted proteins in common, while another 17 proteins with signal peptide were identified in all three lung adenocarcinoma cell lines alone with patient samples. With matching these two groups of identified proteins, calsyntenin-1 (CLSTN1), clusterin (CLU) and neutrophil gelatinase-associated lipocalin (NGAL) were found highly secreted from both cell lines and serum with unique signal peptides. Therefore, in our study, we demonstrated that cancer cells secret specific proteins to the environment that may serve as unique markers for cancer diagnosis. To combination of proteomic study with bioinformatic prediction on signal peptides, higher expression level of CLSTN1, CLU and NGAL were found and may be new solid serologic biomarkers for patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Yen Chu
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Yu-Jung Yeh
- Department of Mathematics & Statistics, San Jose State University, San Jose, California, USA
| | - Yao-Kuang Wu
- Department of Pulmonary and Critical Care, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Wayne Tsao
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Chun-Yao Huang
- Department of Pulmonary and Critical Care, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Semon Wu
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan.,Department of Life Science, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
16
|
Tat-Tagged and Folate-Modified N-Succinyl-chitosan (Tat-Suc-FA) Self-assembly Nanoparticle for Therapeutic Delivery OGX-011 to A549 Cells. Mol Pharm 2017; 14:1898-1905. [PMID: 28464609 DOI: 10.1021/acs.molpharmaceut.6b01167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The objective of this study was to develop a novel type of an antisense oligonucleotide (OGX-011) loaded Tat-tagged and folate-modified N-succinyl-chitosan (Tat-Suc-FA) nanoparticles (NPs) for improving tumor targetability. In this study, Tat-Suc-FA/OGX-011NPs were prepared and its physicochemical characterizations were also evaluated. The nanoparticles showed an average diameter of 73 ± 16.6 nm, the zeta potential of +23.6 ± 0.3 mV, and a high entrapment efficiency of 89.6 ± 6.6%. Transmission electron microscopy analysis showed the nanoparticles were mostly spherical and well dispersed. The delivery efficiency of this system was investigated both in vitro and in vivo. In comparison with nontargeted Lipofectamin2000/OGX-011 and free OGX-011, Tat-Suc-FA/GOX-011 showed the highest apoptosis rate of 14.2% ± 1.8% and significant uptake in A549 cells. Tat-Suc-FA NPs loaded with GOX-011 induced significant down-regulation of s-CLU mRNA and protein levels in A549 cells. In A549 tumor-bearing mice model, Tat-Suc-FA/GOX-011 produced a more efficient down-regulation of s-CLU compared to Lipofectamin2000/OGX-011. Furthermore, the combined use of Tat-Suc-FA/OGX-011 with DDP chemotherapy showed a most significant inhibition of tumor growth and greatly enhanced the survival rate of A549 tumor-bearing mice. These findings suggested successful application of Tat-Suc-FA NPs for the high efficiency and specificity in therapeutic delivery of OGX-011 to A549 cells.
Collapse
|
17
|
Zhang J, Miao C, Xu A, Zhao K, Qin Z, Li X, Liang C, Hua Y, Chen W, Zhang C, Liu Y, Su S, Wang Z, Liu B. Prognostic Role of Secretory Clusterin in Multiple Human Malignant Neoplasms: A Meta-Analysis of 26 Immunohistochemistry Studies. PLoS One 2016; 11:e0161150. [PMID: 27532124 PMCID: PMC4988765 DOI: 10.1371/journal.pone.0161150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/01/2016] [Indexed: 01/11/2023] Open
Abstract
Secretory clusterin (sCLU) is a potential prognostic tumour biomarker, but results of different sCLU studies are inconsistent. We conducted this meta-analysis to evaluate the precise predictive value of sCLU. Qualified studies were identified by performing online searches in PubMed, EMBASE, and Web of Science. The selected articles were divided into three groups based on scoring method for clusterin detection. Pooled hazard ratios (HRs) with 95% confidence interval (CI) for patient survival and disease recurrence were calculated to determine the correlation between sCLU expression and cancer prognosis. Heterogeneity was assessed using I2 statistics, and specific heterogeneity in different groups was analysed. Elevated sCLU was significantly associated with recurrence-free survival in groups 1 and 3 (group 1: pooled HR = 1.35, 95% CI = 1.01 to 1.79; group 3: pooled HR = 1.80, 95% CI = 1.22 to 2.65). However, clusterin expression was not associated with overall survival in all three groups. Results showed that only the heterogeneity of group 2 was very strong (p = 0.013, I2 = 76.3%), in which the specimens were scored through sCLU staining intensity only. sCLU is a potential biomarker for tumour prognosis, and IHC methods can be more standardised if both intensity and staining proportion are considered.
Collapse
Affiliation(s)
- Jianzhong Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Chenkui Miao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Aiming Xu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Kai Zhao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Zhiqiang Qin
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Xiao Li
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Chao Liang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Yibo Hua
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Wei Chen
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Chao Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Yiyang Liu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Shifeng Su
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| | - Bianjiang Liu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing. 210029, China
| |
Collapse
|
18
|
Fuzio P, Napoli A, Ciampolillo A, Lattarulo S, Pezzolla A, Nuzziello N, Liuni S, Giorgino F, Maiorano E, Perlino E. Clusterin transcript variants expression in thyroid tumor: a potential marker of malignancy? BMC Cancer 2015; 15:349. [PMID: 25934174 PMCID: PMC4422431 DOI: 10.1186/s12885-015-1348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/22/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Clusterin (CLU) is a ubiquitous multifunctional factor involved in neoplastic transformation. The CLU transcript variants and protein forms play a crucial role in balancing cells proliferation and death. METHODS We investigated the regulation of CLU transcript variants expression in an in vivo model system consisting of both neoplastic tissues and fine needle aspiration biopsy (FNAB) samples isolated from patients undergoing thyroidectomy. RESULTS The immunohistochemical analyses showed an overall CLU up-regulation in papillary carcinoma. A specific CLU2 transcript variant increase was registered using qPCR in papillary carcinomas while CLU1 decreased. In addition, the analysis of CLU transcripts expression level showed an increase of the CLU2 transcript in the TIR 3 patients with histologically confirmed thyroid cancer. CONCLUSIONS Our results suggest the existence of a specific alteration of CLU2:CLU1 ratio towards CLU2, thus providing the first circumstantial evidence for the potential use of CLU transcript variants as effective biomarkers for a more accurate assessment of the so called "indeterminate" thyroid nodules.
Collapse
Affiliation(s)
- Paolo Fuzio
- Institute of Biomedical Technologies, National Research Council (CNR), Via G. Amendola, 122/D, 70126, Bari, Italy.
| | - Anna Napoli
- Department of Emergency and Organ Transplantation, Section of Pathological Anatomy, University of Bari Aldo Moro, 70124, Bari, Italy.
| | - Anna Ciampolillo
- Department of Emergency and Organ Transplantation, Section of Endocrinology, University of Bari Aldo Moro, 70124, Bari, Italy.
| | - Serafina Lattarulo
- Department of Emergency and Organ Transplantation, Section of Endocrinology, University of Bari Aldo Moro, 70124, Bari, Italy.
| | - Angela Pezzolla
- Department of Emergency and Organ Transplantation, Section of Endocrinology, University of Bari Aldo Moro, 70124, Bari, Italy.
| | - Nicoletta Nuzziello
- Institute of Biomedical Technologies, National Research Council (CNR), Via G. Amendola, 122/D, 70126, Bari, Italy.
| | - Sabino Liuni
- Institute of Biomedical Technologies, National Research Council (CNR), Via G. Amendola, 122/D, 70126, Bari, Italy.
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Endocrinology, University of Bari Aldo Moro, 70124, Bari, Italy.
| | - Eugenio Maiorano
- Department of Emergency and Organ Transplantation, Section of Pathological Anatomy, University of Bari Aldo Moro, 70124, Bari, Italy.
| | - Elda Perlino
- Institute of Biomedical Technologies, National Research Council (CNR), Via G. Amendola, 122/D, 70126, Bari, Italy.
| |
Collapse
|
19
|
Dutta M, Subramani E, Taunk K, Gajbhiye A, Seal S, Pendharkar N, Dhali S, Ray CD, Lodh I, Chakravarty B, Dasgupta S, Rapole S, Chaudhury K. Investigation of serum proteome alterations in human endometriosis. J Proteomics 2014; 114:182-96. [PMID: 25449831 DOI: 10.1016/j.jprot.2014.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED Endometriosis is a common benign gynecological disease, characterized by proliferation of functional endometrial glands and stroma outside the uterine cavity. The present study involves investigation of alterations in the serum proteome of endometriosis patients compared to healthy controls using 2DE and 2D-DIGE combined with MALDI TOF/TOF-MS. Comparison of serum proteome of endometriosis patients and healthy subjects revealed 25 significant differentially expressed proteins. Gene ontology and network analysis, performed using PANTHER, DAVID, WebGestalt and STRING, revealed that the differentially expressed proteins are majorly involved in response to stimulus, immune system, metabolic, localization and cellular processes. For serum diagnostic marker identification, several robust statistical screening procedures were applied to identify the set of the most significant proteins responsible for successful diagnosis of different endometriosis stages. Partial least squares (PLS) based marker selection tool and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to identify the most significant proteins for disease prediction. Western blotting validation in a separate cohort of patients revealed that haptoglobin (HP), Ig kappa chain C region (IGKC), alpha-1B-glycoprotein (A1BG) can be considered effective serum protein markers for the diagnosis of Stage II, III and IV endometriosis. For diagnosis of Stage I, only IGKC and HP seemed promising. BIOLOGICAL SIGNIFICANCE Globally, about 12 in 100 women of reproductive age are diagnosed with endometriosis. The pathogenesis of the disease still remains unclear, leading to non-specific therapeutic approaches for disease management. Moreover, there is a delay of 8-12years in correct diagnosis after the initial onset of symptoms leading to a considerable impact on the woman's lifestyle. Also, the gold standard for diagnosis of endometriosis, laparoscopy, is an invasive procedure. The value of a noninvasive or semi-invasive diagnostic test for endometriosis with easily accessible fluids such as plasma, serum, urine, and saliva is, therefore, rightfully recognized. The present study is expected to considerably improve the understanding of the disease pathogenesis along with improved diagnostics and therapeutic approaches leading to better management of the disease.
Collapse
Affiliation(s)
- Mainak Dutta
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Elavarasan Subramani
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Akshada Gajbhiye
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | | | - Namita Pendharkar
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Snigdha Dhali
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Chaitali Datta Ray
- Institute of Post Graduate Medical Education & Research, Obstetrics & Gynecology, Kolkata, West Bengal, India
| | - Indrani Lodh
- Institute of Reproductive Medicine, Sector-III, Kolkata, West Bengal, India
| | | | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India.
| |
Collapse
|
20
|
Chen M, Jin Y, Bi Y, Yin J, Wang Y, Pan L. A survival analysis comparing women with ovarian low-grade serous carcinoma to those with high-grade histology. Onco Targets Ther 2014; 7:1891-9. [PMID: 25342912 PMCID: PMC4206388 DOI: 10.2147/ott.s67812] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ovarian low-grade serous carcinoma (LGSC) and high-grade serous carcinoma have distinct molecular profiles, clinical behaviors, and treatment responses. The survival advantage for patients with low-grade carcinoma compared with patients with high-grade histology remains controversial. We retrospectively reviewed the medical charts of 381 patients with ovarian serous carcinoma at Peking Union Medical College Hospital from 2007 to 2010. Patients were classified into two groups according to MD Anderson two-tier system: 35 (9.2%) cases with LGSC and 346 with high-grade serous carcinoma. Patients with low-grade serous ovarian cancer had a significantly younger age at diagnosis (46 versus 56 years, P=0.046), and their median progression-free survival (PFS) and overall survival values were 35.0 and 54.0 months, respectively. A multivariate analysis showed that, for serous ovarian cancer, the histological grade was a significant prognostic factor for PFS but not for overall survival (P=0.022 and P=0.0566, respectively). When stratified by the existence of a residual disease, patients with low-grade disease who underwent cytoreductive surgery without macroscopic residual disease (>1 cm) had a significantly improved median PFS time (36.0 months) compared with that of patients with high-grade carcinoma who received optimal cytoreductive surgery (16.0 months, P=0.017). Conversely, patients with low-grade and high-grade carcinoma who were left with macroscopic residue (>1 cm) experienced a similarly shorter median PFS (10.0 and 13.0 months, respectively, P=0.871). The International Federation of Gynecology and Obstetrics stage and residual disease were significant prognostic factors of low-grade carcinoma, while positive ascites was associated with a worse PFS value. Our data showed that LGSC is a different entity from high-grade carcinoma and that LGSC was associated with improved PFS after optimal cytoreductive surgery but not suboptimal operation.
Collapse
Affiliation(s)
- Ming Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ying Jin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yalan Bi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jie Yin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yongxue Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lingya Pan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
21
|
Rhoda K, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. Potential nanotechnologies and molecular targets in the quest for efficient chemotherapy in ovarian cancer. Expert Opin Drug Deliv 2014; 12:613-34. [PMID: 25300775 DOI: 10.1517/17425247.2015.970162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Ovarian cancer, considered one of the most fatal gynecological cancers, goes largely undiagnosed until metastasis presents itself, usually once the patient is in the final stages and thus, too late for worthwhile therapy. Targeting this elusive disease in its early stages would improve the outcome for most patients, while the information generated thereof would increase the possibility of preventative mechanisms of therapy. AREAS COVERED This review discusses various molecular targets as possible moieties to be incorporated in a holistic drug delivery system or the more aptly termed 'theranostic' system. These molecular targets can be used for targeting, visualizing, diagnosing, and ultimately, treating ovarian cancer in its entirety. Currently implemented nanoframeworks, such as nanomicelles and nanoliposomes, are described and the effectiveness of nanostructures in tumor targeting, treatment functions, and overcoming the drug resistance challenge is discussed. EXPERT OPINION Novel nanotechnology strategies such as the development of nanoframeworks decorated with targeted ligands of a molecular nature may provide an efficient chemotherapy, especially when instituted in combination with imaging, diagnostic, and ultimately, therapeutic moieties. An imperative aspect of utilizing nanotechnology in the treatment of ovarian cancer is the flexibility of the drug delivery system and its ability to overcome standard obstacles such as: i) successfully treating the desired cells through direct targeting; ii) reducing toxicity levels of treatment by achieving direct targeting; and iii) delivery of targeted therapy using an efficient vehicle that is exceptionally degradable in response to a particular stimulus. The targeting of ovarian cancer in its early stages using imaging and diagnostic nanotechnology is an area that can be improved upon by combining therapeutic moieties with molecular biomarkers. The nanotechnology and molecular markers mentioned in this review have generally been used for either imaging or diagnostics, and have not yet been successfully implemented into bi-functional tools, which it is hoped, should eventually include a therapeutic aspect.
Collapse
Affiliation(s)
- Khadija Rhoda
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, 7 York Road, Parktown, 2193 , South Africa
| | | | | | | | | | | |
Collapse
|
22
|
Downregulating sCLU enhances the sensitivity of hepatocellular carcinoma cells to gemcitabine by activating the intrinsic apoptosis pathway. Dig Dis Sci 2014; 59:1798-809. [PMID: 24671452 DOI: 10.1007/s10620-014-3111-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of this study was to investigate whether the therapeutic activity of gemcitabine (GCB) in hepatocellular carcinoma (HCC) could be increased by the down-regulation of secretory clusterin (sCLU), a glycoprotein that is considered to play a cytoprotective role in the resistance to chemotherapy. METHODS The expression of sCLU was detected in HCC tumor tissues and cell lines. A cell viability and apoptosis assay were performed in parental HCC cells or the same cells transfected with sCLU shRNA and treated with or without GCB. The potential downstream pathways were investigated using the Human Apoptosis RT(2) Profiler™ PCR Array. RESULTS The expression levels of sCLU in HCC tissues were significantly higher than in adjacent non-tumor liver tissues and were associated with the histological grade and transarterial chemoembolization. sCLU overexpression was also found in three HCC cell lines and hepatocytes. The depletion of sCLU synergistically increased GCB sensitivity in Bel7402 and SMMC7721 cells and induced cell apoptosis. Based on the PCR array analysis, sCLU depletion also resulted in the up-regulation of BNIP1, GADD45A, TNFRSF10A, and TRADD and down-regulation of AKT1 in Bel7402 and SMMC7721 cells compared with the parental controls. These results were further supported by a Western blot analysis, which showed increased GADD45a protein expression and the decreased expression of phosphorylated AKT. GADD45a overexpression also increased the sensitivity to GCB in the Bel7402 and SMMC7721 cells. CONCLUSION Targeting sCLU may be a useful method to enhance the cytotoxic effect of GCB in hepatocellular carcinoma.
Collapse
|
23
|
Oncogenes associated with drug resistance in ovarian cancer. J Cancer Res Clin Oncol 2014; 141:381-95. [DOI: 10.1007/s00432-014-1765-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/26/2014] [Indexed: 12/20/2022]
|
24
|
Matsuwaki R, Ishii G, Zenke Y, Neri S, Aokage K, Hishida T, Yoshida J, Fujii S, Kondo H, Goya T, Nagai K, Ochiai A. Immunophenotypic features of metastatic lymph node tumors to predict recurrence in N2 lung squamous cell carcinoma. Cancer Sci 2014; 105:905-11. [PMID: 24814677 PMCID: PMC4317916 DOI: 10.1111/cas.12434] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 01/27/2023] Open
Abstract
Patients with mediastinal lymph node metastasis (N2) in squamous cell carcinoma (SqCC) of the lung have poor prognosis after surgical resection of the primary tumor. The aim of this study was to clarify predictive factors of the recurrence of pathological lung SqCC with N2 focusing on the biological characteristics of both cancer cells and cancer-associated fibroblasts (CAFs) in primary and metastatic lymph node tumors. We selected 64 patients with pathological primary lung N2 SqCC who underwent surgical complete resection and investigated the expressions of four epithelial–mesenchymal transition-related markers (caveolin, clusterin, E-cadherin, ZEB2), three cancer stem cell-related markers (ALDH-1, CD44 variant6, podoplanin) of cancer cells, and four markers of CAFs (caveolin, CD90, clusterin, podoplanin) in both primary and matched metastatic lymph node tumors in the N2 area. In the primary tumors, the expressions of all the examined molecules were not related to recurrence. However, in the metastatic lymph node tumors, high clusterin and ZEB2 expressions in the cancer cells and high podoplanin expression in the CAFs were significantly correlated with recurrence (P = 0.03, 0.04, and 0.007, respectively). In a multivariate analysis, only podoplanin expression in the CAFs in metastatic lymph node tumors was identified as a significantly independent predictive factor of recurrence (P = 0.03). Our study indicated that the immunophenotypes of both cancer cells and CAFs in metastatic lymph node tumors, but not primary tumors, provide useful information for predicting the recurrence of pathological N2 lung SqCC.
Collapse
Affiliation(s)
- Rie Matsuwaki
- Division of Pathology, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan; Division of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan; Division of Thoracic Surgery, Kyorin University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Apoptosis and molecular targeting therapy in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:150845. [PMID: 25013758 PMCID: PMC4075070 DOI: 10.1155/2014/150845] [Citation(s) in RCA: 737] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/11/2014] [Indexed: 12/22/2022]
Abstract
Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction.
Collapse
|
26
|
Ma Y, Sun Z, de Matos R, Zhang J, Odunsi K, Lin B. Towards an animal model of ovarian cancer: cataloging chicken blood proteins using combinatorial peptide ligand libraries coupled with shotgun proteomic analysis for translational research. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:280-97. [PMID: 24660652 DOI: 10.1089/omi.2013.0164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epithelial ovarian cancer is the most deadly gynecological cancer around the world, with high morbidity in industrialized countries. Early diagnosis is key in reducing its morbidity rate. Yet, robust biomarkers, diagnostics, and animal models are still limited for ovarian cancer. This calls for broader omics and systems science oriented diagnostics strategies. In this vein, the domestic chicken has been used as an ovarian cancer animal model, owing to its high rate of developing spontaneous epithelial ovarian tumors. Chicken blood has thus been considered a surrogate reservoir from which cancer biomarkers can be identified. However, the presence of highly abundant proteins in chicken blood has compromised the applicability of proteomics tools to study chicken blood owing to a lack of immunodepletion methods. Here, we demonstrate that a combinatorial peptide ligand library (CPLL) can efficiently remove highly abundant proteins from chicken blood samples, consequently doubling the number of identified proteins. Using an integrated CPLL-1DGE-LC-MSMS workflow, we identified a catalog of 264 unique proteins. Functional analyses further suggested that most proteins were coagulation and complement factors, blood transport and binding proteins, immune- and defense-related proteins, proteases, protease inhibitors, cellular enzymes, or cell structure and adhesion proteins. Semiquantitative spectral counting analysis identified 10 potential biomarkers from the present chicken ovarian cancer model. Additionally, many human homologs of chicken blood proteins we have identified have been independently suggested as diagnostic biomarkers for ovarian cancer, further triangulating our novel observations reported here. In conclusion, the CPLL-assisted proteomic workflow using the chicken ovarian cancer model provides a feasible platform for translational research to identify ovarian cancer biomarkers and understand ovarian cancer biology. To the best of our knowledge, we report here the most comprehensive survey of the chicken blood proteome to date.
Collapse
Affiliation(s)
- Yingying Ma
- 1 System Biology Division, Zhejiang-California International Nanosystem Institute (ZCNI), Zhejiang University , Hangzhou, China
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Clusterin is a heterodimeric disulfide-linked glycoprotein (449 amino acids) isolated in the rat prostate after castration. It is widely distributed in different tissues and highly conserved in species. There are two isoforms (1 and 2) with antagonistic actions regarding apoptosis. Clusterin is implicated in a number of biological processes, including lipid transport, membrane recycling, cell adhesion, programmed cell death, and complement cascade, representing a truly multifunctional protein. Isoform 2 is overexpressed under cellular stress conditions and protects cells from apoptosis by impeding Bax actions on the mitochondrial membrane and exerts other protumor activities, like phosphatidylinositol 3-kinase/protein kinase B pathway activation, modulation of extracellular signal-regulated kinase 1/2 signaling and matrix metallopeptidase-9 expression, increased angiogenesis, modulation of the nuclear factor kappa B pathway, among others. Its overexpression should be considered as a nonspecific cellular response to a wide variety of tissue insults like cytotoxic chemotherapy, radiation, excess of free oxygen radicals, androgen or estrogen deprivation, etc. A review of the recent literature strongly suggests potential roles for custirsen in particular, and proapoptosis treatments in general, as novel modalities in cancer management. Inhibition of clusterin is known to increase the cytotoxic effects of chemotherapeutic agents, and custirsen, a second-generation antisense oligonucleotide that blocks clusterin, is being tested in a Phase III clinical trial after successful results were achieved in Phase II studies. A major issue in cancer evolution that remains unanswered is whether clusterin represents a driving force of tumorigenesis or a late phenomenon after chemotherapy. This review presents preclinical data that encourages trials in various types of cancer other than advanced castration-resistance prostate cancer and discusses briefly the appropriate timing for clusterin inhibition in the clinical context.
Collapse
Affiliation(s)
- Tomas Koltai
- Gerencia de Efectores Sanitarios Propios, Instituto Nacional de la Seguridad Social para Jubilados y Pensionados, Buenos Aires, República Argentina
| |
Collapse
|
28
|
Chun YJ. Knockdown of clusterin expression increases the in vitro sensitivity of human prostate cancer cells to paclitaxel. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:1443-1450. [PMID: 25343293 DOI: 10.1080/15287394.2014.951760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Clusterin/apolipoprotein J is a secreted heterodimeric glycoprotein that is implicated in several pathophysiological processes, including tissue remodeling, reproduction, lipid transport, and apoptosis. Although previous studies demonstrated that clusterin is able to protect against apoptosis, the role of the clusterin in cellular proliferation remains elusive. To determine whether clusterin plays an important role in cellular proliferation, the function of clusterin was examined using a small interfering RNA (siRNA) in PC3 human prostate cancer cells. Transient transfection with clusterin siRNA resulted in significant suppression of clusterin mRNA and protein expression. Clusterin knockdown resulted in a decrease in protein expression of phospho-Akt and an increase in expression of proteins phosphatase type 2AC (PP2AC) and phosphorylation of p38. However, treatment with PP2AC siRNA exerted minimal effects on clusterin expression. Interestingly, clusterin mRNA expression was reduced in paclitaxel-treated cells, and the cytotoxic effect of paclitaxel was more potent when cells were incubated with clusterin siRNA. In addition, co-treatment with paclitaxel and clusterin siRNA significantly enhanced PP2AC levels. Taken together, these results indicate that clusterin plays a crucial role in PC3 cell proliferation and that clusterin depletion may contribute to enhanced sensitivity of PC3 cells to anticancer agents such as paclitaxel.
Collapse
Affiliation(s)
- Young-Jin Chun
- a College of Pharmacy , Chung-Ang University , Seoul , Korea
| |
Collapse
|
29
|
Cui Y, Jing Y, Sun Z. Lack of association between MTHFD1 G401A polymorphism and ovarian cancer susceptibility. Tumour Biol 2013; 35:3385-9. [DOI: 10.1007/s13277-013-1446-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 11/19/2013] [Indexed: 11/29/2022] Open
|
30
|
Henderson-Jackson EB, Nasir A, Chen DT, Nandyala P, Djeu J, Strosberg J, Kvols L, Coppola D. Cytoplasmic Clusterin expression correlates with pancreatic neuroendocrine tumor size and pathological stage. Pancreas 2013; 42:967-70. [PMID: 23770713 PMCID: PMC4644941 DOI: 10.1097/mpa.0b013e318293734b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Cytoplasmic clusterin (Clusterin), a ubiquitous multifunctional secretory sulfated glycoprotein, plays a role in apoptosis and is reportedly overexpressed in a variety of tumors. The role of Clusterin in pancreatic neuroendocrine tumors (PNETs) has not been investigated. In this study, Clusterin expression was evaluated in a subset of PNETs, and the results were correlated with the clinical-pathological features of the tumors. METHODS Fifty-nine surgical cases were used to evaluate the immunohistochemical expression of Clusterin in PNETs. Using the avidin-biotin complex method, tissue sections from each case were stained with a rabbit anticlusterin antibody (Abcam, Cambridge, Mass). The immunohistochemical reactions were qualitatively and semiquantitatively evaluated by 2 pathologists. RESULTS Strong Clusterin reactivity was identified in 36 (61%) of 59 PNETs. In 23 (39%) of 59 cases, the Clusterin score was 3 or less. Clusterin expression scores significantly associated with tumor size (P = 0.03) and with tumor stage (P = 0.02). The immunohistochemical score index did not correlate with tumor grade (P = 0.15). CONCLUSIONS We report the expression of Clusterin in PNETs. The correlation of Clusterin with tumor size and stage suggests involvement of this molecule in pancreatic neuroendocrine tumor progression. Clusterin may represent a new target of therapy for PNETs.
Collapse
Affiliation(s)
- Evita B. Henderson-Jackson
- Department of Anatomic Pathology, Moffitt Cancer Center and University of South Florida, College of Medicine, Tampa, FL
| | | | - Dung-Tsa Chen
- Biostatistics Department, Moffitt Cancer Center, Tampa
| | | | - Julie Djeu
- Department of Immunology, Moffitt Cancer Center and University of South Florida College of Medicine, Tampa, FL
| | - Jonathan Strosberg
- Department of Immunology, Moffitt Cancer Center and University of South Florida College of Medicine, Tampa, FL
| | - Larry Kvols
- Gatrointestinal Oncology Program, Moffitt Cancer Center and University of South Florida College of Medicine, Tampa, FL
| | - Domenico Coppola
- Department of Anatomic Pathology and Oncological Sciences, Moffitt Cancer Center and University of South Florida College of Medicine, Tampa, FL
| |
Collapse
|
31
|
Wu J, Xie X, Nie S, Buckanovich RJ, Lubman DM. Altered expression of sialylated glycoproteins in ovarian cancer sera using lectin-based ELISA assay and quantitative glycoproteomics analysis. J Proteome Res 2013; 12:3342-52. [PMID: 23731285 DOI: 10.1021/pr400169n] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we identify and confirm differentially expressed sialoglycoproteins in the serum of patients with ovarian cancer. On the basis of Sambucus nigra (SNA) lectin enrichment and on an isobaric chemical labeling quantitative strategy, clusterin (CLUS), leucine-rich alpha-2-glycoprotein (LRG1), hemopexin (HEMO), vitamin D-binding protein (VDB), and complement factor H (CFH) were found to be differentially expressed in the serum of patients with ovarian cancer compared to benign diseases. The abnormal sialylation levels of CLUS, CFH, and HEMO in serum of ovarian cancer patients were verified by a lectin-based ELISA assay. ELISA assays were further applied to measure total protein level changes of these glycoproteins. Protein levels of CLUS were found to be down-regulated in the serum of ovarian cancer patients, while protein levels of LRG1 were increased. The combination of CLUS and LRG1 (AUC = 0.837) showed improved performance for distinguishing stage III ovarian cancer from benign diseases compared to CA125 alone (AUC = 0.811). In differentiating early stage ovarian cancer from benign diseases or healthy controls, LRG1 showed comparable performance to CA125. An independent sample set was further used to confirm the ability of these candidate markers to detect patients with ovarian cancer. Our study provides a comprehensive strategy for the identification of candidate biomarkers that show the potential for diagnosis of ovarian cancer. Further studies using a large number of samples are necessary to validate the utility of this panel of proteins.
Collapse
Affiliation(s)
- Jing Wu
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
32
|
FU YANXIA, LAI YINGRONG, WANG QIONGJUAN, LIU XINGYANG, HE WEIPENG, ZHANG HAIHONG, FAN CHUNYANG, YANG GUOFEN. Overexpression of clusterin promotes angiogenesis via the vascular endothelial growth factor in primary ovarian cancer. Mol Med Rep 2013; 7:1726-32. [DOI: 10.3892/mmr.2013.1436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 04/08/2013] [Indexed: 11/05/2022] Open
|
33
|
Hüttenhain R, Surinova S, Ossola R, Sun Z, Campbell D, Cerciello F, Schiess R, Bausch-Fluck D, Rosenberger G, Chen J, Rinner O, Kusebauch U, Hajdúch M, Moritz RL, Wollscheid B, Aebersold R. N-glycoprotein SRMAtlas: a resource of mass spectrometric assays for N-glycosites enabling consistent and multiplexed protein quantification for clinical applications. Mol Cell Proteomics 2013; 12:1005-16. [PMID: 23408683 DOI: 10.1074/mcp.o112.026617] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein biomarkers have the potential to transform medicine as they are clinically used to diagnose diseases, stratify patients, and follow disease states. Even though a large number of potential biomarkers have been proposed over the past few years, almost none of them have been implemented so far in the clinic. One of the reasons for this limited success is the lack of technologies to validate proposed biomarker candidates in larger patient cohorts. This limitation could be alleviated by the use of antibody-independent validation methods such as selected reaction monitoring (SRM). Similar to measurements based on affinity reagents, SRM-based targeted mass spectrometry also requires the generation of definitive assays for each targeted analyte. Here, we present a library of SRM assays for 5568 N-glycosites enabling the multiplexed evaluation of clinically relevant N-glycoproteins as biomarker candidates. We demonstrate that this resource can be utilized to select SRM assay sets for cancer-associated N-glycoproteins for their subsequent multiplexed and consistent quantification in 120 human plasma samples. We show that N-glycoproteins spanning 5 orders of magnitude in abundance can be quantified and that previously reported abundance differences in various cancer types can be recapitulated. Together, the established N-glycoprotein SRMAtlas resource facilitates parallel, efficient, consistent, and sensitive evaluation of proposed biomarker candidates in large clinical sample cohorts.
Collapse
Affiliation(s)
- Ruth Hüttenhain
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kapoor S. Clusterin inhibition to enhance tumor chemosensitivity in systemic tumors. Cancer Chemother Pharmacol 2013; 71:1101. [PMID: 23385781 DOI: 10.1007/s00280-013-2072-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/31/2012] [Indexed: 10/27/2022]
|
35
|
Xiu P, Dong X, Dong X, Xu Z, Zhu H, Liu F, Wei Z, Zhai B, Kanwar JR, Jiang H, Li J, Sun X. Secretory clusterin contributes to oxaliplatin resistance by activating Akt pathway in hepatocellular carcinoma. Cancer Sci 2013; 104:375-82. [PMID: 23279642 DOI: 10.1111/cas.12088] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/11/2012] [Accepted: 12/15/2012] [Indexed: 12/30/2022] Open
Abstract
Secretory clusterin (sCLU) is expressed in numerous cancers and is associated with the resistance to chemotherapy. However, the role of sCLU in the resistance of hepatocellular carcinoma (HCC) to oxaliplatin (OXA), a recently used third-generation platinum agent, remains unclear. The stable transfectants that are depleted of or overexpress sCLU and OXA-resistant cells were generated using human HCC cells. Overexpression of sCLU abrogated OXA-induced inhibition of cell growth and cell apoptosis, but depletion of sCLU synergized with OXA to inhibit cell growth and enhance cell apoptosis, by regulating proteins involved in mitochondrial apoptosis pathways, such as Bcl-2, Bax, Bcl-xL and caspase-9, and affecting phosphorylation of Akt and GSK-3β. Overexpression of sCLU in either OXA-resistant cells or stable transfectants that overexpress sCLU significantly increased phosphorylated Akt. However, specific inhibition of Akt enhanced sensitivity of sCLU-overexpressing cells to OXA, but had no effect on sCLU expression, suggesting that the regulatory effects between sCLU and pAkt may be in a one-way manner in HCC cells. The expression levels of sCLU affected the therapeutic efficacy of OXA to treat HCC tumors established in immunodeficiency mice. The results have demonstrated that sCLU contributes to OXA resistance by activating Akt pathway, indicating that sCLU may be a novel molecular target for overcoming OXA resistance in HCC.
Collapse
Affiliation(s)
- Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Charnay Y, Imhof A, Vallet PG, Kovari E, Bouras C, Giannakopoulos P. Clusterin in neurological disorders: Molecular perspectives and clinical relevance. Brain Res Bull 2012; 88:434-43. [DOI: 10.1016/j.brainresbull.2012.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
|
37
|
Chu SH, Feng DF, Ma YB, Li ZQ. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo. Int J Nanomedicine 2012; 7:3659-66. [PMID: 22888225 PMCID: PMC3414202 DOI: 10.2147/ijn.s33584] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hydroxyapatite nanoparticles (nano-HAPs) have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU).
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | | | |
Collapse
|