1
|
Weng Y, Zhang Y, Wang D, Wang R, Xiang Z, Shen S, Wang H, Wu X, Wen Y, Wang Y. Exercise-induced irisin improves follicular dysfunction by inhibiting IRE1α-TXNIP/ROS-NLRP3 pathway in PCOS. J Ovarian Res 2023; 16:151. [PMID: 37525261 PMCID: PMC10388501 DOI: 10.1186/s13048-023-01242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Excessive production of androgen drives oxidative stress (OS) and inflammasome activation in ovarian granulosa cells (GCs). Therefore, the induced follicular developmental disorder is the major cause of infertility in women with polycystic ovary syndrome (PCOS). Exercise-induced upregulation of irisin is capable of regulating metabolism by reducing OS and inflammation. Exercise has been shown to alleviate a range of PCOS symptoms, including maintaining a normal menstrual cycle, in several clinical trials. METHODS Female Sprague-Dawley (SD) rats and primary ovarian cells were treated with two different androgens, dehydroepiandrosterone (DHEA) and dihydrotestosterone (DHT), to simulate a hyperandrogenic environment, followed by eight weeks of exercise training and irisin intervention. The levels of reactive oxygen species (ROS), tissue inflammation and fibrosis were examined using hematoxylin and eosin (H&E) staining, western blot, quantitative real-time PCR (qRT-PCR), dichlorofluorescein diacetate (DCF-DA) probe detection, immunofluorescence staining, immunohistochemistry, and Sirius red staining. RESULTS Exercise for eight weeks improved polycystic ovarian morphology and decreased the levels of inflammation, OS, and fibrosis in PCOS rats. Hyperandrogen increased ROS production in ovarian cells by inducing endoplasmic reticulum stress (ERS) and activating the inositol-requiring enzyme 1α (IRE1α)-thioredoxin-interacting protein (TXNIP)/ROS-NOD-like receptor family pyrin domain containing 3 (NLRP3) signaling pathway, further enhancing the levels of inflammation. Irisin suppressed the expression of IRE1α and its downstream targets, thus improving the ovarian dysfunction of PCOS rats induced by hyperandrogen. CONCLUSION Exercise can alleviate various phenotypes of PCOS rats induced by DHEA, and its therapeutic effect may be mediated by secreting beneficial myokines. IRE1α may be an important target of irisin for reducing OS and inflammation, thereby improving ovarian fibrosis.
Collapse
Affiliation(s)
- Yajing Weng
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yaling Zhang
- School of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Daojuan Wang
- Department of Pain, Medical School, The Affiliated Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Rong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shanmei Shen
- Department of Endocrinology, Medical School, The Affiliated Drum Tower Hospital, Nanjing University, Nanjing, 210093, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Yanting Wen
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
- Nanjing University (Suzhou) High-Tech Institute, Suzhou, 215123, China.
| |
Collapse
|
2
|
Berbrier DE, Leone CA, Adler TE, Bender JR, Taylor HS, Stachenfeld NS, Usselman CW. Effects of androgen excess and body mass index on endothelial function in women with polycystic ovary syndrome. J Appl Physiol (1985) 2023; 134:868-878. [PMID: 36861670 DOI: 10.1152/japplphysiol.00583.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with endothelial dysfunction; whether this is attributable to comorbid hyperandrogenism and/or obesity remains to be established. Therefore, we 1) compared endothelial function between lean and overweight/obese (OW/OB) women with and without androgen excess (AE)-PCOS and 2) examined androgens as potential modulators of endothelial function in these women. The flow-mediated dilation (FMD) test was applied in 14 women with AE-PCOS (lean: n = 7; OW/OB: n = 7) and 14 controls (CTRL; lean: n = 7, OW/OB: n = 7) at baseline (BSL) and following 7 days of ethinyl estradiol supplementation (EE; 30 µg/day) to assess the effect of a vasodilatory therapeutic on endothelial function; at each time point we assessed peak increases in diameter during reactive hyperemia (%FMD), shear rate, and low flow-mediated constriction (%LFMC). BSL %FMD was attenuated in lean AE-PCOS versus both lean CTRL (5.2 ± 1.5 vs. 10.3 ± 2.6%, P < 0.01) and OW/OB AE-PCOS (5.2 ± 1.5 vs. 6.6 ± 0.9%, P = 0.048). A negative correlation between BSL %FMD and free testosterone was observed in lean AE-PCOS only (R2 = 0.68, P = 0.02). EE increased %FMD in both OW/OB groups (CTRL: 7.6 ± 0.6 vs. 10.4 ± 2.5%, AE-PCOS: 6.6 ± 0.9 vs. 9.6 ± 1.7%, P < 0.01), had no impact on %FMD in lean AE-PCOS (5.17 ± 1.5 vs. 5.17 ± 1.1%, P = 0.99), and reduced %FMD in lean CTRL (10.3 ± 2.6 vs. 7.6 ± 1.2%, P = 0.03). Collectively, these data indicate that lean women with AE-PCOS exhibit more severe endothelial dysfunction than their OW/OB counterparts. Furthermore, endothelial dysfunction appears to be mediated by circulating androgens in lean but not in OW/OB AE-PCOS, suggesting a difference in the endothelial pathophysiology of AE-PCOS between these phenotypes.NEW & NOTEWORTHY We present evidence for marked endothelial dysfunction in lean women with androgen excess polycystic ovary syndrome (AE-PCOS) that is 1) associated with free testosterone levels, 2) impaired relative to overweight/obese women with AE-PCOS, and 3) unchanged following short-term ethinyl estradiol supplementation. These data indicate an important direct effect of androgens on the vascular system in women with AE-PCOS. Our data also suggest that the relationship between androgens and vascular health differs between phenotypes of AE-PCOS.
Collapse
Affiliation(s)
- Danielle E Berbrier
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Cheryl A Leone
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut, United States
| | - Tessa E Adler
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut, United States
| | - Jeffrey R Bender
- Departments of Internal Medicine (Cardiovascular Medicine) and Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut, United States
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
- McGill Research Centre for Physical Activity and Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Asghari R, Shokri-Asl V, Rezaei H, Tavallaie M, Khafaei M, Abdolmaleki A, Majdi Seghinsara A. Alteration of TGFB1, GDF9, and BMPR2 gene expression in preantral follicles of an estradiol valerate-induced polycystic ovary mouse model can lead to anovulation, polycystic morphology, obesity, and absence of hyperandrogenism. Clin Exp Reprod Med 2021; 48:245-254. [PMID: 34370943 PMCID: PMC8421654 DOI: 10.5653/cerm.2020.04112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Objective In humans, polycystic ovary syndrome (PCOS) is an androgen-dependent ovarian disorder. Aberrant gene expression in folliculogenesis can arrest the transition of preantral to antral follicles, leading to PCOS. We explored the possible role of altered gene expression in preantral follicles of estradiol valerate (EV) induced polycystic ovaries (PCO) in a mouse model. Methods Twenty female balb/c mice (8 weeks, 20.0±1.5 g) were grouped into control and PCO groups. PCO was induced by intramuscular EV injection. After 8 weeks, the animals were killed by cervical dislocation. Blood serum (for hormonal assessments using the enzyme-linked immunosorbent assay technique) was aspirated, and ovaries (the right ovary for histological examinations and the left for quantitative real-time polymerase) were dissected. Results Compared to the control group, the PCO group showed significantly lower values for the mean body weight, number of preantral and antral follicles, serum levels of estradiol, luteinizing hormone, testosterone, and follicle-stimulating hormone, and gene expression of TGFB1, GDF9 and BMPR2 (p<0.05). Serum progesterone levels were significantly higher in the PCO animals than in the control group (p<0.05). No significant between-group differences (p>0.05) were found in BMP6 or BMP15 expression. Conclusion In animals with EV-induced PCO, the preantral follicles did not develop into antral follicles. In this mouse model, the gene expression of TGFB1, GDF9, and BMPR2 was lower in preantral follicles, which is probably related to the pathologic conditions of PCO. Hypoandrogenism was also detected in this EV-induced murine PCO model.
Collapse
Affiliation(s)
- Reza Asghari
- Department of Anatomical Sciences and Histology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shokri-Asl
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Rezaei
- Member of Research Committee, Medical School, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mahmood Tavallaie
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Khafaei
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Abdolmaleki
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abbas Majdi Seghinsara
- Department of Anatomical Sciences and Histology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Samadi Z, Bambaeichi E, Valiani M, Shahshahan Z. Evaluation of Changes in Levels of Hyperandrogenism, Hirsutism and Menstrual Regulation After a Period of Aquatic High Intensity Interval Training in Women with Polycystic Ovary Syndrome. Int J Prev Med 2019; 10:187. [PMID: 31807257 PMCID: PMC6852193 DOI: 10.4103/ijpvm.ijpvm_360_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/30/2019] [Indexed: 01/03/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a polygenic endocrine disorder in women of reproductive ages which will lead to infertility. This study is aimed to determine changes in levels of hyperandrogenism, hirsutism and menstrual regulation after a period of aquatic high intensity interval training (AHIIT) in women with PCOS. Methods Thirty patients with PCOS having age between 20 and 35 and body mass index (BMI) ≥30 kg/m2 in obstetrics and gynaecology clinics in Isfahan were selected based on Rotterdam Diagnostic Criteria. They were randomly divided into experimental (AHIIT + metformin, N = 15) and control groups (metformin, N = 15). The exercises were done for 12 weeks, three sessions of 20 minutes. Metformin (1500 mg) was taken daily for 3 consecutive days for 12 weeks. Kolmogorov-Smirnov test, t-test, Covariance and Wilcoxon were applied (P value < 0.05). Results After 12 weeks, no significant difference was observed in waist-to-hip ratio (WHR), but in AHIIT, the BMI and fat mass significantly decreased and levels of follicle-stimulating hormone (FSH), free testosterone (FT) and sex hormone binding globulin (SHBG) increased compared to control group (P < 0.05). While levels of improvement of total testosterone (TT), dehydroepiandrosterone sulphate (DHEAS), FT, luteinising hormone (LH) and free androgen index (FAI) were not significant between the two groups (P > 0.05). Furthermore, there was a significant decrease in homeostatic assessment of insulin resistance (HOMA-IR) and hirsutism severity in experimental group (P < 0.05). In both groups, the order of menstrual cycles improved significantly (P < 0.05). Conclusions Doing AHIIT besides drug therapy can be effective for PCOS patients.
Collapse
Affiliation(s)
- Zeinab Samadi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Effat Bambaeichi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Mahboubeh Valiani
- Nursing and Midwifery Care Research Center, School of Nursing and Midwifery, Isfahan, Iran
| | - Zahra Shahshahan
- Department of Gynecology, AL Zahra Hospital, Sofhe Street, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Bahman M, Hajimehdipoor H, Afrakhteh M, Bioos S, Hashem-Dabaghian F, Tansaz M. The Importance of Sleep Hygiene in Polycystic Ovary Syndrome from the View of Iranian Traditional Medicine and Modern Medicine. Int J Prev Med 2018; 9:87. [PMID: 30450170 PMCID: PMC6202781 DOI: 10.4103/ijpvm.ijpvm_352_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 07/04/2017] [Indexed: 01/18/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is known as the most common hormonal disorder in women at reproductive age. Recent studies have revealed a high prevalence of sleep disorders in PCOS, suggesting that it is an amendable factor for these patients; however, the sleep was not considered in their treatment plan. According to the Iranian traditional medicine (ITM), sleep is an important item in the lifestyle modification of all diseases. The aim of this study is to determine the importance of sleep hygiene in PCOS from the view of ITM and Modern Medicine. In this study, some keywords about “sleep and PCOS” were searched in medical databases and some ITM books. Lifestyle modification is one of the first steps in treatment of patients with PCOS in which the emphasis will be mainly on exercise and diet. Despite proof of the high prevalence of sleep disorders in these patients, modification of sleep is not considered in their lifestyle. ITM as a holistic medicine emphasizes on lifestyle modification under the title of “Settah-e-Zaruria” (In Persian), the six essential schemes for the prevention and treatment of all diseases. Management of sleep is one of these schemes. There are many advices about sleep hygiene in both ITM and modern medicine. It seems that lifestyle modification should be expanded in PCOS patients to include more options, and sleep hygiene should be considered in their lifestyle alongside food and exercise.
Collapse
Affiliation(s)
- Maryam Bahman
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Hajimehdipoor
- Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Afrakhteh
- Department of Obstetrics and Gynecology of Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soodabeh Bioos
- Department of Iranian Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Hashem-Dabaghian
- Research Institute for Islamic and Complementary Medicine, School of Traditional Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Tansaz
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Tamadon A, Hu W, Cui P, Ma T, Tong X, Zhang F, Li X, Shao LR, Feng Y. How to choose the suitable animal model of polycystic ovary syndrome? TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018300047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a gynecological metabolic and endocrine disorder with uncertain etiology. To understand the etiology of PCOS or the evaluation of various therapeutic agents, different animal models have been introduced. Considering this fact that is difficult to develop an animal model that mimics all aspects of this syndrome, but, similarity of biological, anatomical, and/or biochemical features of animal model to the human PCOS phenotypes can increase its application. This review paper evaluates the recently researched animal models and introduced the best models for different research purposes in PCOS studies. During January 2013 to January 2017, 162 studies were identified which applied various kinds of animal models of PCOS including rodent, primate, ruminant and fish. Between these models, prenatal and pre-pubertal androgen rat models and then prenatal androgen mouse model have been studied in detail than others. The comparison of main features of these models with women PCOS demonstrates higher similarity of these three models to human conditions. Thereafter, letrozole models can be recommended for the investigation of various aspects of PCOS. Interestingly, similarity of PCOS features of post-pubertal insulin and human chorionic gonadotropin rat models with women PCOS were considerable which can make it as a good choice for future investigations.
Collapse
Affiliation(s)
- Amin Tamadon
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Peng Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Feifei Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
7
|
Shah AB, Nivar I, Speelman DL. Elevated androstenedione in young adult but not early adolescent prenatally androgenized female rats. PLoS One 2018; 13:e0196862. [PMID: 29723293 PMCID: PMC5933698 DOI: 10.1371/journal.pone.0196862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/20/2018] [Indexed: 12/26/2022] Open
Abstract
Background Elevated testosterone (T) is routinely reported as a marker of hyperandrogenemia in rodent models for polycystic ovary syndrome (PCOS). In women with PCOS, elevated serum androstenedione (A4) is associated with more severe phenotypes, including a positive correlation with serum T, DHEAS, free androgen index (FAI), LH, and LH/FSH ratio. Furthermore, A4, along with calculated free T and FAI, was identified as one of the best predictors of PCOS in adult women of all ages (18 to > 50 y). Objective The objective of this study was to investigate serum A4 levels in early adolescent and young adult prenatally androgenized (PNA) female rats, a model for PCOS. Methods Pregnant rats were injected with 5 mg T daily during gestational days 16–19 (PNA rats, experimental group) or an equal volume of vehicle (control group). Female offspring of both groups had tail vein blood drawn for serum analysis at 8 and 16 weeks of age. ELISAs were used to quantify serum A4 and T levels. Results Serum A4 and T were elevated in 16-week-old PNA rats compared to controls. There was no significant difference in either hormone at 8 weeks of age. Conclusions The PNA rats demonstrated elevated serum A4 and T in young adulthood, as has been observed in women with PCOS, further validating this as a model for PCOS and underscoring the importance of serum A4 elevation as a parameter inherent to PCOS and a rodent model for the disorder. Significant A4 elevation develops between early adolescence and early adulthood in this PNA rat model.
Collapse
Affiliation(s)
- Ami B. Shah
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States of America
| | - Isaac Nivar
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States of America
| | - Diana L. Speelman
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Cao SF, Hu WL, Wu MM, Jiang LY. Effects of Exercise Intervention on Preventing Letrozole-Exposed Rats From Polycystic Ovary Syndrome. Reprod Sci 2016; 24:456-462. [DOI: 10.1177/1933719116657892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Si-Fan Cao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
- Luohu Population & Family Planning Service Center, Shenzhen, Guangdong, People’s Republic of China
| | - Wen-Long Hu
- Department of Pathogen Biology, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Min-Min Wu
- Department of Obstetrics and Gynecology, Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Li-Yan Jiang
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
9
|
Ramos FKP, Lara LADS, Kogure GS, Silva RC, Ferriani RA, Silva de Sá MF, Reis RMD. Quality of Life in Women with Polycystic Ovary Syndrome after a Program of Resistance Exercise Training. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2016; 38:340-7. [PMID: 27472811 PMCID: PMC10374239 DOI: 10.1055/s-0036-1585457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022] Open
Abstract
Purpose Aerobic exercises may improve quality of life (QoL) in women with polycystic ovary syndrome (PCOS). However, there is no data on the effect of resistance exercise training (RET) programs on the QoL of women with PCOS. Thus, this study aimed to assess the effect of a 16-week RET program on QoL in PCOS women. Methods This 16-week case-control study enrolled 43 women with PCOS (PCOS group, PCOSG) and 51 healthy pre-menopausal controls aged 18 to 37 years (control group, CG). All women underwent a supervised RET program for 16 weeks, and were evaluated in two different occasions: week-0 (baseline), and week-16 (after RET). Quality of life was assessed using the 36-Item Short Form Health Survey (SF-36). Results Testosterone reduced significantly in both groups after RET (p < 0.01). The PCOSG had improvements in functional capacity at week-16 relative to week-0 (p = 0.02). The CG had significant improvements in vitality, social aspects, and mental health at week-16 relative to week-0 (p ≤ 0.01). There was a weak correlation between social aspects of the SF-36 domain and testosterone levels in PCOS women. Conclusion A 16-week RET program modestly improved QoL in women with PCOS.
Collapse
Affiliation(s)
- Fabiene K. Picchi Ramos
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lúcia Alves da Silva Lara
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gislaine Satyko Kogure
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Costa Silva
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rui Alberto Ferriani
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcos Felipe Silva de Sá
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rosana Maria dos Reis
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|