1
|
Zhang T, Nguyen PH, Nasica-Labouze J, Mu Y, Derreumaux P. Folding Atomistic Proteins in Explicit Solvent Using Simulated Tempering. J Phys Chem B 2015; 119:6941-51. [PMID: 25985144 DOI: 10.1021/acs.jpcb.5b03381] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following a previous report on a coarse-grained protein model in implicit solvent, we applied simulated tempering (ST) with on-the-fly Helmholtz free energy (weight factors) determination to the folding or aggregation of seven proteins with the CHARMM, OPLS, and AMBER protein, and the SPC and TIP3P water force fields. For efficiency and reliability, we also performed replica exchange molecular dynamics (REMD) simulations on the alanine di- and deca-peptide, and the dimer of the Aβ16-22 Alzheimer's fragment, and used experimental data and previous simulation results on the chignolin, beta3s, Trp-cage, and WW domain peptides of 10-37 amino acids. The sampling with ST is found to be more efficient than with REMD for a much lower CPU cost. Starting from unfolded or extended conformations, the WW domain and the Trp-cage peptide fold to their NMR structures with a backbone RMSD of 2.0 and 1 Å. Remarkably, the ST simulation explores transient non-native topologies for Trp-cage that have been rarely discussed by other simulations. Our ST simulations also show that the CHARMM22* force field has limitations in describing accurately the beta3s peptide. Taken together, these results open the door to the study of the configurations of single proteins, protein aggregates, and any molecular systems at atomic details in explicit solvent using a single normal CPU. They also demonstrate that our ST scheme can be used with any force field ranging from quantum mechanics to coarse-grain and atomistic.
Collapse
Affiliation(s)
- Tong Zhang
- †Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France.,‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France.,§International School of Advanced Studies (SISSA), Via Bonomea, 265, 34126 Trieste, Italy
| | - Yuguang Mu
- ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France.,∥Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
2
|
Lai Z, Jiang J, Mukamel S, Wang J. Exploring the Protein Folding Dynamics of Beta3s with Two-Dimensional Ultraviolet (2DUV) Spectroscopy. Isr J Chem 2014. [DOI: 10.1002/ijch.201300141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Lai Z, Preketes NK, Jiang J, Mukamel S, Wang J. Two-Dimensional Infrared (2DIR) Spectroscopy of the Peptide Beta3s Folding. J Phys Chem Lett 2013; 4:1913-1917. [PMID: 23956818 PMCID: PMC3744343 DOI: 10.1021/jz400598r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Probing underlying free energy landscape, pathways, and mechanism is the key for understanding protein folding in theory and experiment. Recently time-resolved two-dimensional infrared (2DIR) with femtosecond laser pulses, has emerged as a promising tool for investigating the protein folding dynamics on faster timescales than possible by NMR. We have employed molecular dynamics simulations to compute 2DIR spectra of the folding process of a peptide, Beta3s. Simulated non-chiral and chiral 2DIR signals illustrate the variation of the spectra as the peptide conformation evolves along the free energy landscape. Chiral spectra show stronger changes than the non-chiral signals because cross peaks caused by the formation of the β-sheet are clearly resolved. Chirality-induced 2DIR may be used to detect the folding of β-sheet proteins with high spectral and temporal resolution.
Collapse
Affiliation(s)
- Zaizhi Lai
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY11794
| | | | - Jun Jiang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shaul Mukamel
- Chemistry Department, University of California Irvine, California, USA
| | - Jin Wang
- Department of Chemistry, Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY11794
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
| |
Collapse
|
4
|
Kalgin IV, Caflisch A, Chekmarev SF, Karplus M. New insights into the folding of a β-sheet miniprotein in a reduced space of collective hydrogen bond variables: application to a hydrodynamic analysis of the folding flow. J Phys Chem B 2013; 117:6092-105. [PMID: 23621790 DOI: 10.1021/jp401742y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new analysis of the 20 μs equilibrium folding/unfolding molecular dynamics simulations of the three-stranded antiparallel β-sheet miniprotein (beta3s) in implicit solvent is presented. The conformation space is reduced in dimensionality by introduction of linear combinations of hydrogen bond distances as the collective variables making use of a specially adapted principal component analysis (PCA); i.e., to make structured conformations more pronounced, only the formed bonds are included in determining the principal components. It is shown that a three-dimensional (3D) subspace gives a meaningful representation of the folding behavior. The first component, to which eight native hydrogen bonds make the major contribution (four in each beta hairpin), is found to play the role of the reaction coordinate for the overall folding process, while the second and third components distinguish the structured conformations. The representative points of the trajectory in the 3D space are grouped into conformational clusters that correspond to locally stable conformations of beta3s identified in earlier work. A simplified kinetic network based on the three components is constructed, and it is complemented by a hydrodynamic analysis. The latter, making use of "passive tracers" in 3D space, indicates that the folding flow is much more complex than suggested by the kinetic network. A 2D representation of streamlines shows there are vortices which correspond to repeated local rearrangement, not only around minima of the free energy surface but also in flat regions between minima. The vortices revealed by the hydrodynamic analysis are apparently not evident in folding pathways generated by transition-path sampling. Making use of the fact that the values of the collective hydrogen bond variables are linearly related to the Cartesian coordinate space, the RMSD between clusters is determined. Interestingly, the transition rates show an approximate exponential correlation with distance in the hydrogen bond subspace. Comparison with the many published studies shows good agreement with the present analysis for the parts that can be compared, supporting the robust character of our understanding of this "hydrogen atom" of protein folding.
Collapse
Affiliation(s)
- Igor V Kalgin
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | | | | |
Collapse
|
5
|
Lai Z, Preketes NK, Mukamel S, Wang J. Monitoring the folding of Trp-cage peptide by two-dimensional infrared (2DIR) spectroscopy. J Phys Chem B 2013; 117:4661-9. [PMID: 23448437 PMCID: PMC3893769 DOI: 10.1021/jp309122b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein folding is one of the most fundamental problems in modern molecular biology. Uncovering the detailed folding mechanism requires methods that can monitor the structures at high temporal and spatial resolution. Two-dimensional infrared (2DIR) spectroscopy is a new tool for studying protein structures and dynamics with high time resolution. Using atomistic molecular dynamics simulations, we illustrate the folding process of Trp-cage along the dominant pathway on the free energy landscape by analyzing nonchiral and chiral coherent 2DIR spectra along the pathway. Isotope labeling is used to reveal residue-specific information. We show that the high resolution structural sensitivity of 2DIR can differentiate the ensemble evolution of protein and thus provides a microscopic picture of the folding process.
Collapse
Affiliation(s)
- Zaizhi Lai
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794
| | - Nicholas K. Preketes
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794
- Department of Physics and Applied Mathematics & Statistics, State University of New York at Stony Brook, Stony Brook, NY 11794
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130021, People’s Republic of China
| |
Collapse
|