1
|
Turetta C, Mazzeo R, Capalbo G, Miano S, Fruscio R, Di Donato V, Falcone F, Mangili G, Pignata S, Palaia I. Management of primary and recurrent Bartholin's gland carcinoma: A systematic review on behalf of MITO Rare Cancer Group. TUMORI JOURNAL 2024; 110:96-108. [PMID: 37953636 DOI: 10.1177/03008916231208308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Bartholin gland carcinoma is an extremely rare disease. Information regarding treatment is scarce and there is no strict consensus on best practice. All studies reporting cases of Bartholin's gland cancer were screened and evaluated for inclusion. Baseline characteristics of studies were extracted. A total number of 290 manuscripts collected were available for the review process. Studies included in a previous systematic review were not duplicated. In total, details of 367 patients were collected, as follows: histological features, clinical presentation, treatment, recurrent rate, treatment of recurrence and outcome. About 35% of Bartholin gland carcinoma were squamous cell carcinoma. Almost 50% of patients presented with advanced stage. The therapeutic approach was mainly surgery, and in 61% of those women lymph node assessment was performed. Recurrence occurred in 21% of cases. Bartholin gland cancer remains a challenge for gynecologic oncologists. Guidelines, centralization to referral centers and standardized therapy are needed.
Collapse
Affiliation(s)
- Camilla Turetta
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Mazzeo
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giuseppe Capalbo
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Salvatora Miano
- Medical Oncology Unit, University Hospital of Siena, Siena, Italy
| | - Robert Fruscio
- Gynecological Unit, Department of Medicine and Surgery, University of Milan-Bicocca, Fondazione IRCCS San Gerardo, Monza
| | - Violante Di Donato
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Falcone
- Department of Gynecologic Oncology, Istituto Nazionale Tumori, IRCSS, "Fondazione G. Pascale", Naples, Italy
| | - Giorgia Mangili
- Department of Obstetrics and Gynecology, San Raffaele Scientific Institute, Milan, Italy
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Innocenza Palaia
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Agarwal M, Kumar M, Pathak R, Bala K, Kumar A. Exploring TLR signaling pathways as promising targets in cervical cancer: The road less traveled. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:227-261. [PMID: 38663961 DOI: 10.1016/bs.ircmb.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cervical cancer is the leading cause of cancer-related deaths for women globally. Despite notable advancements in prevention and treatment, the identification of novel therapeutic targets remains crucial for cervical cancer. Toll-like receptors (TLRs) play an essential role in innate immunity as pattern-recognition receptors. There are several types of pathogen-associated molecular patterns (PAMPs), including those present in cervical cancer cells, which have the ability to activate toll-like receptors (TLRs). Recent studies have revealed dysregulated toll-like receptor (TLR) signaling pathways in cervical cancer, leading to the production of inflammatory cytokines and chemokines that can facilitate tumor growth and metastasis. Consequently, TLRs hold significant promise as potential targets for innovative therapeutic agents against cervical cancer. This book chapter explores the role of TLR signaling pathways in cervical cancer, highlighting their potential for targeted therapy while addressing challenges such as tumor heterogeneity and off-target effects. Despite these obstacles, targeting TLR signaling pathways presents a promising approach for the development of novel and effective treatments for cervical cancer.
Collapse
Affiliation(s)
- Mohini Agarwal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manish Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Kumud Bala
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Bafandeh S, Khodadadi E, Ganbarov K, Asgharzadeh M, Köse Ş, Samadi Kafil H. Natural Products as a Potential Source of Promising Therapeutics for COVID-19 and Viral Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5525165. [PMID: 37096202 PMCID: PMC10122587 DOI: 10.1155/2023/5525165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 04/26/2023]
Abstract
Background A global pandemic has recently been observed due to the new coronavirus disease, caused by SARS-CoV-2. Since there are currently no antiviral medicines to combat the highly contagious and lethal COVID-19 infection, identifying natural sources that can either be viricidal or boost the immune system and aid in the fight against the disease can be an essential therapeutic support. Methods This review was conducted based on published papers related to the herbal therapy of COVID-19 by search on databases including PubMed and Scopus with herbal, COVID-19, SARS-CoV-2, and therapy keywords. Results To combat this condition, people may benefit from the therapeutic properties of medicinal plants, such as increasing their immune system or providing an antiviral impact. As a result, SARS-CoV-2 infection death rates can be reduced. Various traditional medicinal plants and their bioactive components, such as COVID-19, are summarized in this article to assist in gathering and debating techniques for combating microbial diseases in general and boosting our immune system in particular. Conclusion The immune system benefits from natural products and many of these play a role in activating antibody creation, maturation of immune cells, and stimulation of innate and adaptive immune responses. The lack of particular antivirals for SARS-CoV-2 means that apitherapy might be a viable option for reducing the hazards associated with COVID-19 in the absence of specific antivirals.
Collapse
Affiliation(s)
- Soheila Bafandeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Şükran Köse
- Department of Infectious Diseases and Clinical Microbiology, Dokuz Eylül Üniversitesi, Izmir, Turkey
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Li X, Ma S, Gao T, Mai Y, Song Z, Yang J. The main battlefield of mRNA vaccine – Tumor immune microenvironment. Int Immunopharmacol 2022; 113:109367. [DOI: 10.1016/j.intimp.2022.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
5
|
Gennigens C, Jerusalem G, Lapaille L, De Cuypere M, Streel S, Kridelka F, Ray-Coquard I. Recurrent or primary metastatic cervical cancer: current and future treatments. ESMO Open 2022; 7:100579. [PMID: 36108558 PMCID: PMC9588874 DOI: 10.1016/j.esmoop.2022.100579] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 11/12/2022] Open
Abstract
Despite screening programs for early detection and the approval of human papillomavirus vaccines, around 6% of women with cervical cancer (CC) are discovered with primary metastatic disease. Moreover, one-third of the patients receiving chemoradiation followed by brachytherapy for locally advanced disease will have a recurrence. At the end, the vast majority of recurrent or metastatic CC not amenable to locoregional treatments are considered incurable disease with very poor prognosis. Historically, cisplatin monotherapy, then a combination of cisplatin and paclitaxel were considered the standard of care. Ten years ago, the addition of bevacizumab to chemotherapy demonstrated favorable data in terms of response rate and overall survival. Even with this improvement, novel therapies are needed for the treatment of recurrent CC in first as well as later lines. In the last decades, a better understanding of the interactions between human papillomavirus infection and the host immune system response has focused interest on the use of immunotherapeutic drugs in CC patients. Indeed, immune checkpoint inhibitors (pembrolizumab, cemiplimab, and others) have recently emerged as novel therapeutic pillars that could provide durable responses with impact on overall survival in patients in the primary (in addition to chemotherapy) or recurrent (monotherapy) settings. Tisotumab vedotin, an antibody-drug conjugate targeting the tissue factor, is another emerging drug. Several trials in monotherapy or in combination with immunotherapy, chemotherapy, or bevacizumab showed very promising results. There is a high need for more potent biomarkers to better accurately determine which patients would receive the greatest benefit from all these aforementioned drugs, but also to identify patients with specific molecular characteristics that could benefit from other targeted therapies. The Cancer Genome Atlas Research Network identified several genes significantly mutated, potentially targetable. These molecular data have highlighted the molecular heterogeneity of CC.
Collapse
Affiliation(s)
- C Gennigens
- Department of Medical Oncology, CHU Liège, Liège, Belgium.
| | - G Jerusalem
- Department of Medical Oncology, CHU Liège, Liège, Belgium; Faculty of Medicine, University of Liège, Liège, Belgium
| | - L Lapaille
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | - M De Cuypere
- Department of Obstetrics and Gynaecology, CHU Liège, Liège, Belgium
| | - S Streel
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | - F Kridelka
- Faculty of Medicine, University of Liège, Liège, Belgium; Department of Obstetrics and Gynaecology, CHU Liège, Liège, Belgium
| | - I Ray-Coquard
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
6
|
Wei E, Reisinger A, Li J, French LE, Clanner-Engelshofen B, Reinholz M. Integration of scRNA-Seq and TCGA RNA-Seq to Analyze the Heterogeneity of HPV+ and HPV- Cervical Cancer Immune Cells and Establish Molecular Risk Models. Front Oncol 2022; 12:860900. [PMID: 35719936 PMCID: PMC9198569 DOI: 10.3389/fonc.2022.860900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Background Numerous studies support that Human papillomavirus (HPV) can cause cervical cancer. However, few studies have surveyed the heterogeneity of HPV infected or uninfected (HPV+ and HPV-) cervical cancer (CESC) patients. Integration of scRNA-seq and TCGA data to analyze the heterogeneity of HPV+ and HPV- cervical cancer patients on a single-cell level could improve understanding of the cellular mechanisms during HPV-induced cervical cancer. Methods CESC scRNA-seq data obtained from the Gene Expression Omnibus (GEO) database and the Seurat, Monocle3 package were used for scRNA-seq data analysis. The ESTIMATE package was used for single-sample gene immune score, CIBERSORT package was used to identify immune scores of cells, and the “WGCNA” package for the weighted correlation network analysis. Univariate Cox and LASSO regression were performed to establish survival and relapse signatures. KEGG and GO analyses were performed for the signature gene. Gene Expression Profiling Interactive Analysis was used for Pan-cancer analysis. Results In the HPV+ CESC group, CD8+ T cells and B cells were down-regulated, whereas T reg cells, CD4+ T cells, and epithelial cells were up-regulated according to scRNA-seq data. Survival analysis of TCGA-CESC revealed that increased expression of naive B cells or CD8+ T cells favors the survival probability of CESC patients. WGCNA, univariate Cox, and LASSO Cox regression established a 9-genes survival signature and a 7-gene relapse model. Pan-cancer analysis identified IKZF3, FOXP3, and JAK3 had a similar distribution and effects in HPV-associated HNSC. Conclusion Analysis of scRNA-seq and bulk RNA-seq of HPV+ and HPV- CESC samples revealed heterogeneity from transcriptional state to immune infiltration. Survival and relapse models were adjusted according to the heterogeneity of HPV+ and HPV- CESC immune cells to assess the prognostic risk accurately. Hub genes represent similar protection in HPV- associated HNSC while showing irrelevant to other potential HPV-related cancers.
Collapse
Affiliation(s)
- Erdong Wei
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany
| | - Amin Reisinger
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany
| | - Jiahua Li
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery , Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Benjamin Clanner-Engelshofen
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany
| | - Markus Reinholz
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany
| |
Collapse
|
7
|
Massa S, Pagliarello R, Paolini F, Venuti A. Natural Bioactives: Back to the Future in the Fight against Human Papillomavirus? A Narrative Review. J Clin Med 2022; 11:jcm11051465. [PMID: 35268556 PMCID: PMC8911515 DOI: 10.3390/jcm11051465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) still represents an important threat to health worldwide. Better therapy in terms of further improvement of outcomes and attenuation of related side-effects is desirable. The pharmaceutical industry has always targeted natural substances-phytochemicals in particular-to identify lead compounds to be clinically validated and industrially produced as antiviral and anticancer drugs. In the field of HPV, numerous naturally occurring bioactives and dietary phytochemicals have been investigated as potentially valuable in vitro and in vivo. Interference with several pathways and improvement of the efficacy of chemotherapeutic agents have been demonstrated. Notably, some clinical trials have been conducted. Despite being endowed with general safety, these natural substances are in urgent need of further assessment to foresee their clinical exploitation. This review summarizes the basic research efforts conducted so far in the study of anti-HPV properties of bio-actives with insights into their mechanisms of action and highlights the variety of their natural origin in order to provide comprehensive mapping throughout the different sources. The clinical studies available are reported, as well, to highlight the need of uniformity and consistency of studies in the future to select those natural compounds that may be suited to clinical application.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Correspondence:
| | - Riccardo Pagliarello
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Paolini
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Aldo Venuti
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
8
|
Luvero D, Lopez S, Bogani G, Raspagliesi F, Angioli R. From the Infection to the Immunotherapy in Cervical Cancer: Can We Stop the Natural Course of the Disease? Vaccines (Basel) 2020; 8:vaccines8040597. [PMID: 33050484 PMCID: PMC7712259 DOI: 10.3390/vaccines8040597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022] Open
Abstract
Cervical cancer (CC) is the second leading cause of cancer death in women aged 20–39 years. Persistent infection with oncogenic types of human papillomavirus (HPV) represents the most important risk factor for the development of cervical cancer. Three HPVs vaccines are currently on the global market: bivalent, quadrivalent, and nonavalent. The nonavalent vaccine provides protection against almost 90% of HPV-related CC. Despite availability of primary and secondary prevention measures, CC persists as one of the most common cancers among women around the world. Although CC is a largely preventable disease, management of persistent or recurrent CC no longer amenable to control with surgery or radiation therapy has not improved significantly with the progress of modern chemotherapy and disseminated carcinoma of the cervix remains a discouraging clinical entity with a 1-year survival rate between 10% and 15%. Over the last few years, there has been increasing interest in immunotherapy as a strategy to fight tumors. This article focuses on recent discoveries about the HPV vaccine and immunotherapies in the prevention and treatment of CC, highlighting the future view.
Collapse
Affiliation(s)
- Daniela Luvero
- Department of Gynecology, University Campus Biomedico, 00128 Rome, Italy;
- Correspondence: ; Tel.: +39-333-3222183
| | - Salvatore Lopez
- Department of Gynecologic Oncology, IRCCS National Cancer Institute, 20133 Milan, Italy; (S.L.); (G.B.); (F.R.)
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Giorgio Bogani
- Department of Gynecologic Oncology, IRCCS National Cancer Institute, 20133 Milan, Italy; (S.L.); (G.B.); (F.R.)
| | - Francesco Raspagliesi
- Department of Gynecologic Oncology, IRCCS National Cancer Institute, 20133 Milan, Italy; (S.L.); (G.B.); (F.R.)
| | - Roberto Angioli
- Department of Gynecology, University Campus Biomedico, 00128 Rome, Italy;
| |
Collapse
|
9
|
Zhang C, Huang C, Zheng X, Pan D. Prevalence of human papillomavirus among Wenzhou women diagnosed with cervical intraepithelial neoplasia and cervical cancer. Infect Agent Cancer 2018; 13:37. [PMID: 30505342 PMCID: PMC6260560 DOI: 10.1186/s13027-018-0211-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/15/2018] [Indexed: 01/18/2023] Open
Abstract
Background Human papillomavirus (HPV) is associated with an increased risk of cervical cancer. Using a vaccine to prevent HPV infections could be a cost-effective strategy to decrease the incidence of cervical cancer. Learning about the characteristics of CIN patients with HPV infection in Wenzhou is a key step in guiding the use of HPV vaccines and screening for cervical cancer. Methods We undertook a retrospective analysis including 2612 women who were treated in the Department of Gynecology and Obstetrics from Jan 2016 to Nov 2017. All of the patients were examined by HPV testing and histology. Results The prevalence of HR-HPV among women with cervical intraepithelial lesions aged 65-69 years (38.8%) was significantly higher than that of the other age groups. The percentage of patients diagnosed with HPV-positive HSIL progressively increased with age to a maximum of 18.0% in the group of 40 to 44 years of age. HPV 16, 52, and 58 were the three most dominant genotypes among these women, and single infections (950, 73.3%) were more common than multiple infections (346, 26.7%). Compared to cervicitis, the odds ratios (ORs) for LSIL associated with HPV 33, 52, 16 and HPV 58 infection were 5.98, 3.91, 3.65, 3.65, and 3.188, respectively; for HSIL associated with HPV 16, 33, 58 and HPV 31 were 9.30, 7.68, 5.97, and 4.21, respectively. In LSIL, the frequencies of HR-HPV 52,16,58,18 were 19.3,18.2,10.9, and 7.8%, respectively. Conclusion Our study provides important data about the HPV genotype distribution and its correlation with cervical intraepithelial lesions in the Wenzhou population.
Collapse
Affiliation(s)
- Chanqiong Zhang
- Department of Pathology, Wenzhou People's Hospital, The third Clinical Institute Affiliated to Wenzhou Medical University, 299 Guan Rd. Ouhai district, Wenzhou, Zhejiang, China
| | - Chongan Huang
- 2Department of Spine Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang Zheng
- Department of Pathology, Wenzhou People's Hospital, The third Clinical Institute Affiliated to Wenzhou Medical University, 299 Guan Rd. Ouhai district, Wenzhou, Zhejiang, China
| | - Dan Pan
- Department of Pathology, Wenzhou People's Hospital, The third Clinical Institute Affiliated to Wenzhou Medical University, 299 Guan Rd. Ouhai district, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z. A comprehensive in silico analysis for identification of therapeutic epitopes in HPV16, 18, 31 and 45 oncoproteins. PLoS One 2018; 13:e0205933. [PMID: 30356257 PMCID: PMC6200245 DOI: 10.1371/journal.pone.0205933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/11/2018] [Indexed: 11/25/2022] Open
Abstract
Human papillomaviruses (HPVs) are a group of circular double-stranded DNA viruses, showing severe tropism to mucosal tissues. A subset of HPVs, especially HPV16 and 18, are the primary etiological cause for several epithelial cell malignancies, causing about 5.2% of all cancers worldwide. Due to the high prevalence and mortality, HPV-associated cancers have remained as a significant health problem in human society, making an urgent need to develop an effective therapeutic vaccine against them. Achieving this goal is primarily dependent on the identification of efficient tumor-associated epitopes, inducing a robust cell-mediated immune response. Previous information has shown that E5, E6, and E7 early proteins are responsible for the induction and maintenance of HPV-associated cancers. Therefore, the prediction of major histocompatibility complex (MHC) class I T cell epitopes of HPV16, 18, 31 and 45 oncoproteins was targeted in this study. For this purpose, a two-step plan was designed to identify the most probable CD8+ T cell epitopes. In the first step, MHC-I and II binding, MHC-I processing, MHC-I population coverage and MHC-I immunogenicity prediction analyses, and in the second step, MHC-I and II protein-peptide docking, epitope conservation, and cross-reactivity with host antigens’ analyses were carried out successively by different tools. Finally, we introduced five probable CD8+ T cell epitopes for each oncoprotein of the HPV genotypes (60 epitopes in total), which obtained better scores by an integrated approach. These predicted epitopes are valuable candidates for in vitro or in vivo therapeutic vaccine studies against the HPV-associated cancers. Additionally, this two-step plan that each step includes several analyses to find appropriate epitopes provides a rational basis for DNA- or peptide-based vaccine development.
Collapse
Affiliation(s)
- Heidar Ali Panahi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: ,
| | - Gholamreza Javadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Barros MR, de Melo CML, Barros MLCMGR, de Cássia Pereira de Lima R, de Freitas AC, Venuti A. Activities of stromal and immune cells in HPV-related cancers. J Exp Clin Cancer Res 2018; 37:137. [PMID: 29976244 PMCID: PMC6034319 DOI: 10.1186/s13046-018-0802-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system is composed of immune as well as non-immune cells. As this system is a well-established component of human papillomavirus- (HPV)-related carcinogenesis, high risk human papillomavirus (hrHPV) prevents its routes and mechanisms in order to cause the persistence of infection. Among these mechanisms are those originated from stromal cells, which include the cancer-associated fibroblasts (CAFs), the myeloid-derived suppressor cells (MDSCs) and the host infected cells themselves, i.e. the keratinocytes. These types of cells play central role since they modulate immune cells activities to create a prosperous milieu for cancer development, and the knowledge how such interactions occur are essential for prognostic assessment and development of preventive and therapeutic approaches. Nevertheless, the precise mechanisms are not completely understood, and this lack of knowledge precluded the development of entirely efficient immunotherapeutic strategies for HPV-associated tumors. As a result, an intense work for attaining how host immune response works, and developing of effective therapies has been applied in the last decade. Based on this, this review aims to discuss the major mechanisms of immune and non-immune cells modulated by hrHPV and the potential and existing immunotherapies involving such mechanisms in HPV-related cancers. It is noticed that the combination of immunotherapies has been demonstrated to be essential for obtaining better results, especially because the possibility of increasing the modulating capacity of the HPV-tumor microenvironment has been shown to be central in strengthening the host immune system.
Collapse
Affiliation(s)
- Marconi Rego Barros
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center of Biological Sciences, Federal University of Pernambuco, Cidade Universitária, Av. Prof Moraes Rego, 1235, Recife, PE CEP-50670-901 Brazil
| | - Cristiane Moutinho Lagos de Melo
- Laboratory of Immunological and Antitumor Analysis (LAIA), Department of Antibiotics, Center of Biological Sciences, Federal University of Pernambuco, Cidade Universitária, Av. Prof Artur de Sá, s/n, Recife, PE CEP-50740-525 Brazil
| | | | - Rita de Cássia Pereira de Lima
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center of Biological Sciences, Federal University of Pernambuco, Cidade Universitária, Av. Prof Moraes Rego, 1235, Recife, PE CEP-50670-901 Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center of Biological Sciences, Federal University of Pernambuco, Cidade Universitária, Av. Prof Moraes Rego, 1235, Recife, PE CEP-50670-901 Brazil
| | - Aldo Venuti
- HPV-Unit, Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
12
|
Viral Modulation of TLRs and Cytokines and the Related Immunotherapies for HPV-Associated Cancers. J Immunol Res 2018; 2018:2912671. [PMID: 29854832 PMCID: PMC5954921 DOI: 10.1155/2018/2912671] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
The modulation of the host innate immune system is a well-established carcinogenesis feature of several tumors, including human papillomavirus- (HPV-) related cancers. This virus is able to interrupt the initial events of the immune response, including the expression of Toll-like receptors (TLRs), cytokines, and inflammation. Both TLRs and cytokines play a central role in HPV recognition, cell maturation and differentiation as well as immune signalling. Therefore, the imbalance of this sensitive control of the immune response is a key factor for developing immunotherapies, which strengthen the host immune system to accomplish an efficient defence against HPV and HPV-infected cells. Based on this, the review is aimed at exposing the HPV immune evasion mechanisms involving TLRs and cytokines and at discussing existing and potential immunotherapeutic TLR- and cytokine-related tools.
Collapse
|
13
|
Cordeiro MN, De Lima RDCP, Paolini F, Melo ARDS, Campos APF, Venuti A, De Freitas AC. Current research into novel therapeutic vaccines against cervical cancer. Expert Rev Anticancer Ther 2018; 18:365-376. [DOI: 10.1080/14737140.2018.1445527] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Marcelo Nazário Cordeiro
- Laboratório de Estudos Moleculares e Terapia Experimental – LEMTE, Brazil Universidade Federal de Pernambuco – UFPE, Brazil
| | - Rita de Cássia Pereira De Lima
- Laboratório de Estudos Moleculares e Terapia Experimental – LEMTE, Brazil Universidade Federal de Pernambuco – UFPE, Brazil
| | - Francesca Paolini
- HPV-Unit UOSD Immunology and Tumor Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alanne Rayssa da Silva Melo
- Laboratório de Estudos Moleculares e Terapia Experimental – LEMTE, Brazil Universidade Federal de Pernambuco – UFPE, Brazil
| | - Ana Paula Ferreira Campos
- Laboratório de Estudos Moleculares e Terapia Experimental – LEMTE, Brazil Universidade Federal de Pernambuco – UFPE, Brazil
| | - Aldo Venuti
- HPV-Unit UOSD Immunology and Tumor Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Carlos De Freitas
- Laboratório de Estudos Moleculares e Terapia Experimental – LEMTE, Brazil Universidade Federal de Pernambuco – UFPE, Brazil
| |
Collapse
|
14
|
A novel intracellular antibody against the E6 oncoprotein impairs growth of human papillomavirus 16-positive tumor cells in mouse models. Oncotarget 2017; 7:15539-53. [PMID: 26788990 PMCID: PMC4941259 DOI: 10.18632/oncotarget.6925] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Single-chain variable fragments (scFvs) expressed as “intracellular antibodies” (intrabodies) can target intracellular antigens to hamper their function efficaciously and specifically. Here we use an intrabody targeting the E6 oncoprotein of Human papillomavirus 16 (HPV16) to address the issue of a non-invasive therapy for HPV cancer patients. A scFv against the HPV16 E6 was selected by Intracellular Antibody Capture Technology and expressed as I7nuc in the nucleus of HPV16-positive SiHa, HPV-negative C33A and 293T cells. Colocalization of I7nuc and recombinant E6 was observed in different cell compartments, obtaining evidence of E6 delocalization ascribable to I7nuc. In SiHa cells, I7nuc expressed by pLNCX retroviral vector was able to partially inhibit degradation of the main E6 target p53, and induced p53 accumulation in nucleus. When analyzing in vitro activity on cell proliferation and survival, I7nuc was able to decrease growth inducing late apoptosis and necrosis of SiHa cells. Finally, I7nuc antitumor activity was demonstrated in two pre-clinical models of HPV tumors. C57BL/6 mice were injected subcutaneously with HPV16-positive TC-1 or C3 tumor cells, infected with pLNCX retroviral vector expressing or non-expressing I7nuc. All the mice injected with I7nuc-expressing cells showed a clear delay in tumor onset; 60% and 40% of mice receiving TC-1 and C3 cells, respectively, remained tumor-free for 17 weeks of follow-up, whereas 100% of the controls were tumor-bearing 20 days post-inoculum. Our data support the therapeutic potential of E6-targeted I7nuc against HPV tumors.
Collapse
|
15
|
de Freitas AC, de Oliveira THA, Barros MR, Venuti A. hrHPV E5 oncoprotein: immune evasion and related immunotherapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:71. [PMID: 28545552 PMCID: PMC5445378 DOI: 10.1186/s13046-017-0541-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/12/2017] [Indexed: 12/12/2022]
Abstract
The immune response is a key factor in the fight against HPV infection and related cancers, and thus, HPV is able to promote immune evasion through the expression of oncogenes. In particular, the E5 oncogene is responsible for modulation of several immune mechanisms, including antigen presentation and inflammatory pathways. Moreover, E5 was suggested as a promising therapeutic target, since there is still no effective medical therapy for the treatment of HPV-related pre-neoplasia and cancer. Indeed, several studies have shown good prospective for E5 immunotherapy, suggesting that it could be applied for the treatment of pre-cancerous lesions. Thus, insofar as the majority of cervical, oropharyngeal and anal cancers are caused by high-risk HPV (hrHPV), mainly by HPV16, the aim of this review is to discuss the immune pathways interfered by E5 oncoprotein of hrHPV highlighting the various aspects of the potential immunotherapeutic approaches.
Collapse
Affiliation(s)
- Antonio Carlos de Freitas
- Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco, Av. Prof Moraes Rego, 1235, Cidade Universitária, Recife, CEP 50670-901, Brazil.
| | - Talita Helena Araújo de Oliveira
- Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco, Av. Prof Moraes Rego, 1235, Cidade Universitária, Recife, CEP 50670-901, Brazil
| | - Marconi Rego Barros
- Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco, Av. Prof Moraes Rego, 1235, Cidade Universitária, Recife, CEP 50670-901, Brazil
| | - Aldo Venuti
- Department of Research, HPV-Unit, UOSD Tumor Immunology and Immunotherapy Unit, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
16
|
Antiangiogenics and immunotherapies in cervical cancer: an update and future's view. Med Oncol 2017; 34:115. [PMID: 28477178 DOI: 10.1007/s12032-017-0972-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
Abstract
Despite availability of primary and secondary prevention measures, cervical cancer (CC) persists as one of the most common cancers among women around the world, and more than 70% of cases are diagnosed at advanced stages. Although significant progress has been made in the treatment of CC, around 15-61% of patients develop a recurrence in lymph nodes or distant sites within the first 2 years of completing treatment and the prognosis for these patients remains poor. During the last decades, in an attempt to improve the outcome in these patients, novel agents as combination therapy that target known dysfunctional molecular pathways have been developed with the most attention to the inhibitors of the angiogenesis process. One therapeutic target is the vascular endothelial growth factor, which has been shown to play a key role in tumor angiogenesis, not only for growth of new tissue but also in tumor proliferation. Bevacizumab is recognized as a potent antiangiogenic agent in ovarian cancer but has also demonstrated encouraging antitumor activity in recurrent CC. Moreover, other antiangiogenic agents were recently under study including: sunitinib, sorafenib, pazopanib, cediranib and nintedanib with interesting preliminary results. Moreover, over the last few years there has been increasing interest in cellular immunotherapy as a strategy to harness the immune system to fight tumors. This article focuses on recent discoveries about antiangiogenic agents and immunotherapies in the treatment of CC highlighting on future's view.
Collapse
|
17
|
Zhang SA, Niyazi HEXD, Hong W, Tuluwengjiang GLX, Zhang L, Zhang Y, Su WP, Bao YX. Effect of EBI3 on radiation-induced immunosuppression of cervical cancer HeLa cells by regulating Treg cells through PD-1/PD-L1 pathway. Tumour Biol 2017; 39:1010428317692237. [PMID: 28351328 DOI: 10.1177/1010428317692237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study aimed to investigate the effect of EBI3 on radiation-induced immunosuppression of cervical cancer HeLa cells by regulating Treg cells through PD-1/PD-L1 signaling pathway. A total of 43 adult female Wistar rats were selected and injected with HeLa cells in the caudal vein to construct a rat model of cervical cancer. All model rats were randomly divided into the radiotherapy group ( n = 31) and the control group ( n = 12). The immunophenotype of Treg cells was detected by the flow cytometry. The protein expressions of EBI3, PD-1, and PD-L1 in cervical cancer tissues were tested by the streptavidin-peroxidase method. HeLa cells in the logarithmic growth phase were divided into four groups: the blank, the negative control group, the EBI3 mimics group, and the EBI3 inhibitors group. Western blotting was used to detect PD-1 and PD-L1 protein expressions. MTT assay was performed to measure the proliferation of Treg cells. Flow cytometry was used to detect cell cycle and apoptosis, and CD4+/CD8+ T cell ratio in each group. Compared with before and 1 week after radiotherapy, the percentages of CD4+T cells and CD8+T cells were significantly decreased in the radiotherapy group at 1 month after radiotherapy. Furthermore, down-regulation of EBI3 and up-regulation of PD-1 and PD-L1 were observed in cervical cancer tissues at 1 month after radiotherapy. In comparison to the blank and negative control groups, increased expression of EBI3 and decreased expressions of PD-1 and PD-L1 were found in the EBI3 mimics group. However, the EBI3 inhibitors group had a lower expression of EBI3 and higher expressions of PD-1 and PD-L1 than those in the blank and negative control groups. The EBI3 mimics group showed an increase in the optical density value (0.43 ± 0.05), while a decrease in the optical density value (0.31 ± 0.02) was found in the EBI3 inhibitors group. Moreover, compared with the blank and negative control groups, the apoptosis rates of Treg/CD4+T/CD8+T cells were decreased in the EBI3 mimics group, but the EBI3 inhibitors group exhibited an increase in apoptosis rate. In conclusion, over-expression of EBI3 could reduce the apoptosis of Treg/CD4+T/CD8+T cells and prevent radiation-induced immunosuppression of cervical cancer HeLa cells by inhibiting the activation of PD-1/PD-L1 signaling pathway.
Collapse
Affiliation(s)
- Song-An Zhang
- 1 Cancer Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Hu-Er-Xi-Dan Niyazi
- 1 Cancer Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Wen Hong
- 2 Anus-Intestines Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | | | - Lei Zhang
- 1 Cancer Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Yang Zhang
- 1 Cancer Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Wei-Peng Su
- 1 Cancer Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Yong-Xing Bao
- 1 Cancer Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
18
|
Takeda Y, Azuma M, Matsumoto M, Seya T. Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8(+) T cells during vaccine immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:143. [PMID: 27619885 PMCID: PMC5020536 DOI: 10.1186/s13046-016-0416-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/01/2016] [Indexed: 01/07/2023]
Abstract
Background Dendritic cells (DCs) mount tumor-associated antigens (TAAs), and the double-stranded RNA adjuvant Poly(I:C) stimulates Toll-like receptor 3 (TLR3) signal in DC, which in turn induces type I interferon (IFN) and interleukin-12 (IL-12), then cross-primes cytotoxic T lymphocytes (CTLs). Proliferation of CTLs correlates with tumor regression. How these potent cells expand with high quality is crucial to the outcome of CTL therapy. However, good markers reflecting the efficacy of DC-target immunotherapy have not been addressed. Methods Using an EG7 (ovalbumin, OVA-positive) tumor-implant mouse model, we examined what is a good marker for active CTL induction in treatment with Poly(I:C)/OVA. Results Simultaneous administration of Poly(I:C) and antigen (Ag) OVA significantly increased a minor population of CD8+ T cells, that express CD11c in lymphoid and tumor sites. The numbers of the CD11c+ CD8+ T cells correlated with those of induced Ag-specific CD8+ T cells and tumor regression. The CD11c+ CD8+ T cell moiety was characterized by its high killing activity and IFN-γ-producing ability, which represent an active phenotype of the effector CTLs. Not only a TLR3-specific (TICAM-1-dependent) signal but also TLR2 (MyD88) signal in DC triggered the expansion of CD11c+ CD8+ T cells in tumor-bearing mice. Notably, human CD11c+ CD8+ T cells also proliferated in peripheral blood mononuclear cells (PBMC) stimulated with cytomegalovirus (CMV) Ag. Conclusions CD11c expression in CD8+ T cells reflects anti-tumor CTL activity and would be a marker for immunotherapeutic efficacy in mouse models and probably cancer patients as well. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0416-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yohei Takeda
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masahiro Azuma
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
19
|
Elevated Expression of Programmed Death-1 and Programmed Death Ligand-1 Negatively Regulates Immune Response against Cervical Cancer Cells. Mediators Inflamm 2016; 2016:6891482. [PMID: 27721577 PMCID: PMC5046046 DOI: 10.1155/2016/6891482] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/16/2016] [Accepted: 06/30/2016] [Indexed: 02/03/2023] Open
Abstract
The present study is to measure the expression of programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1), as well as its clinical significance in cervical cancer patients. Our results showed that different T cell subsets in patients with cervical cancer had high expression of PD-1, and DCs had high expression of PD-L1. High expression of PD-1 on Treg cells in cervical cancer patients facilitated the production of TGF-β and IL-10 but inhibited the production of IFN-γ. Cervical cancer elevated the expression of PD-1 and PD-L1 in mRNA level. PD-1 expression in peripheral blood of cervical cancer patients was related with tumor differentiation, lymph node metastasis, and invasiveness. PD-1/PD-L1 pathway inhibited lymphocyte proliferation but enhanced the secretion of IL-10 and TGF-β in vitro. In summary, our findings demonstrate that elevated levels of PD-1/PD-L1, TGF-β, and IL-10 in peripheral blood of cervical cancer patients may negatively regulate immune response against cervical cancer cells and contribute to the progression of cervical cancer. Therefore, PD-1/PD-L1 pathway may become an immunotherapy target in the future.
Collapse
|
20
|
Wang Y. Advances in the Study on the Relationship between Regulatory T cells and Human Papilloma Viral Infection. INFECTION INTERNATIONAL 2016. [DOI: 10.1515/ii-2017-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractRegulatory T cells (Treg cells) are a group of negative regulatory cells that include non-specific immune regulation CD4+T cells. Treg cells inhibit the function of other immune cells. CD4+CD25+FOXP3+is a Treg cell that is co-expressed by CD25and FOXP3. The expression of Treg cells is up-regulated in the focal microenvironment and peripheral blood of patients infected with human papilloma virus (HPV). Further studies on Treg cells indicate that their potential clinical applications in the treatment of HPV infection.
Collapse
|
21
|
Illiano E, Demurtas OC, Massa S, Di Bonito P, Consalvi V, Chiaraluce R, Zanotto C, De Giuli Morghen C, Radaelli A, Venuti A, Franconi R. Production of functional, stable, unmutated recombinant human papillomavirus E6 oncoprotein: implications for HPV-tumor diagnosis and therapy. J Transl Med 2016; 14:224. [PMID: 27465494 PMCID: PMC4963926 DOI: 10.1186/s12967-016-0978-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-risk human papillomaviruses (HR-HPVs) types 16 and 18 are the main etiological agents of cervical cancer, with more than 550,000 new cases each year worldwide. HPVs are also associated with other ano-genital and head-and-neck tumors. The HR-HPV E6 and E7 oncoproteins are responsible for onset and maintenance of the cell transformation state, and they represent appropriate targets for development of diagnostic and therapeutic tools. METHODS The unmutated E6 gene from HPV16 and HPV18 and from low-risk HPV11 was cloned in a prokaryotic expression vector for expression of the Histidine-tagged E6 protein (His6-E6), according to a novel procedure. The structural properties were determined using circular dichroism and fluorescence spectroscopy. His6-E6 oncoprotein immunogenicity was assessed in a mouse model, and its functionality was determined using in vitro GST pull-down and protein degradation assays. RESULTS The His6-tagged E6 proteins from HPV16, HPV18, and HPV11 E6 genes, without any further modification in the amino-acid sequence, were produced in bacteria as soluble and stable molecules. Structural analyses of HPV16 His6-E6 suggests that it maintains correct folding and conformational properties. C57BL/6 mice immunized with HPV16 His6-E6 developed significant humoral immune responses. The E6 proteins from HPV16, HPV18, and HPV11 were purified according to a new procedure, and investigated for protein-protein interactions. HR-HPV His6-E6 bound p53, the PDZ1 motif from MAGI-1 proteins, the human discs large tumor suppressor, and the human ubiquitin ligase E6-associated protein, thus suggesting that it is biologically active. The purified HR-HPV E6 proteins also targeted the MAGI-3 and p53 proteins for degradation. CONCLUSIONS This new procedure generates a stable, unmutated HPV16 E6 protein, which maintains the E6 properties in in vitro binding assays. This will be useful for basic studies, and for development of diagnostic kits and immunotherapies in preclinical mouse models of HPV-related tumorigenesis.
Collapse
Affiliation(s)
- Elena Illiano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.,Laboratory of Biomedical Technologies (SSPT-TECS-TEB), Department for Sustainability, Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and the Environment (ENEA), 'Casaccia' Research Centre, Via Anguillarese 301, 00123, Rome, Italy
| | - Olivia Costantina Demurtas
- Laboratory of Biotechnology (SSPT-BIOAG-BIOTEC), Department for Sustainability, Division Biotechnology and Agroindustry, Italian National Agency for New Technologies, Energy and the Environment (ENEA), 'Casaccia' Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Silvia Massa
- Laboratory of Biotechnology (SSPT-BIOAG-BIOTEC), Department for Sustainability, Division Biotechnology and Agroindustry, Italian National Agency for New Technologies, Energy and the Environment (ENEA), 'Casaccia' Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Paola Di Bonito
- Department of Infectious Diseases, Istituto Superiore Sanità, Viale Regina Elena 299, 00185, Rome, Italy
| | - Valerio Consalvi
- 'A. Rossi Fanelli' Department of Biochemical Sciences, University of Rome 'La Sapienza', P.le Aldo Moro 5, 00185, Rome, Italy
| | - Roberta Chiaraluce
- 'A. Rossi Fanelli' Department of Biochemical Sciences, University of Rome 'La Sapienza', P.le Aldo Moro 5, 00185, Rome, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy.,Catholic University 'Our Lady of Good Counsel', Tirana, Albania
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.,Cellular and Molecular Pharmacology Section, CNR Institute of Neurosciences, University of Milan, 20129, Milan, Italy
| | - Aldo Venuti
- HPV-UNIT, Ridait Department, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| | - Rosella Franconi
- Laboratory of Biomedical Technologies (SSPT-TECS-TEB), Department for Sustainability, Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and the Environment (ENEA), 'Casaccia' Research Centre, Via Anguillarese 301, 00123, Rome, Italy.
| |
Collapse
|
22
|
Vici P, Pizzuti L, Mariani L, Zampa G, Santini D, Di Lauro L, Gamucci T, Natoli C, Marchetti P, Barba M, Maugeri-Saccà M, Sergi D, Tomao F, Vizza E, Di Filippo S, Paolini F, Curzio G, Corrado G, Michelotti A, Sanguineti G, Giordano A, De Maria R, Venuti A. Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: hope or reality from clinical studies. Expert Rev Vaccines 2016; 15:1327-36. [PMID: 27063030 PMCID: PMC5152541 DOI: 10.1080/14760584.2016.1176533] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Human papillomavirus (HPV) is widely known as a cause of cervical cancer (CC) and cervical intraepithelial neoplasia (CIN). HPVs related to cancer express two main oncogenes, i.e. E6 and E7, considered as tumorigenic genes; their integration into the host genome results in the abnormal regulation of cell cycle control. Due to their peculiarities, these oncogenes represent an excellent target for cancer immunotherapy. In this work the authors highlight the potential use of therapeutic vaccines as safe and effective pharmacological tools in cervical disease, focusing on vaccines that have reached the clinical trial phase. Many therapeutic HPV vaccines have been tested in clinical trials with promising results. Adoptive T-cell therapy showed clinical activity in a phase II trial involving advanced CC patients. A phase II randomized trial showed clinical activity of a nucleic acid-based vaccine in HPV16 or HPV18 positive CIN. Several trials involving peptide-protein-based vaccines and live-vector based vaccines demonstrated that these approaches are effective in CIN as well as in advanced CC patients. HPV therapeutic vaccines must be regarded as a therapeutic option in cervical disease. The synergic combination of HPV therapeutic vaccines with radiotherapy, chemotherapy, immunomodulators or immune checkpoint inhibitors opens a new and interesting scenario in this disease.
Collapse
Affiliation(s)
- P Vici
- a Division of Medical Oncology 2 , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - L Pizzuti
- a Division of Medical Oncology 2 , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - L Mariani
- b HPV-UNIT Laboratory of Virology , 'Regina Elena' National Cancer Institute , Rome , Italy.,c Department of Gynecologic Oncology , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - G Zampa
- d Oncology Unit , Nuovo Regina Margherita Hospital , Rome , Italy
| | - D Santini
- e Department of Medical Oncology , University Campus Bio-Medico , Rome , Italy
| | - L Di Lauro
- a Division of Medical Oncology 2 , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - T Gamucci
- f Medical Oncology Unit, ASL Frosinone , Frosinone , Italy
| | - C Natoli
- g Department of Medical, Oral and Biotechnological Sciences, Experimental and Clinical Sciences , University 'G. d'Annunzio' , Chieti , Italy
| | - P Marchetti
- h Oncology Unit, Sant'Andrea Hospital , 'Sapienza' University of Rome , Rome , Italy
| | - M Barba
- a Division of Medical Oncology 2 , 'Regina Elena' National Cancer Institute , Rome , Italy.,i Scientific Direction , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - M Maugeri-Saccà
- a Division of Medical Oncology 2 , 'Regina Elena' National Cancer Institute , Rome , Italy.,i Scientific Direction , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - D Sergi
- a Division of Medical Oncology 2 , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - F Tomao
- j Department of Gynecologic and Obstetric Sciences , La Sapienza University of Rome , Rome , Italy
| | - E Vizza
- b HPV-UNIT Laboratory of Virology , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - S Di Filippo
- k Emergency Department , Santa Maria Goretti Hospital , Latina , Italy
| | - F Paolini
- b HPV-UNIT Laboratory of Virology , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - G Curzio
- b HPV-UNIT Laboratory of Virology , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - G Corrado
- c Department of Gynecologic Oncology , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - A Michelotti
- l Oncology Unit I , Azienda Ospedaliera Universitaria Pisana , Pisa , Italy
| | - G Sanguineti
- m Radiotherapy , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - A Giordano
- n Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology , Temple University , Philadelphia , PA , USA.,o Department of Human Pathology and Oncology , University of Siena , Siena , Italy
| | - R De Maria
- i Scientific Direction , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - A Venuti
- b HPV-UNIT Laboratory of Virology , 'Regina Elena' National Cancer Institute , Rome , Italy
| |
Collapse
|
23
|
Interleukin-37 suppresses tumor growth through inhibition of angiogenesis in non-small cell lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:13. [PMID: 26791086 PMCID: PMC4721009 DOI: 10.1186/s13046-016-0293-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/13/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Interleukin-37 (IL-37), a newly identified member of the IL-1 family, has been known to play an immunosuppressive role in a variety of inflammatory disorders, but whether it participates in the regulation of pathogenesis of non-small cell lung cancer (NSCLC) has not been investigated. METHODS Real-time polymerase chain reaction (PCR), western blotting, and immunohistochemical staining were employed to detect IL-37 expression in NSCLC tissues and corresponding adjacent tissues. The correlations between IL-37 expression and clinicopathological characteristics, prognosis were analyzed. Stable clone with overexpression of IL-37 was generated in H1299 cell lines. Cell growth, cell cycle and cell apoptosis assays were carried out for detecting proliferation and apoptosis of H1299 cells. The effects of IL-37 on NSCLC progression in vivo was performed in a xenografted lung tumor model in nude mice. The concentrations of IL-37 and VEGF in the s growth medium supernatants were quantified by ELISA. The antiangiogenic effect of IL-37 on HUVEC was measured by tube formation assay. RESULTS IL-37 mRNA and protein expressions were significantly decreased in NSCLC tissues, and decreased intratumoral IL-37 expression was significantly associated with tumor state, TNM stage and poor prognosis in NSCLC patients. In addition, intratumoral IL-37 expression was an independent prognostic factors for Overall survival (hazard ratio = 2.047; P = 0.011). Overexpression of IL-37 exerted no direct effect on cell proliferation and apoptosis of H1299 lung cancer cells in vitro, but significantly inhibited tumor growth in a H1299 xenograft model in vivo. Furthermore, there was no significant change in immune cell infiltration in IL-37 over-expressing tumors; instead, we found decreased microvessel density (MVD) and VEGF levels in IL-37-expressing tumors. Additional studies showed IL-37 could directly inhibit HUVEC cells growth and capillary structure formation. Finally, we found that decreased IL-37 expression was associated with high MVD in NSCLC patients. CONCLUSIONS Our findings demonstrate a protective role for IL-37 in lung cancer development, possibly through inhibiting tumor angiogenesis. IL-37 could serve as a promising therapeutic target for NSCLC.
Collapse
|
24
|
Menderes G, Black J, Schwab CL, Santin AD. Immunotherapy and targeted therapy for cervical cancer: an update. Expert Rev Anticancer Ther 2015; 16:83-98. [PMID: 26568261 DOI: 10.1586/14737140.2016.1121108] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The prognosis of patients with metastatic cervical cancer is poor with a median survival of 8-13 months. Despite the potency of chemotherapeutic drugs, this treatment is rarely curative and should be considered palliative only. In the last few years, a better understanding of Human papillomavirus tumor-host immune system interactions and the development of new therapeutics targeting immune check points have renewed interest in the use of immunotherapy in cervical cancer patients. Moreover, next generation sequencing has emerged as an attractive option for the identification of actionable driver mutations and other markers. In this review, we provide background information on the molecular biology of cervical cancer and summarize immunotherapy studies, targeted therapies, including those with angiogenesis inhibitors and tyrosine kinase inhibitors recently completed or currently on-going in cervical cancer patients.
Collapse
Affiliation(s)
- Gulden Menderes
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Jonathan Black
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Carlton L Schwab
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Alessandro D Santin
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
25
|
Wojtowicz ME, Dunn BK, Umar A. Immunologic approaches to cancer prevention-current status, challenges, and future perspectives. Semin Oncol 2015; 43:161-172. [PMID: 26970135 DOI: 10.1053/j.seminoncol.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of the immune system to recognize and reject tumors has been investigated for more than a century. However, only recently impressive breakthroughs in cancer immunotherapy have been seen with the use of checkpoint inhibitors. The experience with various immune-based strategies in the treatment of late cancer highlighted the importance of negative impact advanced disease has on immunity. Consequently, use of immune modulation for cancer prevention rather than therapy has gained considerable attention, with many promising results seen already in preclinical and early clinical studies. Although not without challenges, these results provide much excitement and optimism that successful cancer immunoprevention could be within our reach. In this review we will discuss the current state of predominantly primary and secondary cancer immunoprevention, relevant research, potential barriers, and future directions.
Collapse
Affiliation(s)
- Malgorzata E Wojtowicz
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Barbara K Dunn
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Asad Umar
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Li L, Xu L, Yan J, Zhen ZJ, Ji Y, Liu CQ, Lau WY, Zheng L, Xu J. CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:129. [PMID: 26503598 PMCID: PMC4621872 DOI: 10.1186/s13046-015-0247-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/19/2015] [Indexed: 12/30/2022]
Abstract
Background & aims Inflammation is a hallmark of cancer, yet the mechanisms that regulate immune cell infiltration into tumors remain poorly characterized. This study attempted to characterize the composition, distribution, and prognostic value of CXCR2+ cells in hepatocellular carcinoma (HCC) and to examine the CXCR2 ligands that are responsible for local immune infiltration in different areas of HCC tumors. Methods Immunohistochemistry and immunofluorescene were used to identify CXCR2+ cells in HCC tissues. Kaplan–Meier analysis and Cox regression models were applied to estimate recurrence-free survival (RFS) and overall survival (OS) for 259 HCC patients. The expression levels of CXCR2 ligands (CXCL-1, −2, −5, and −8) were measured by real-time PCR and compared with local immune cell density. The combined prognostic value of the CXCR2–CXCL1 axis was further evaluated. Results In HCC tissues, CXCR2+ cells were mainly neutrophils that were enriched in the peri-tumoral stroma (PS) region. Kaplan–Meier survival analysis showed that increased CXCR2+PS cells were associated with reduced RFS and OS (P = 0.015 for RFS; P = 0.002 for OS). Multivariate Cox proportional hazards analysis identified CXCR2+PS cell density as an independent prognostic factor for OS (hazard ratio [HR] = 1.737, 95 % confidence interval [CI] = 1.167–2.585, P = 0.006). Furthermore, we detected a positive correlation between the density of CD15+ neutrophils and CXCL1 levels in both the peri-tumoral stroma and intra-tumoral regions. The combination of CXCR2 and CXCL1 expression levels represented a powerful predictor of a poor prognosis for patients with HCC. Conclusions Our data showed that the CXCR2+ cell density was an independent prognostic factor for predicting OS for HCC patients. The CXCR2–CXCL1 axis can regulate neutrophil infiltration into HCC tumor tissues and might represent a useful target for anti-HCC therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0247-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Li
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Department of Hepatic & Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Li Xu
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jing Yan
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, One Jimmy Fund Way, Boston, MA, 02115, USA
| | - Zuo-Jun Zhen
- Department of Hepatic & Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Yong Ji
- Department of Hepatic & Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China
| | - Chao-Qun Liu
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wan Yee Lau
- Department of Hepatic & Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China.,Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, P. R. China
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Jing Xu
- Department of Hepatic & Pancreatic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, P. R. China.
| |
Collapse
|
27
|
Dual loading miR-218 mimics and Temozolomide using AuCOOH@FA-CS drug delivery system: promising targeted anti-tumor drug delivery system with sequential release functions. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:106. [PMID: 26407971 PMCID: PMC4582616 DOI: 10.1186/s13046-015-0216-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/01/2015] [Indexed: 12/29/2022]
Abstract
Background Dual loading drug delivery system with tumor targeting efficacy and sequential release function provides a promising platform for anticancer drug delivery. Herein, we established a novel AuCOOH@FACS nanogel system for co-delivery miR-218 mimics (as bio-drug) and Temozolomide(as chemo-drug). Methods DLS and TEM were employed to determine the characteristics of particles and nanogels. The cell viability was calculated for study synergistic effect of both drugs coadministration and in nanogel forms. The amounts of Au uptake were measured by ICP-MS in cell and tumors to quantify the targeting drug delivery efficacy. Tumor weight and mice weight were investigated to study the targeting antitumor efficacy of nanogel system. Results The results revealed that using AuCOOH@FACS nanogel as delivery vehicles, drugs could be targeting delivery to tumor site, the intracellular uptake is enhanced to a greater extent, and significant antitumor efficacy is fold increase compared with free drug administration group, without noticeable system cytotoxicity. Conclusions This system offers an efficient approach to cancer therapy and holds significant potential to improve the treatment of cancer in the future. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0216-8) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Abstract
The clinical benefit of therapeutic cancer vaccines has been established. Whereas regression of lesions was shown for premalignant lesions caused by HPV, clinical benefit in cancer patients was mostly noted as prolonged survival. Suboptimal vaccine design and an immunosuppressive cancer microenvironment are the root causes of the lack of cancer eradication. Effective cancer vaccines deliver concentrated antigen to both HLA class I and II molecules of DCs, promoting both CD4 and CD8 T cell responses. Optimal vaccine platforms include DNA and RNA vaccines and synthetic long peptides. Antigens of choice include mutant sequences, selected cancer testis antigens, and viral antigens. Drugs or physical treatments can mitigate the immunosuppressive cancer microenvironment and include chemotherapeutics, radiation, indoleamine 2,3-dioxygenase (IDO) inhibitors, inhibitors of T cell checkpoints, agonists of selected TNF receptor family members, and inhibitors of undesirable cytokines. The specificity of therapeutic vaccination combined with such immunomodulation offers an attractive avenue for the development of future cancer therapies.
Collapse
|
29
|
Venuti A, Curzio G, Mariani L, Paolini F. Immunotherapy of HPV-associated cancer: DNA/plant-derived vaccines and new orthotopic mouse models. Cancer Immunol Immunother 2015; 64:1329-38. [PMID: 26138695 PMCID: PMC4554738 DOI: 10.1007/s00262-015-1734-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/06/2015] [Indexed: 12/19/2022]
Abstract
Under the optimistic assumption of high-prophylactic HPV vaccine coverage, a significant reduction of cancer incidence can only be expected after decades. Thus, immune therapeutic strategies are needed for persistently infected individuals who do not benefit from the prophylactic vaccines. However, the therapeutic strategies inducing immunity to the E6 and/or E7 oncoprotein of HPV16 are more effective for curing HPV-expressing tumours in animal models than for treating human cancers. New strategies/technologies have been developed to improve these therapeutic vaccines. Our studies focussed on preparing therapeutic vaccines with low-cost technologies by DNA preparation fused to either plant-virus or plant-toxin genes, such as saporin, and by plant-produced antigens. In particular, plant-derived antigens possess an intrinsic adjuvant activity that makes these preparations especially attractive for future development. Additionally, discrepancy in vaccine effectiveness between animals and humans may be due to non-orthotopic localization of animal models. Orthotopic transplantation leads to tumours giving a more accurate representation of the parent tumour. Since HPV can cause cancer in two main localizations, anogenital and oropharynx area, we developed two orthotopic tumour mouse models in these two sites. Both models are bioluminescent in order to follow up the tumour growth by imaging and are induced by cell injection without the need to intervene surgically. These models were utilized for immunotherapies with genetic or plant-derived therapeutic vaccines. In particular, the head/neck orthotopic model appears to be very promising for studies combining chemo-radio-immune therapy that seems to be very effective in patients.
Collapse
Affiliation(s)
- Aldo Venuti
- HPV-UNIT, Laboratory of Virology, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy,
| | | | | | | |
Collapse
|
30
|
Rothacker CC, Boyle AG, Levine DG. Autologous vaccination for the treatment of equine sarcoids: 18 cases (2009-2014). THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2015; 56:709-714. [PMID: 26130832 PMCID: PMC4466821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The purpose of this retrospective case series was to assess the outcome of an autologous vaccination procedure on single and multiple sarcoid lesions, determine complication rate, and report owner satisfaction. Medical records (18 cases) from January 2009 through May 2014 were evaluated to identify horses undergoing the procedure. Signalment, number, size, anatomic location of lesions, and type of historical treatment were recorded. Follow-up was obtained via standardized owner survey, veterinary examination, and digital images. Data recorded and analyzed included ancillary therapies post-procedure, decrease in number and/or size of sarcoid lesions, sarcoid regrowth, complications, and owner satisfaction. There was a decrease in number of lesions observed by owners in 75% of cases and a decrease in size of sarcoids in 93.8% of cases. Clinical regression observed by owners was noted in 68.8% of cases. There were complications in 43.8% of cases and owner satisfaction in 75% of cases.
Collapse
|
31
|
Yu S, Wang F, Fan L, Wei Y, Li H, Sun Y, Yang A, Jin B, Song C, Yang K. BAP31, a promising target for the immunotherapy of malignant melanomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:36. [PMID: 25903101 PMCID: PMC4405826 DOI: 10.1186/s13046-015-0153-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/01/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE Malignant melanoma's (MM) incidence is rising faster than that of any other cancer in the US and the overall survival at 5 years is less than 10%. B cell associated protein 31 (BAP31) is overexpressed in most MMs and might be a promising target for immunotherapy of this disease. EXPERIMENTAL DESIGN Firstly, we investigated the expression profiles of human BAP31 (hBAP31) and mouse BAP31 (mBAP31) in human and mouse normal tissues, respectively. The expression level of hBAP31 in human MMs and mBAP31 in B16 melanoma cells was also analyzed. Then we constructed novel mBAP31 DNA vaccines and tested there ability to stimulate mBAP31-specific immune responses and antitumor immunity in B16 melanoma-bearing mice. RESULTS For the first time, we found that protein expression of hBAP31 were dramatically upregulated in human MMs when compared with human normal tissues. Predominant protein expression of mBAP31 was found in mouse B16 melanoma cells but not in mouse important organs. When mice were immunized with mBAP31 DNA vaccines, strong cellular response to mBAP31 was observed in the vaccinated mice. CTLs isolated from immunized mice could effectively kill mBAP31-positive target mouse B16 melanoma tumor cells in vitro and vaccination with mBAP31 DNA vaccines had potent anti-tumor activity in therapeutic model using B16 melanoma cells. CONCLUSIONS These are the first data supporting a vaccine targeting BAP31 that is capable of inducing effective immunity against BAP31-expressing MMs and will be applicable to human MMs and hBAP31 DNA vaccine warrants investigation in human clinical trials.
Collapse
Affiliation(s)
- Shaojuan Yu
- Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, People Republic of China. .,Department of Cardiology, First Hospital of Xi,an, 30 Fenxiang, Xi'an, 710003, People Republic of China.
| | - Fuli Wang
- Department of Urology, Xijing Hospital, 125 Changle West Road, Xi'an, 710032, People Republic of China.
| | - Li Fan
- Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, People Republic of China. .,Department of Pharmaceutical Analysis, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, People Republic of China.
| | - Yuying Wei
- Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, People Republic of China.
| | - Haitao Li
- Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, People Republic of China.
| | - Yuanjie Sun
- Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, People Republic of China.
| | - Angang Yang
- Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, People Republic of China.
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, People Republic of China.
| | - Chaojun Song
- Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, People Republic of China.
| | - Kun Yang
- Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, People Republic of China.
| |
Collapse
|
32
|
Immunotherapy: An Evolving Paradigm in the Treatment of Advanced Cervical Cancer. Clin Ther 2015; 37:20-38. [DOI: 10.1016/j.clinthera.2014.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 11/23/2022]
|
33
|
Tomao F, Papa A, Rossi L, Zaccarelli E, Caruso D, Zoratto F, Benedetti Panici P, Tomao S. Angiogenesis and antiangiogenic agents in cervical cancer. Onco Targets Ther 2014; 7:2237-48. [PMID: 25506227 PMCID: PMC4259513 DOI: 10.2147/ott.s68286] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Standard treatment of cervical cancer (CC) consists of surgery in the early stages and of chemoradiation in locally advanced disease. Metastatic CC has a poor prognosis and is usually treated with palliative platinum-based chemotherapy. Current chemotherapeutic regimens are associated with significant adverse effects and only limited activity, making identification of active and tolerable novel targeted agents a high priority. Angiogenesis is a complex process that plays a crucial role in the development of many types of cancer. The dominant role of angiogenesis in CC seems to be directly related to human papillomavirus-related inhibition of p53 and stabilization of hypoxia-inducible factor-1α. Both of these mechanisms are able to increase expression of vascular endothelial growth factor (VEGF). Activation of VEGF promotes endothelial cell proliferation and migration, favoring formation of new blood vessels and increasing permeability of existing blood vessels. Since bevacizumab, a recombinant humanized monoclonal antibody binding to all isoforms of VEGF, has been demonstrated to significantly improve survival in gynecologic cancer, some recent clinical research has explored the possibility of using novel therapies directed toward inhibition of angiogenesis in CC too. Here we review the main results from studies concerning the use of antiangiogenic drugs that are being investigated for the treatment of CC.
Collapse
Affiliation(s)
- Federica Tomao
- Department of Gynecology and Obstetrics, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Anselmo Papa
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Luigi Rossi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Eleonora Zaccarelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Davide Caruso
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Federica Zoratto
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Pierluigi Benedetti Panici
- Department of Gynecology and Obstetrics, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Silverio Tomao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| |
Collapse
|
34
|
Cordeiro MN, Paolini F, Massa S, Curzio G, Illiano E, Duarte Silva AJ, Franconi R, Bissa M, Morghen CDG, de Freitas AC, Venuti A. Anti-tumor effects of genetic vaccines against HPV major oncogenes. Hum Vaccin Immunother 2014; 11:45-52. [PMID: 25483514 PMCID: PMC4514265 DOI: 10.4161/hv.34303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Expression of HPV E5, E6 and E7 oncogenes are likely to overcome the regulation of cell proliferation and to escape immunological control, allowing uncontrolled growth and providing the potential for malignant transformation. Thus, their three oncogenic products may represent ideal target antigens for immunotherapeutic strategies. In previous attempts, we demonstrated that genetic vaccines against recombinant HPV16 E7 antigen were able to affect the tumor growth in a pre-clinical mouse model. To improve this anti-HPV strategy we developed a novel approach in which we explored the effects of E5-based genetic immunization. We designed novel HPV16 E5 genetic vaccines based on two different gene versions: whole E5 gene and E5Multi. The last one is a long multi epitope gene designed as a harmless E5 version. Both E5 genes were codon optimized for mammalian expression. In addition, we demonstrated that HPV 16 E5 oncogene is expressed in C3 mouse cell line making it an elective model for the study of E5 based vaccine. In this mouse model the immunological and biological activity of the E5 vaccines were assessed in parallel with the activity of anti-E7 and anti-E6 vaccines already reported to be effective in an immunotherapeutic setting. These E7 and E6 vaccines were made with mutated oncogenes, the E7GGG mutant that does not bind pRb and the E6F47R mutant that is less effective in inhibiting p53, respectively. Results confirmed the immunological activity of genetic formulations based on attenuated HPV16 oncogenes and showed that E5-based genetic immunization provided notable anti-tumor effects.
Collapse
Affiliation(s)
- Marcelo Nazário Cordeiro
- a Federal University of Pernambuco; Department of Genetics; Laboratory of Molecular Studies and Experimental Therapy (LEMTE); Pernambuco, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|