1
|
Dolskiy AA, Yarushkin AA, Grishchenko IV, Lemskaya NA, Pindyurin AV, Boldyreva LV, Pustylnyak VO, Yudkin DV. miRNA expression and interaction with the 3'UTR of FMR1 in FRAXopathy pathogenesis. Noncoding RNA Res 2021; 6:1-7. [PMID: 33426406 PMCID: PMC7781359 DOI: 10.1016/j.ncrna.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022] Open
Abstract
FRAXopathies are caused by the expansion of the CGG repeat in the 5'UTR of the FMR1 gene, which encodes the protein responsible for the synthesis of FMRP. This mutation leads to dramatic changes in FMRP expression at both the mRNA and protein levels. Evidence is emerging that changes in FMR1 mRNA expression can lead to the dysregulation of the miRNAs that target its 3'UTR. In the present work, B-lymphocyte cell lines obtained from patients with FRAXopathies were used, and a wide variety of FMR1 gene activities were observed, allowing the identification of the relationships between FMR1 dysregulation and miRNA activity. We studied the expression levels of eight miRNAs that target the FMR1 gene. To prove the interaction of the studied miRNAs with FMR1, a plasmid was constructed that possesses three primary structures: the miRNA gene, with expression driven by an inducible promoter; a constitutively expressed FusionRed reporter; and an eGFP reporter followed by the 3'UTR of the FMR1 gene. We evaluated changes in miRNA expression in response to alterations in FMR1 gene activity in a model cell line as well as interactions with some miRNAs with the FMR1 3'UTR.
Collapse
Affiliation(s)
- Alexander A. Dolskiy
- State Research Center of Virology and Biotechnology “Vector”, Federal
Service for Surveillance on Consumer Rights Protection and Human Well-being
(FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo, Novosibirsk Region,
Russia
| | - Andrey A. Yarushkin
- Federal Research Center of Fundamental and Translational Medicine,
Novosibirsk, Novosibirsk Region, Russia
- Novosibirsk State University, Novosibirsk, Novosibirsk Region,
Russia
| | - Irina V. Grishchenko
- State Research Center of Virology and Biotechnology “Vector”, Federal
Service for Surveillance on Consumer Rights Protection and Human Well-being
(FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo, Novosibirsk Region,
Russia
| | - Natalya A. Lemskaya
- State Research Center of Virology and Biotechnology “Vector”, Federal
Service for Surveillance on Consumer Rights Protection and Human Well-being
(FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo, Novosibirsk Region,
Russia
- Institute of Molecular and Cellular Biology, Siberian Branch of the
Russian Academy of Sciences, Novosibirsk, Novosibirsk Region, Russia
| | - Alexey V. Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of the
Russian Academy of Sciences, Novosibirsk, Novosibirsk Region, Russia
| | - Lidiya V. Boldyreva
- Institute of Molecular and Cellular Biology, Siberian Branch of the
Russian Academy of Sciences, Novosibirsk, Novosibirsk Region, Russia
| | - Vladimir O. Pustylnyak
- Federal Research Center of Fundamental and Translational Medicine,
Novosibirsk, Novosibirsk Region, Russia
- Novosibirsk State University, Novosibirsk, Novosibirsk Region,
Russia
| | - Dmitry V. Yudkin
- State Research Center of Virology and Biotechnology “Vector”, Federal
Service for Surveillance on Consumer Rights Protection and Human Well-being
(FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo, Novosibirsk Region,
Russia
| |
Collapse
|
2
|
Kumari D, Gazy I, Usdin K. Pharmacological Reactivation of the Silenced FMR1 Gene as a Targeted Therapeutic Approach for Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020039. [PMID: 30759772 PMCID: PMC6406686 DOI: 10.3390/brainsci9020039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
More than ~200 CGG repeats in the 5′ untranslated region of the FMR1 gene results in transcriptional silencing and the absence of the FMR1 encoded protein, FMRP. FMRP is an RNA-binding protein that regulates the transport and translation of a variety of brain mRNAs in an activity-dependent manner. The loss of FMRP causes dysregulation of many neuronal pathways and results in an intellectual disability disorder, fragile X syndrome (FXS). Currently, there is no effective treatment for FXS. In this review, we discuss reactivation of the FMR1 gene as a potential approach for FXS treatment with an emphasis on the use of small molecules to inhibit the pathways important for gene silencing.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Inbal Gazy
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Inhibitors of Histone Deacetylases Are Weak Activators of the FMR1 Gene in Fragile X Syndrome Cell Lines. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3582601. [PMID: 29209628 PMCID: PMC5676349 DOI: 10.1155/2017/3582601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 01/19/2023]
Abstract
Fragile X syndrome is the most common cause of inherited intellectual disability in humans. It is a result of CGG repeat expansion in the 5' untranslated region (5' UTR) of the FMR1 gene. This gene encodes the FMRP protein that is involved in neuronal development. Repeat expansion leads to heterochromatinization of the promoter, gene silencing, and the subsequent absence of FMRP. To date, there is no specific therapy for the syndrome. All treatments in clinic practice provide symptomatic therapy. The development of drug therapy for Fragile X syndrome treatment is connected with the search for inhibitors of enzymes that are responsible for heterochromatinization. Here, we report a weak transcriptional activity of the FMR1 gene and the absence of FMRP protein after Fragile X syndrome cell lines treatment with two FDA approved inhibitors of histone deacetylases, romidepsin and vorinostat. We demonstrate that romidepsin, an inhibitor of class I histone deacetylases, does not activate FMR1 expression in patient cell cultures, whereas vorinostat, an inhibitor of classes I and II histone deacetylases, activates a low level of FMR1 expression in some patient cell lines.
Collapse
|
4
|
Li M, Zhao H, Ananiev GE, Musser MT, Ness KH, Maglaque DL, Saha K, Bhattacharyya A, Zhao X. Establishment of Reporter Lines for Detecting Fragile X Mental Retardation (FMR1) Gene Reactivation in Human Neural Cells. Stem Cells 2016; 35:158-169. [PMID: 27422057 DOI: 10.1002/stem.2463] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 01/22/2023]
Abstract
Human patient-derived induced pluripotent stem cells (hiPSCs) provide unique opportunities for disease modeling and drug development. However, adapting hiPSCs or their differentiated progenies to high throughput assays for phenotyping or drug screening has been challenging. Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and a major genetic cause of autism. FXS is caused by mutational trinucleotide expansion in the FMR1 gene leading to hypermethylation and gene silencing. One potential therapeutic strategy is to reactivate the silenced FMR1 gene, which has been attempted using both candidate chemicals and cell-based screening. However, molecules that effectively reactivate the silenced FMR1 gene are yet to be identified; therefore, a high throughput unbiased screen is needed. Here we demonstrate the creation of a robust FMR1-Nluc reporter hiPSC line by knocking in a Nano luciferase (Nluc) gene into the endogenous human FMR1 gene using the CRISPR/Cas9 genome editing method. We confirmed that luciferase activities faithfully report FMR1 gene expression levels and showed that neural progenitor cells derived from this line could be optimized for high throughput screening. The FMR1-Nluc reporter line is a good resource for drug screening as well as for testing potential genetic reactivation strategies. In addition, our data provide valuable information for the generation of knockin human iPSC reporter lines for disease modeling, drug screening, and mechanistic studies. Stem Cells 2017;35:158-169.
Collapse
Affiliation(s)
- Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Huashan Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gene E Ananiev
- Small Molecule Screening Facility, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael T Musser
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kathryn H Ness
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dianne L Maglaque
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Bhattacharyya A, Zhao X. Human pluripotent stem cell models of Fragile X syndrome. Mol Cell Neurosci 2015; 73:43-51. [PMID: 26640241 DOI: 10.1016/j.mcn.2015.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/03/2015] [Accepted: 11/25/2015] [Indexed: 01/18/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism. The causal mutation in FXS is a trinucleotide CGG repeat expansion in the FMR1 gene that leads to human specific epigenetic silencing and loss of Fragile X Mental Retardation Protein (FMRP) expression. Human pluripotent stem cells (PSCs), including human embryonic stem cells (ESCs) and particularly induced PSCs (iPSCs), offer a model system to reveal cellular and molecular events underlying human neuronal development and function in FXS. Human FXS PSCs have been established and have provided insight into the epigenetic silencing of the FMR1 gene as well as aspects of neuronal development.
Collapse
Affiliation(s)
- Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|