1
|
Batavia AA, Rutishauser D, Sobottka B, Schraml P, Beerenwinkel N, Moch H. Biallelic ELOC-Inactivated Renal Cell Carcinoma: Molecular Features Supporting Classification as a Distinct Entity. Mod Pathol 2023; 36:100194. [PMID: 37088333 DOI: 10.1016/j.modpat.2023.100194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
Approximately 70% of clear cell renal cell carcinoma (ccRCC) is characterized by the biallelic inactivation of von Hippel-Lindau (VHL) on chromosome 3p. ELOC-mutated (Elongin C-mutated) renal cell carcinoma containing biallelic ELOC inactivations with chromosome 8q deletions is considered a novel subtype of renal cancer possessing a morphologic overlap with ccRCC, renal cell carcinoma (RCC) with fibromyomatous stroma exhibiting Tuberous Sclerosis Complex (TSC)/mammalian Target of Rapamycin (mTOR) mutations, and clear cell papillary tumor. However, the frequency and consequences of ELOC alterations in wild-type VHL and mutated VHL RCC are unclear. In this study, we characterize 123 renal tumors with clear cell morphology and known VHL mutation status to assess the morphologic and molecular consequences of ELOC inactivation. Using OncoScan and whole-exome sequencing, we identify 18 ELOC-deleted RCCs, 3 of which contain ELOC mutations resulting in the biallelic inactivation of ELOC. Biallelic ELOC and biallelic VHL aberrations were mutually exclusive; however, 2 ELOC-mutated RCCs showed monoallelic VHL alterations. Furthermore, no mutations in TSC1, TSC2, or mTOR were identified in ELOC-mutated RCC with biallelic ELOC inactivation. Using High Ambiguity Driven biomolecular DOCKing, we report a novel ELOC variant containing a duplication event disrupting ELOC-VHL interaction alongside the frequently seen Y79C alteration. Using hyper reaction monitoring mass spectrometry, we show RCCs with biallelic ELOC alterations have significantly reduced ELOC expression but similar carbonic anhydrase 9 and vascular endothelial growth factor A expression compared with classical ccRCC with biallelic VHL inactivation. The absence of biallelic VHL and TSC1, TSC2, or mTOR inactivation in RCC with biallelic ELOC inactivation (ELOC mutation in combination with ELOC deletions on chromosome 8q) supports the notion of a novel, molecularly defined tumor entity.
Collapse
Affiliation(s)
- Aashil A Batavia
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dorothea Rutishauser
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Ye D, Wang Y, Deng X, Zhou X, Liu D, Zhou B, Zheng W, Wang X, Fang L. DNMT3a-dermatopontin axis suppresses breast cancer malignancy via inactivating YAP. Cell Death Dis 2023; 14:106. [PMID: 36774339 PMCID: PMC9922281 DOI: 10.1038/s41419-023-05657-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023]
Abstract
Breast cancer (BC) is the most common malignant tumor in women worldwide, and its recurrence and metastasis negatively affect patient prognosis. However, the mechanisms underlying its tumorigenesis and progression remain unclear. Recently, the influence of dermatopontin (DPT), which is an extracellular matrix protein, has been proposed in the development of cancer. Here we found that DNMT3a-mediated DPT, promoter hypermethylation results in the downregulation of DPT expression in breast cancer and its low expression correlated with poor prognosis. Notably, DPT directly interacted with YAP to promote YAP Ser127 phosphorylation, and restricted the translocation of endogenous YAP from the cytoplasm to the nucleus, thereby suppressing malignant phenotypes in BC cells. In addition, Ectopic YAP overexpression reversed the inhibitory effects of DPT on BC growth and metastasis. Our study showed the critical role of DPT in regulating BC progression, making it easier to explore the clinical potential of modulating DPT/YAP activity in BC targeted therapies.
Collapse
Affiliation(s)
- Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaochong Deng
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
3
|
Goodrich JM, Calkins MM, Caban-Martinez AJ, Stueckle T, Grant C, Calafat AM, Nematollahi A, Jung AM, Graber JM, Jenkins T, Slitt AL, Dewald A, Botelho JC, Beitel S, Littau S, Gulotta J, Wallentine D, Hughes J, Popp C, Burgess JL. Per- and polyfluoroalkyl substances, epigenetic age and DNA methylation: a cross-sectional study of firefighters. Epigenomics 2021; 13:1619-1636. [PMID: 34670402 PMCID: PMC8549684 DOI: 10.2217/epi-2021-0225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Per- and polyfluoroalkyl substances (PFASs) are persistent chemicals that firefighters encounter. Epigenetic modifications, including DNA methylation, could serve as PFASs toxicity biomarkers. Methods: With a sample size of 197 firefighters, we quantified the serum concentrations of nine PFASs, blood leukocyte DNA methylation and epigenetic age indicators via the EPIC array. We examined the associations between PFASs with epigenetic age, site- and region-specific DNA methylation, adjusting for confounders. Results: Perfluorohexane sulfonate, perfluorooctanoate (PFOA) and the sum of branched isomers of perfluorooctane sulfonate (Sm-PFOS) were associated with accelerated epigenetic age. Branched PFOA, linear PFOS, perfluorononanoate, perfluorodecanoate and perfluoroundecanoate were associated with differentially methylated loci and regions. Conclusion: PFASs concentrations are associated with accelerated epigenetic age and locus-specific DNA methylation. The implications for PFASs toxicity merit further investigation.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Miriam M Calkins
- National Institute for Occupational Safety & Health, Centers for Disease Control & Prevention, Cincinnati, OH 45226, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Todd Stueckle
- National Institute for Occupational Safety & Health, Centers for Disease Control & Prevention, Morgantown, WV 26505, USA
| | - Casey Grant
- Fire Protection Research Foundation, Quincy, MA 02169, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control & Prevention, Atlanta, GA 30341, USA
| | - Amy Nematollahi
- Department of Community, Environment & Policy, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| | - Alesia M Jung
- Department of Epidemiology & Biostatistics, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| | - Judith M Graber
- Department of Biostatistics & Epidemiology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Timothy Jenkins
- Department of Cell Biology & Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Angela L Slitt
- Department of Biomedical Sciences, University of Rhode Island College of Pharmacy, Kingston, RI 02881, USA
| | - Alisa Dewald
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control & Prevention, Atlanta, GA 30341, USA
| | - Shawn Beitel
- Department of Community, Environment & Policy, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| | - Sally Littau
- Department of Community, Environment & Policy, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| | | | | | - Jeff Hughes
- Orange County Fire Authority, Irvine, CA 92602, USA
| | | | - Jefferey L Burgess
- Department of Community, Environment & Policy, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| |
Collapse
|
4
|
Singh P, Bhadada SK, Dahiya D, Saikia UN, Arya AK, Sachdeva N, Kaur J, Behera A, Brandi ML, Rao SD. GCM2 Silencing in Parathyroid Adenoma Is Associated With Promoter Hypermethylation and Gain of Methylation on Histone 3. J Clin Endocrinol Metab 2021; 106:e4084-e4096. [PMID: 34077544 PMCID: PMC8475237 DOI: 10.1210/clinem/dgab374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Glial cells missing 2 (GCM2), a zinc finger-transcription factor, is essentially required for the development of the parathyroid glands. OBJECTIVE We sought to identify whether the epigenetic alterations in GCM2 transcription are involved in the pathogenesis of sporadic parathyroid adenoma. In addition, we examined the association between promoter methylation and histone modifications with disease indices. METHODS Messenger RNA (mRNA) and protein expression of GCM2 were analyzed by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in 33 adenomatous and 10 control parathyroid tissues. DNA methylation and histone methylation/acetylation of the GCM2 promoter were measured by bisulfite sequencing and chromatin immunoprecipitation-qPCR. Additionally, we investigated the role of epigenetic modifications on GCM2 and DNA methyltransferase 1 (DNMT1) expression in parathyroid (PTH)-C1 cells by treating with 5-aza-2'-deoxycytidine (DAC) and BRD4770 and assessed for GCM2 mRNA and DNMT1 protein levels. RESULTS mRNA and protein expression of GCM2 were lower in sporadic adenomatous than in control parathyroid tissues. This reduction correlated with hypermethylation (P < .001) and higher H3K9me3 levels in the GCM2 promoter (P < .04) in adenomas. In PTH-C1 cells, DAC treatment resulted in increased GCM2 transcription and decreased DNMT1 protein expression, while cells treated with the BRD4770 showed reduced H3K9me3 levels but a nonsignificant change in GCM2 transcription. CONCLUSION These findings suggest the concurrent association of promoter hypermethylation and higher H3K9me3 with the repression of GCM2 expression in parathyroid adenomas. Treatment with DAC restored GCM2 expression in PTH-C1 cells. Our results showed a possible epigenetic landscape in the tumorigenesis of parathyroid adenoma and also that DAC may be a promising avenue of research for parathyroid adenoma therapeutics.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
- Correspondence: Sanjay Kumar Bhadada, MD, DM, Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Divya Dahiya
- Department of General Surgery, PGIMER, Chandigarh, 160012, India
| | | | - Ashutosh Kumar Arya
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, PGIMER, Chandigarh, 160012, India
| | - Arunanshu Behera
- Department of General Surgery, PGIMER, Chandigarh, 160012, India
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50121, Italy
| | - Sudhaker Dhanwada Rao
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, Michigan 48202, USA
| |
Collapse
|
5
|
Li D, Zhao W, Zhang X, Lv H, Li C, Sun L. NEFM DNA methylation correlates with immune infiltration and survival in breast cancer. Clin Epigenetics 2021; 13:112. [PMID: 34001208 PMCID: PMC8130356 DOI: 10.1186/s13148-021-01096-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/02/2021] [Indexed: 11/25/2022] Open
Abstract
Background This study aims to determine whether NEFM (neurofilament medium) DNA methylation correlates with immune infiltration and prognosis in breast cancer (BRCA) and to explore NEFM-connected immune gene signature. Methods NEFM transcriptional expression was analyzed in BRCA and normal breast tissues using Oncomine and Tumor Immune Estimation Resource (TIMER) databases. The relationship between NEFM DNA methylation and NEFM transcriptional expression was investigated in TCGA. Potential influence of NEFM DNA methylation/expression on clinical outcome was evaluated using TCGA BRCA, The Human Protein Atlas and Kaplan–Meier plotter databases. Association of NEFM transcriptional expression/DNA methylation with cancer immune infiltration was investigated using TIMER and TISIDB databases. Results High expression of NEFM correlated with better overall survival (OS) and recurrence-free survival (RFS) in TCGA BRCA and Kaplan–Meier plotter, whereas NEFM DNA methylation with worse OS in TCGA BRCA. NEFM transcriptional expression negatively correlated with DNA methylation. NEFM DNA methylation significantly negatively correlated with infiltrating levels of B, CD8+ T/CD4+ T cells, macrophages, neutrophils and dendritic cells in TIMER and TISIDB. NEFM expression positively correlated with macrophage infiltration in TIMER and TISIDB. After adjusted with tumor purity, NEFM expression weekly negatively correlated with infiltration level of B cells, whereas positively correlated with CD8+ T cell infiltration in TIMER gene modules. NEFM expression/DNA methylation correlated with diverse immune markers in TCGA and TISIDB. Conclusions NEFM low-expression/DNA methylation correlates with poor prognosis. NEFM expression positively correlates with macrophage infiltration. NEFM DNA methylation strongly negatively correlates with immune infiltration in BRCA. Our study highlights novel potential functions of NEFM expression/DNA methylation in regulation of tumor immune microenvironment. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01096-4.
Collapse
Affiliation(s)
- Dandan Li
- Department of Radiotherapy Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenhao Zhao
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xinyu Zhang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Hanning Lv
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Chunhong Li
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| | - Lichun Sun
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
6
|
The Role of Epigenetics in the Progression of Clear Cell Renal Cell Carcinoma and the Basis for Future Epigenetic Treatments. Cancers (Basel) 2021; 13:cancers13092071. [PMID: 33922974 PMCID: PMC8123355 DOI: 10.3390/cancers13092071] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The accumulated evidence on the role of epigenetic markers of prognosis in clear cell renal cell carcinoma (ccRCC) is reviewed, as well as state of the art on epigenetic treatments for this malignancy. Several epigenetic markers are likely candidates for clinical use, but still have not passed the test of prospective validation. Development of epigenetic therapies, either alone or in combination with tyrosine-kinase inhibitors of immune-checkpoint inhibitors, are still in their infancy. Abstract Clear cell renal cell carcinoma (ccRCC) is curable when diagnosed at an early stage, but when disease is non-confined it is the urologic cancer with worst prognosis. Antiangiogenic treatment and immune checkpoint inhibition therapy constitute a very promising combined therapy for advanced and metastatic disease. Many exploratory studies have identified epigenetic markers based on DNA methylation, histone modification, and ncRNA expression that epigenetically regulate gene expression in ccRCC. Additionally, epigenetic modifiers genes have been proposed as promising biomarkers for ccRCC. We review and discuss the current understanding of how epigenetic changes determine the main molecular pathways of ccRCC initiation and progression, and also its clinical implications. Despite the extensive research performed, candidate epigenetic biomarkers are not used in clinical practice for several reasons. However, the accumulated body of evidence of developing epigenetically-based biomarkers will likely allow the identification of ccRCC at a higher risk of progression. That will facilitate the establishment of firmer therapeutic decisions in a changing landscape and also monitor active surveillance in the aging population. What is more, a better knowledge of the activities of chromatin modifiers may serve to develop new therapeutic opportunities. Interesting clinical trials on epigenetic treatments for ccRCC associated with well established antiangiogenic treatments and immune checkpoint inhibitors are revisited.
Collapse
|
7
|
Zhou X, Lv L, Zhang Z, Wei S, Zheng T. LINC00294 negatively modulates cell proliferation in glioma through a neurofilament medium-mediated pathway via interacting with miR-1278. J Gene Med 2020; 22:e3235. [PMID: 32450002 DOI: 10.1002/jgm.3235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Accumulating long noncoding RNAs (lncRNAs) have been recognized to participate in glioma development. Nevertheless, knowledge of the role of linc00294 in glioma remains incomplete. METHODS Bioinformatics analysis predicted the differential expression of LINC00294 and neurofilament medium (NEFM) in tumors and normal tissues, as well as the binding between LINC00294 and miR-1278, miR-1278 and NEFM. Luciferase and RNA immunoprecipitation assays were used for the verification of interactions. The potential role of LINC00294 in glioma development was investigated using functional assays, singly and in parallel with its interplay with miR-1278 and NEFM. Cell counting kit-8 and EdU assays were applied to measure cellular proliferation, whereas the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method was employed to detect apoptosis. RESULTS A new lncRNA, LINC00294, was highly expressed in normal brain tissues. However, it was markedly down-regulated in GBM tissues and glioma cell lines. Overexpression of LINC00294 abates glioma cell proliferation but induces apoptosis. Meanwhile, tumor suppressor NEFM was revealed to be distinctly diminished in cancerous conditions and enhanced in glioma cells by LINC00294 up-regulation. Interactions of miR-1278 with LINC00294 or NEFM occur, and the expression of NEFM is up-regulated by LINC00294 through their competition with respect to binding to miR-1278. Finally, the rescue assays further confirmed that LINC00294 inhibits glioma cell proliferation by absorbing miR-1278 to enhance NEFM. CONCLUSIONS Collectively, our observations demonstrate the tumor-suppressive function of LINC00294 in glioma development by sponging miR-1278 and promoting NEFM, suggesting a potential use in therapy for glioma.
Collapse
Affiliation(s)
- Xiaokun Zhou
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Liang Lv
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Zhongyi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shuyang Wei
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Tong Zheng
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
8
|
AEBP1 is a Novel Oncogene: Mechanisms of Action and Signaling Pathways. JOURNAL OF ONCOLOGY 2020; 2020:8097872. [PMID: 32565808 PMCID: PMC7273425 DOI: 10.1155/2020/8097872] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
Abstract
Adipocyte enhancer-binding protein 1 (AEBP1) is a transcriptional repressor involved in the regulation of critical biological processes including adipogenesis, mammary gland development, inflammation, macrophage cholesterol homeostasis, and atherogenesis. Several years ago, we first reported the ability of AEBP1 to exert a positive control over the canonical NF-κB pathway. Indeed, AEBP1 positively regulates NF-κB activity via its direct interaction with IκBα, a key NF-κB inhibitor. AEBP1 overexpression results in uncontrollable activation of NF-κB, which may have severe pathogenic outcomes. Recently, the regulatory relationship between AEBP1 and NF-κB pathway has been of great interest to many researchers primarily due to the implication of NF-κB signaling in critical cellular processes such as inflammation and cancer. Since constitutive activation of NF-κB is widely implicated in carcinogenesis, AEBP1 overexpression is associated with tumor development and progression. Recent studies sought to explore the effects of the overexpression of AEBP1, as a potential oncogene, in different types of cancer. In this review, we analyze the effects of AEBP1 overexpression in a variety of malignancies (e.g., breast cancer, glioblastoma, bladder cancer, gastric cancer, colorectal cancer, ovarian cancer, and skin cancer), with a specific focus on the AEBP1-mediated control over the canonical NF-κB pathway. We also underscore the ability of AEBP1 to regulate crucial cancer-related events like cell proliferation and apoptosis in light of other key pathways (e.g., PI3K-Akt, sonic hedgehog (Shh), p53, parthanatos (PARP-1), and PTEN). Identifying AEBP1 as a potential biomarker for cancer prognosis may lead to a novel therapeutic target for the prevention and/or treatment of various types of cancer.
Collapse
|
9
|
Peters I, Merseburger AS, Tezval H, Lafos M, Tabrizi PF, Mazdak M, Wolters M, Kuczyk MA, Serth J, von Klot CA. The Prognostic Value of DNA Methylation Markers in Renal Cell Cancer: A Systematic Review. KIDNEY CANCER 2020. [DOI: 10.3233/kca-190069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Inga Peters
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | | | - Hossein Tezval
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Marcel Lafos
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Pouriya Faraj Tabrizi
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Mehrdad Mazdak
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Mathias Wolters
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Markus A. Kuczyk
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Jürgen Serth
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
10
|
Genistein inhibited the proliferation of kidney cancer cells via CDKN2a hypomethylation: role of abnormal apoptosis. Int Urol Nephrol 2020; 52:1049-1055. [PMID: 32026308 DOI: 10.1007/s11255-019-02372-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Genistein is recognized as a potent anti-oxidant in soybean-enriched foods, which is a kind of phytoestrogen involved in anticancer activity in various cancers. OBJECTIVE The objective of this study was to investigate the molecular mechanism of CDKN2a hypomethylation involved in the anti-tumor effect of genistein on kidney cancer. METHODS The CDKN2a expression was measured using qRT-PCR. The level of CDKN2a methylation was detected using methylation-specific PCR. The apoptosis was detected via flow-cytometric analysis. The cell viability was detected using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS Our results indicated that genistein induced cell apoptosis and inhibited the cell proliferation of kidney cancer cells. Moreover, genistein increased the expression of CDKN2a and decreased CDKN2a methylation. CONCLUSIONS Our results demonstrated that the anti-tumor effect of genistein might induce cell apoptosis and inhibit the proliferation of kidney cancer cells via regulating CDKN2a methylation.
Collapse
|
11
|
Chovanec M, Taza F, Kalra M, Hahn N, Nephew KP, Spinella MJ, Albany C. Incorporating DNA Methyltransferase Inhibitors (DNMTis) in the Treatment of Genitourinary Malignancies: A Systematic Review. Target Oncol 2019; 13:49-60. [PMID: 29230671 DOI: 10.1007/s11523-017-0546-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inhibition of DNA methyltransferases (DNMTs) has emerged as a novel treatment strategy in solid tumors. Aberrant hypermethylation in promoters of critical tumor suppressor genes is the basis for the idea that treatment with hypomethylating agents may lead to the restoration of a "normal" epigenome and produce clinically meaningful therapeutic outcomes. The aim of this review article is to summarize the current state of knowledge of DNMT inhibitors in the treatment of genitourinary malignancies. The efficacy of these agents in genitourinary malignancies was reported in a number of studies and suggests a role of induced DNA hypomethylation in overcoming resistance to conventional cytotoxic treatments. The clinical significance of these findings should be further investigated.
Collapse
Affiliation(s)
- Michal Chovanec
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA.
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia.
| | - Fadi Taza
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | - Maitri Kalra
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | - Noah Hahn
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth P Nephew
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, the University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Costantine Albany
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
12
|
Marques-Magalhães Â, Graça I, Henrique R, Jerónimo C. Targeting DNA Methyltranferases in Urological Tumors. Front Pharmacol 2018; 9:366. [PMID: 29706891 PMCID: PMC5909196 DOI: 10.3389/fphar.2018.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Urological cancers are a heterogeneous group of malignancies accounting for a considerable proportion of cancer-related morbidity and mortality worldwide. Aberrant epigenetic traits, especially altered DNA methylation patterns constitute a hallmark of these tumors. Nonetheless, these alterations are reversible, and several efforts have been carried out to design and test several epigenetic compounds that might reprogram tumor cell phenotype back to a normal state. Indeed, several DNMT inhibitors are currently under evaluation for therapeutic efficacy in clinical trials. This review highlights the critical role of DNA methylation in urological cancers and summarizes the available data on pre-clinical assays and clinical trials with DNMT inhibitors in bladder, kidney, prostate, and testicular germ cell cancers.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Inês Graça
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Chi HC, Tsai CY, Tsai MM, Lin KH. Impact of DNA and RNA Methylation on Radiobiology and Cancer Progression. Int J Mol Sci 2018; 19:ijms19020555. [PMID: 29439529 PMCID: PMC5855777 DOI: 10.3390/ijms19020555] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy is a well-established regimen for nearly half the cancer patients worldwide. However, not all cancer patients respond to irradiation treatment, and radioresistance is highly associated with poor prognosis and risk of recurrence. Elucidation of the biological characteristics of radioresistance and development of effective prognostic markers to guide clinical decision making clearly remain an urgent medical requirement. In tumorigenic and radioresistant cancer cell populations, phenotypic switch is observed during the course of irradiation treatment, which is associated with both stable genetic and epigenetic changes. While the importance of epigenetic changes is widely accepted, the irradiation-triggered specific epigenetic alterations at the molecular level are incompletely defined. The present review provides a summary of current studies on the molecular functions of DNA and RNA m6A methylation, the key epigenetic mechanisms involved in regulating the expression of genetic information, in resistance to irradiation and cancer progression. We additionally discuss the effects of DNA methylation and RNA N6-methyladenosine (m6A) of specific genes in cancer progression, recurrence, and radioresistance. As epigenetic alterations could be reversed by drug treatment or inhibition of specific genes, they are also considered potential targets for anticancer therapy and/or radiotherapy sensitizers. The mechanisms of irradiation-induced alterations in DNA and RNA m6A methylation, and ways in which this understanding can be applied clinically, including utilization of methylation patterns as prognostic markers for cancer radiotherapy and their manipulation for anticancer therapy or use as radiotherapy sensitizers, have been further discussed.
Collapse
Affiliation(s)
- Hsiang-Cheng Chi
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan.
| | - Ming-Ming Tsai
- Department of Nursing, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan.
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
14
|
Kang MR, Park KH, Lee CW, Lee MY, Han SB, Li LC, Kang JS. Small activating RNA induced expression of VHL gene in renal cell carcinoma. Int J Biochem Cell Biol 2018; 97:36-42. [PMID: 29425832 DOI: 10.1016/j.biocel.2018.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
Recent studies have reported that chemically synthesized double-stranded RNAs (dsRNAs), also known as small activating RNA (saRNAs), can specifically induce gene expression by targeting promoter sequences by a mechanism termed RNA activation (RNAa). In the present study, we designed 4 candidate saRNAs targeting the Von Hippel-Lindau (VHL) gene promoter. Among these saRNAs, dsVHL-821 significantly inhibited cell growth by up-regulating VHL at both the mRNA and protein levels in renal cell carcinoma 769-P cells. Functional analysis showed that dsVHL-821 induced apoptosis by increasing p53, decreasing Bcl-xL, activating caspase 3/7 and poly-ADP-ribose polymerase in a dose-dependent manner. Chromatin immunoprecipitation analysis revealed that dsVHL-821 increased the enrichment of Ago2 and RNA polymerase II at the dsVHL-821 target site. In addition, Ago2 depletion significantly suppressed dsVHL-821-induced up-regulation of VHL gene expression and related effects. Single transfection of dsVHL-821 caused long-lasting (14 days) VHL up-regulation. Furthermore, the activation of VHL by dsVHL-821 was accompanied by an increase in dimethylation of histone 3 at lysine 4 (H3K4me2) and acetylation of histone 4 (H4ac) and a decrease in dimethylation of histone 3 at lysine 9 (H3K9me2) and lysine 27 (H3K27me2) in the dsVHL-821 target region. Taken together, these results demonstrate that dsVHL-821, a novel saRNA for VHL, induces the expression of the VHL gene by epigenetic changes, leading to inhibition of cell growth and induction of apoptosis, and suggest that targeted activation of VHL by dsVHL-821 may be explored as a novel treatment of renal cell carcinoma.
Collapse
Affiliation(s)
- Moo Rim Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea; Ractigen Therapeutics, Nantong, Jiangsu, 226400, China
| | - Ki Hwan Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea
| | - Chang Woo Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea
| | - Myeong Youl Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 1 Chungdaero, Cheongju, 28644, Republic of Korea
| | - Long-Cheng Li
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China; Ractigen Therapeutics, Nantong, Jiangsu, 226400, China
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
15
|
Joosten SC, Deckers IA, Aarts MJ, Hoeben A, van Roermund JG, Smits KM, Melotte V, van Engeland M, Tjan-Heijnen VC. Prognostic DNA methylation markers for renal cell carcinoma: a systematic review. Epigenomics 2017; 9:1243-1257. [PMID: 28803494 DOI: 10.2217/epi-2017-0040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Despite numerous published prognostic methylation markers for renal cell carcinoma (RCC), none of these have yet changed patient management. Our aim is to systematically review and evaluate the literature on prognostic DNA methylation markers for RCC. MATERIALS & METHODS We conducted an exhaustive search of PubMed, EMBASE and MEDLINE up to April 2017 and identified 49 publications. Studies were reviewed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, assessed for their reporting quality using the Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK) criteria, and were graded to determine the level of evidence (LOE) for each biomarker. RESULTS We identified promoter methylation of BNC1, SCUBE3, GATA5, SFRP1, GREM1, RASSF1A, PCDH8, LAD1 and NEFH as promising prognostic markers. Extensive methodological heterogeneity across the included studies was observed, which hampers comparability and reproducibility of results, providing a possible explanation why these biomarkers do not reach the clinic. CONCLUSION Potential prognostic methylation markers for RCC have been identified, but they require further validation in prospective studies to determine their true clinical value.
Collapse
Affiliation(s)
- Sophie C Joosten
- Division of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Ivette Ag Deckers
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Maureen J Aarts
- Division of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Ann Hoeben
- Division of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Joep G van Roermund
- Department of Urology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Kim M Smits
- Division of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Vivianne C Tjan-Heijnen
- Division of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
16
|
Epigenome Aberrations: Emerging Driving Factors of the Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2017; 18:ijms18081774. [PMID: 28812986 PMCID: PMC5578163 DOI: 10.3390/ijms18081774] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/29/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common form of Kidney cancer, is characterized by frequent mutations of the von Hippel-Lindau (VHL) tumor suppressor gene in ~85% of sporadic cases. Loss of pVHL function affects multiple cellular processes, among which the activation of hypoxia inducible factor (HIF) pathway is the best-known function. Constitutive activation of HIF signaling in turn activates hundreds of genes involved in numerous oncogenic pathways, which contribute to the development or progression of ccRCC. Although VHL mutations are considered as drivers of ccRCC, they are not sufficient to cause the disease. Recent genome-wide sequencing studies of ccRCC have revealed that mutations of genes coding for epigenome modifiers and chromatin remodelers, including PBRM1, SETD2 and BAP1, are the most common somatic genetic abnormalities after VHL mutations in these tumors. Moreover, recent research has shed light on the extent of abnormal epigenome alterations in ccRCC tumors, including aberrant DNA methylation patterns, abnormal histone modifications and deregulated expression of non-coding RNAs. In this review, we discuss the epigenetic modifiers that are commonly mutated in ccRCC, and our growing knowledge of the cellular processes that are impacted by them. Furthermore, we explore new avenues for developing therapeutic approaches based on our knowledge of epigenome aberrations of ccRCC.
Collapse
|
17
|
Maniero C, Garg S, Zhao W, Johnson TI, Zhou J, Gurnell M, Brown MJ. NEFM (Neurofilament Medium) Polypeptide, a Marker for Zona Glomerulosa Cells in Human Adrenal, Inhibits D1R (Dopamine D1 Receptor)–Mediated Secretion of Aldosterone. Hypertension 2017; 70:357-364. [DOI: 10.1161/hypertensionaha.117.09231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 01/11/2023]
Abstract
Heterogeneity among aldosterone-producing adenomas (APAs) has been highlighted by the discovery of somatic mutations.
KCNJ5
mutations predominate in large zona fasciculata (ZF)–like APAs; mutations in
CACNA1D
,
ATP1A1, ATP2B3
, and
CTNNB1
are more likely to be found in small zona glomerulosa (ZG)–like APAs. Microarray comparison of
KCNJ5
mutant versus wild-type APAs revealed significant differences in transcriptomes.
NEFM
, encoding a neurofilament subunit which is a D1R (dopamine D1 receptor)–interacting protein, was 4-fold upregulated in ZG-like versus ZF-like APAs and 14-fold more highly expressed in normal ZG versus ZF. Immunohistochemistry confirmed selective expression of NEFM (neurofilament medium) polypeptide in ZG and in ZG-like APAs. Silencing
NEFM
in adrenocortical H295R cells increased basal aldosterone secretion and cell proliferation; silencing also amplified aldosterone stimulation by the D1R agonist, fenoldopam, and inhibition by the D1R antagonist, SCH23390. NEFM coimmunoprecipitated with D1R, and its expression was stimulated by fenoldopam. Immunohistochemistry for D1R was mainly intracellular in ZG-like APAs but membranous in ZF-like APAs. Aldosterone secretion in response to fenoldopam in primary cells from ZF-like APAs was higher than in cells from ZG-like APAs. Transfection of mutant KCNJ5 caused a large reduction in NEFM expression in H295R cells. We conclude that NEFM is a negative regulator of aldosterone production and cell proliferation, in part by facilitating D1R internalization from the plasma membrane. Downregulation of NEFM in ZF-like APAs may contribute to a D1R/D2R imbalance underlying variable pharmacological responses to dopaminergic drugs among patients with APAs. Finally, taken together, our data point to the possibility that ZF-like APAs are in fact ZG in origin.
Collapse
Affiliation(s)
- Carmela Maniero
- From the Clinical Pharmacology Unit, Department of Medicine (C.M., S.G., J.Z.) and Medical Research Council Cancer Unit (T.I.J.), University of Cambridge, United Kingdom; Human Research Tissue Bank, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, United Kingdom (W.Z.); Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom (M.G.); and the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and
| | - Sumedha Garg
- From the Clinical Pharmacology Unit, Department of Medicine (C.M., S.G., J.Z.) and Medical Research Council Cancer Unit (T.I.J.), University of Cambridge, United Kingdom; Human Research Tissue Bank, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, United Kingdom (W.Z.); Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom (M.G.); and the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and
| | - Wanfeng Zhao
- From the Clinical Pharmacology Unit, Department of Medicine (C.M., S.G., J.Z.) and Medical Research Council Cancer Unit (T.I.J.), University of Cambridge, United Kingdom; Human Research Tissue Bank, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, United Kingdom (W.Z.); Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom (M.G.); and the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and
| | - Timothy Isaac Johnson
- From the Clinical Pharmacology Unit, Department of Medicine (C.M., S.G., J.Z.) and Medical Research Council Cancer Unit (T.I.J.), University of Cambridge, United Kingdom; Human Research Tissue Bank, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, United Kingdom (W.Z.); Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom (M.G.); and the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and
| | - Junhua Zhou
- From the Clinical Pharmacology Unit, Department of Medicine (C.M., S.G., J.Z.) and Medical Research Council Cancer Unit (T.I.J.), University of Cambridge, United Kingdom; Human Research Tissue Bank, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, United Kingdom (W.Z.); Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom (M.G.); and the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and
| | - Mark Gurnell
- From the Clinical Pharmacology Unit, Department of Medicine (C.M., S.G., J.Z.) and Medical Research Council Cancer Unit (T.I.J.), University of Cambridge, United Kingdom; Human Research Tissue Bank, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, United Kingdom (W.Z.); Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom (M.G.); and the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and
| | - Morris J. Brown
- From the Clinical Pharmacology Unit, Department of Medicine (C.M., S.G., J.Z.) and Medical Research Council Cancer Unit (T.I.J.), University of Cambridge, United Kingdom; Human Research Tissue Bank, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, United Kingdom (W.Z.); Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom (M.G.); and the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and
| |
Collapse
|
18
|
Miousse IR, Kutanzi KR, Koturbash I. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol 2017; 93:457-469. [PMID: 28134023 PMCID: PMC5411327 DOI: 10.1080/09553002.2017.1287454] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of high-LET radiation in medicine. CONCLUSIONS In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization.
Collapse
Affiliation(s)
- Isabelle R Miousse
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Kristy R Kutanzi
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Igor Koturbash
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
19
|
Abbasi MR, Rifatbegovic F, Brunner C, Mann G, Ziegler A, Pötschger U, Crazzolara R, Ussowicz M, Benesch M, Ebetsberger-Dachs G, Chan GCF, Jones N, Ladenstein R, Ambros IM, Ambros PF. Impact of Disseminated Neuroblastoma Cells on the Identification of the Relapse-Seeding Clone. Clin Cancer Res 2017; 23:4224-4232. [PMID: 28228384 DOI: 10.1158/1078-0432.ccr-16-2082] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/20/2016] [Accepted: 02/12/2017] [Indexed: 02/07/2023]
Abstract
Purpose: Tumor relapse is the most frequent cause of death in stage 4 neuroblastomas. Since genomic information on the relapse precursor cells could guide targeted therapy, our aim was to find the most appropriate tissue for identifying relapse-seeding clones.Experimental design: We analyzed 10 geographically and temporally separated samples of a single patient by SNP array and validated the data in 154 stage 4 patients.Results: In the case study, aberrations unique to certain tissues and time points were evident besides concordant aberrations shared by all samples. Diagnostic bone marrow-derived disseminated tumor cells (DTCs) as well as the metastatic tumor and DTCs at relapse displayed a 1q deletion, not detected in any of the seven primary tumor samples. In the validation cohort, the frequency of 1q deletion was 17.8%, 10%, and 27.5% in the diagnostic DTCs, diagnostic tumors, and DTCs at relapse, respectively. This aberration was significantly associated with 19q and ATRX deletions. We observed a significant increased likelihood of an adverse event in the presence of 19q deletion in the diagnostic DTCs.Conclusions: Different frequencies of 1q and 19q deletions in the primary tumors as compared with DTCs, their relatively high frequency at relapse, and their effect on event-free survival (19q deletion) indicate the relevance of analyzing diagnostic DTCs. Our data support the hypothesis of a branched clonal evolution and a parallel progression of primary and metastatic tumor cells. Therefore, searching for biomarkers to identify the relapse-seeding clone should involve diagnostic DTCs alongside the tumor tissue. Clin Cancer Res; 23(15); 4224-32. ©2017 AACR.
Collapse
Affiliation(s)
- M Reza Abbasi
- CCRI, Children's Cancer Research Institute, Vienna, Austria.
| | | | | | - Georg Mann
- St. Anna Children's Hospital, Vienna, Austria
| | - Andrea Ziegler
- CCRI, Children's Cancer Research Institute, Vienna, Austria
| | | | - Roman Crazzolara
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Marek Ussowicz
- Department of Pediatric Hematology and Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Martin Benesch
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | | | - Godfrey C F Chan
- Department of Pediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong
| | - Neil Jones
- Department of Pediatrics and Adolescent Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Ruth Ladenstein
- CCRI, Children's Cancer Research Institute, Vienna, Austria.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Inge M Ambros
- CCRI, Children's Cancer Research Institute, Vienna, Austria
| | - Peter F Ambros
- CCRI, Children's Cancer Research Institute, Vienna, Austria. .,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM. Choosing the right cell line for renal cell cancer research. Mol Cancer 2016; 15:83. [PMID: 27993170 PMCID: PMC5168717 DOI: 10.1186/s12943-016-0565-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023] Open
Abstract
Cell lines are still a tool of choice for many fields of biomedical research, including oncology. Although cancer is a very complex disease, many discoveries have been made using monocultures of established cell lines. Therefore, the proper use of in vitro models is crucial to enhance our understanding of cancer. Therapeutics against renal cell cancer (RCC) are also screened with the use of cell lines. Multiple RCC in vitro cultures are available, allowing in vivo heterogeneity in the laboratory, but at the same time, these can be a source of errors. In this review, we tried to sum up the data on the RCC cell lines used currently. An increasing amount of data on RCC shed new light on the molecular background of the disease; however, it revealed how much still needs to be done. As new types of RCC are being distinguished, novel cell lines and the re-exploration of old ones seems to be indispensable to create effective in vitro tools for drug screening and more.
Collapse
Affiliation(s)
- Klaudia K Brodaczewska
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Michal Fiedorowicz
- Department of Experimental Pharmacology, Polish Academy of Science Medical Research Centre, Warsaw, Poland
| | - Camillo Porta
- Department of Medical Oncology, IRCCS San Matteo University Hospital Foundation, Pavia, Italy
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.
| |
Collapse
|
21
|
Abstract
The majority of kidney cancers are associated with mutations in the von Hippel-Lindau gene and a small proportion are associated with infrequent mutations in other well characterized tumour-suppressor genes. In the past 15 years, efforts to uncover other key genes involved in renal cancer have identified many genes that are dysregulated or silenced via epigenetic mechanisms, mainly through methylation of promoter CpG islands or dysregulation of specific microRNAs. In addition, the advent of next-generation sequencing has led to the identification of several novel genes that are mutated in renal cancer, such as PBRM1, BAP1 and SETD2, which are all involved in histone modification and nucleosome and chromatin remodelling. In this Review, we discuss how altered DNA methylation, microRNA dysregulation and mutations in histone-modifying enzymes disrupt cellular pathways in renal cancers.
Collapse
Affiliation(s)
- Mark R Morris
- Brain Tumour Research Centre, Wolverhampton School of Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Farida Latif
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
22
|
Ashktorab H, Shakoori A, Zarnogi S, Sun X, Varma S, Lee E, Shokrani B, Laiyemo AO, Washington K, Brim H. Reduced Representation Bisulfite Sequencing Determination of Distinctive DNA Hypermethylated Genes in the Progression to Colon Cancer in African Americans. Gastroenterol Res Pract 2016; 2016:2102674. [PMID: 27688749 PMCID: PMC5023837 DOI: 10.1155/2016/2102674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/07/2016] [Indexed: 12/23/2022] Open
Abstract
Background and Aims. Many studies have focused on the determination of methylated targets in colorectal cancer. However, few analyzed the progressive methylation in the sequence from normal to adenoma and ultimately to malignant tumors. This is of utmost importance especially in populations such as African Americans who generally display aggressive tumors at diagnosis and for whom markers of early neoplasia are needed. We aimed to determine methylated targets in the path to colon cancer in African American patients using Reduced Representation Bisulfite Sequencing (RRBS). Methods. Genomic DNA was isolated from fresh frozen tissues of patients with different colon lesions: normal, a tubular adenoma, a tubulovillous adenoma, and five cancers. RRBS was performed on these DNA samples to identify hypermethylation. Alignment, mapping, and confirmed CpG methylation analyses were performed. Preferential hypermethylated pathways were determined using Ingenuity Pathway Analysis (IPA). Results. We identified hypermethylated CpG sites in the following genes: L3MBTL1, NKX6-2, PREX1, TRAF7, PRDM14, and NEFM with the number of CpG sites being 14, 17, 10, 16, 6, and 6, respectively, after pairwise analysis of normal versus adenoma, adenoma versus cancer, and normal versus cancer. IPA mapped the above-mentioned hypermethylated genes to the Wnt/β-catenin, PI3k/AKT, VEGF, and JAK/STAT3 signaling pathways. Conclusion. This work provides insight into novel differential CpGs hypermethylation sites in colorectal carcinogenesis. Functional analysis of the novel gene targets is needed to confirm their roles in their associated carcinogenic pathways.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, Washington, DC, USA
| | - Afnan Shakoori
- Department of Genetics, Howard University, Washington, DC, USA
- Umm AL-Qura University, Makkah, Saudi Arabia
| | - Shatha Zarnogi
- Department of Genetics, Howard University, Washington, DC, USA
| | - Xueguang Sun
- DNA Sequencing and Genotyping Core, Cincinnati, OH 45229, USA
| | | | - Edward Lee
- Department of Pathology, Howard University, Washington, DC, USA
| | - Babak Shokrani
- Department of Pathology, Howard University, Washington, DC, USA
| | - Adeyinka O. Laiyemo
- Department of Medicine and Cancer Center, Howard University, Washington, DC, USA
| | | | - Hassan Brim
- Department of Pathology, Howard University, Washington, DC, USA
| |
Collapse
|
23
|
Winter S, Fisel P, Büttner F, Rausch S, D’Amico D, Hennenlotter J, Kruck S, Nies AT, Stenzl A, Junker K, Scharpf M, Hofmann U, van der Kuip H, Fend F, Ott G, Agaimy A, Hartmann A, Bedke J, Schwab M, Schaeffeler E. Methylomes of renal cell lines and tumors or metastases differ significantly with impact on pharmacogenes. Sci Rep 2016; 6:29930. [PMID: 27435027 PMCID: PMC4951699 DOI: 10.1038/srep29930] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/24/2016] [Indexed: 11/10/2022] Open
Abstract
Current therapies for metastatic clear cell renal cell carcinoma (ccRCC) show limited efficacy. Drug efficacy, typically investigated in preclinical cell line models during drug development, is influenced by pharmacogenes involved in targeting and disposition of drugs. Here we show through genome-wide DNA methylation profiling, that methylation patterns are concordant between primary ccRCC and macro-metastases irrespective of metastatic sites (rs ≥ 0.92). However, 195,038 (41%) of all investigated CpG sites, including sites within pharmacogenes, were differentially methylated (adjusted P < 0.05) in five established RCC cell lines compared to primary tumors, resulting in altered transcriptional expression. Exemplarily, gene-specific analyses of DNA methylation, mRNA and protein expression demonstrate lack of expression of the clinically important drug transporter OCT2 (encoded by SLC22A2) in cell lines due to hypermethylation compared to tumors or metastases. Our findings provide evidence that RCC cell lines are of limited benefit for prediction of drug effects due to epigenetic alterations. Similar epigenetic landscape of ccRCC-metastases and tumors opens new avenue for future therapeutic strategies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cohort Studies
- DNA Methylation/genetics
- Epigenesis, Genetic/drug effects
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genome, Human
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Metastasis
- Pharmacogenetics
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| | - Pascale Fisel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| | - Florian Büttner
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Auerbachstr. 112, 70376 Stuttgart, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Rausch
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Debora D’Amico
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Stephan Kruck
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Anne T. Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University Medical Center and Saarland University Faculty of Medicine, Kirrberger Straße, 66421 Homburg/Saar, Germany
| | - Marcus Scharpf
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, Liebermeisterstr. 8, 72076 Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| | - Heiko van der Kuip
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, Liebermeisterstr. 8, 72076 Tuebingen, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Auerbachstr. 110, 70376 Stuttgart, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Erlangen-Nürnberg, Krankenhausstr. 8–10, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Erlangen-Nürnberg, Krankenhausstr. 8–10, 91054 Erlangen, Germany
| | - Jens Bedke
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Urology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Auerbachstr. 112, 70376 Stuttgart, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Clinical Pharmacology, University Hospital Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| |
Collapse
|
24
|
Shenoy N, Pagliaro L. Sequential pathogenesis of metastatic VHL mutant clear cell renal cell carcinoma: putting it together with a translational perspective. Ann Oncol 2016; 27:1685-95. [PMID: 27329246 DOI: 10.1093/annonc/mdw241] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for ∼80% of all RCC, and biallelic Von Hippel-Lindau (VHL) gene defects occur in ∼75% of sporadic ccRCC. The etiopathogenesis of VHL mutant metastatic RCC, based on our understanding to date of molecular mechanisms involved, is a sequence of events which can be grouped under the following: (i) loss of VHL activity (germline/somatic mutation + inactivation of the wild-type copy); (ii) constitutive activation of the hypoxia-inducible factor (HIF) pathway due to loss of VHL activity and transcription of genes involved in angiogenesis, epithelial-mesenchymal transition, invasion, metastasis, survival, anaerobic glycolysis and pentose phosphate pathway; (iii) interactions of the HIF pathway with other oncogenic pathways; (iv) genome-wide epigenetic changes (potentially driven by an overactive HIF pathway) and the influence of epigenetics on various oncogenic, apoptotic, cell cycle regulatory and mismatch repair pathways (inhibition of multiple tumor suppressor genes); (v) immune evasion, at least partially caused by changes in the epigenome. These mechanisms interact throughout the pathogenesis and progression of disease, and also confer chemoresistance and radioresistance, making it one of the most difficult metastatic cancers to treat. This article puts together the sequential pathogenesis of VHL mutant ccRCC by elaborating these mechanisms and the interplay of oncogenic pathways, epigenetics, metabolism and immune evasion, with a perspective on potential therapeutic strategies. We reflect on the huge gap between our understanding of the molecular biology and currently accepted standard of care in metastatic ccRCC, and present ideas for better translational research involving therapeutic strategies with combinatorial drug approach, targeting different aspects of the pathogenesis.
Collapse
Affiliation(s)
- N Shenoy
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| | - L Pagliaro
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| |
Collapse
|
25
|
Ponnusamy L, Mahalingaiah PKS, Singh KP. Chronic Oxidative Stress Increases Resistance to Doxorubicin-Induced Cytotoxicity in Renal Carcinoma Cells Potentially Through Epigenetic Mechanism. Mol Pharmacol 2015; 89:27-41. [DOI: 10.1124/mol.115.100206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022] Open
|
26
|
Integrated analysis of epigenomic and genomic changes by DNA methylation dependent mechanisms provides potential novel biomarkers for prostate cancer. Oncotarget 2015; 5:7858-69. [PMID: 25277202 PMCID: PMC4202166 DOI: 10.18632/oncotarget.2313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2’–deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.
Collapse
|
27
|
Shenoy N, Vallumsetla N, Zou Y, Galeas JN, Shrivastava M, Hu C, Susztak K, Verma A. Role of DNA methylation in renal cell carcinoma. J Hematol Oncol 2015. [PMID: 26198328 PMCID: PMC4511443 DOI: 10.1186/s13045-015-0180-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alterations in DNA methylation are seen in cancers and have also been examined in clear cell renal cell carcinoma (ccRCC). Numerous tumor suppressor genes have been reported to be partially or completely silenced due to hypermethylation of their promoters in single-locus studies, and the use of hypomethylating agents has been shown to restore the expression of many of these genes in vitro. In particular, members of the Wnt and TGF-beta pathways, pro-apoptotic genes such as APAF-1 and negative cell-cycle regulators such as KILLIN have been shown to be epigenetically silenced in numerous studies in ccRCC. Recently, TCGA analysis of a large cohort of ccRCC samples demonstrated that aberrant hypermethylation correlated with the stage and grade in kidney cancer. Our genome-wide studies also revealed aberrant widespread hypermethylation that affected regulatory regions of the kidney genome in ccRCC. We also observed that aberrant enhancer hypermethylation was predictive of adverse prognosis in ccRCC. Recent discovery of mutations affecting epigenetic regulators reinforces the importance of these changes in the pathophysiology of ccRCC and points to the potential of epigenetic modulators in the treatment of this malignancy.
Collapse
Affiliation(s)
- Niraj Shenoy
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | - Nishanth Vallumsetla
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | - Yiyu Zou
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | - Jose Nahun Galeas
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | | | - Caroline Hu
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | - Katalin Susztak
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Amit Verma
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| |
Collapse
|
28
|
Beuselinck B, Fridman WH, Zucman-Rossi J. Molecular subtypes and prognosis in RCC. Aging (Albany NY) 2015; 7:219-20. [PMID: 25885644 PMCID: PMC4429085 DOI: 10.18632/aging.100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/09/2015] [Indexed: 11/25/2022]
Affiliation(s)
- Benoit Beuselinck
- UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, IUH, F-75010 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
- Labex Immuno-Oncology, F-75006 Paris, France
- University Hospitals Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Wolf Herman Fridman
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
- Labex Immuno-Oncology, F-75006 Paris, France
- UMR_S1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Jessica Zucman-Rossi
- UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, IUH, F-75010 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
- Labex Immuno-Oncology, F-75006 Paris, France
| |
Collapse
|
29
|
Beuselinck B, Job S, Becht E, Karadimou A, Verkarre V, Couchy G, Giraldo N, Rioux-Leclercq N, Molinié V, Sibony M, Elaidi R, Teghom C, Patard JJ, Méjean A, Fridman WH, Sautès-Fridman C, de Reyniès A, Oudard S, Zucman-Rossi J. Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clin Cancer Res 2015; 21:1329-39. [PMID: 25583177 DOI: 10.1158/1078-0432.ccr-14-1128] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Selecting patients with metastatic clear-cell renal cell carcinoma (m-ccRCC) who might benefit from treatment with targeted tyrosine kinase inhibitors (TKI) is a challenge. Our aim was to identify molecular markers associated with outcome in patients with m-ccRCC treated with sunitinib. EXPERIMENTAL DESIGN We performed global transcriptome analyses on 53 primary resected ccRCC tumors from patients who developed metastatic disease and were treated with first-line sunitinib. We also determined chromosome copy-number aberrations, methylation status, and gene mutations in von Hippel-Lindau and PBRM1. Molecular data were analyzed in relation with response rate (RR), progression-free survival (PFS), and overall survival (OS). Validation was performed in 47 additional ccRCC samples treated in first-line metastatic setting with sunitinib. RESULTS Unsupervised transcriptome analysis identified 4 robust ccRCC subtypes (ccrcc1 to 4) related to previous molecular classifications that were associated with different responses to sunitinib treatment. ccrcc1/ccrcc4 tumors had a lower RR (P = 0.005) and a shorter PFS and OS than ccrcc2/ccrcc3 tumors (P = 0.001 and 0.0003, respectively). These subtypes were the only significant covariate in the multivariate Cox model for PFS and OS (P = 0.017 and 0.006, respectively). ccrcc1/ccrcc4 tumors were characterized by a stem-cell polycomb signature and CpG hypermethylation, whereas ccrcc3 tumors, sensitive to sunitinib, did not exhibit cellular response to hypoxia. Moreover, ccrcc4 tumors exhibited sarcomatoid differentiation with a strong inflammatory, Th1-oriented but suppressive immune microenvironment, with high expression of PDCD1 (PD-1) and its ligands. CONCLUSIONS ccRCC molecular subtypes are predictive of sunitinib response in metastatic patients, and could be used for personalized mRCC treatment with TKIs, demethylating or immunomodulatory drugs.
Collapse
Affiliation(s)
- Benoit Beuselinck
- Inserm, UMR-1162, Génomique fonctionnelle des tumeurs solides, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Labex Immuno-oncology, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Oncology, Paris, France
| | - Sylvie Job
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Etienne Becht
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Labex Immuno-oncology, Paris, France. UMR_S1138, Centre de Recherche des Cordeliers, Paris, France
| | - Alexandra Karadimou
- Inserm, UMR-1162, Génomique fonctionnelle des tumeurs solides, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Labex Immuno-oncology, Paris, France
| | - Virginie Verkarre
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants malades, Department of Pathology, Paris, France
| | - Gabrielle Couchy
- Inserm, UMR-1162, Génomique fonctionnelle des tumeurs solides, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Labex Immuno-oncology, Paris, France
| | - Nicolas Giraldo
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. UMR_S1138, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Mathilde Sibony
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Department of Pathology, Paris, France
| | - Reza Elaidi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Oncology, Paris, France
| | - Corinne Teghom
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Oncology, Paris, France
| | | | - Arnaud Méjean
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Oncology, Paris, France
| | - Wolf Herman Fridman
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Labex Immuno-oncology, Paris, France. UMR_S1138, Centre de Recherche des Cordeliers, Paris, France
| | - Catherine Sautès-Fridman
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Labex Immuno-oncology, Paris, France. UMR_S1138, Centre de Recherche des Cordeliers, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Stéphane Oudard
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Oncology, Paris, France
| | - Jessica Zucman-Rossi
- Inserm, UMR-1162, Génomique fonctionnelle des tumeurs solides, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Labex Immuno-oncology, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Oncology, Paris, France.
| |
Collapse
|
30
|
Hypermethylation of the 16q23.1 tumor suppressor gene ADAMTS18 in clear cell renal cell carcinoma. Int J Mol Sci 2015; 16:1051-65. [PMID: 25569086 PMCID: PMC4307290 DOI: 10.3390/ijms16011051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/23/2014] [Indexed: 01/11/2023] Open
Abstract
To identify tumor suppressor genes (TSGs) silenced by hypermethylation and discover new epigenetic biomarkers for early cancer detection. ADAMTS18, located at 16q23.1, has been reported to be a critical TSG in multiple primary tumors; however, this has not yet been verified in clear cell renal cell carcinoma (ccRCC). We explored epigenetic alterations in this gene in ccRCC and analyzed possible clinicopathological associations. We examined ADAMTS18 gene expression and methylation by semi-quantitative reverse transcription PCR (RT-PCR) and methylation-specific polymerase chain reaction (MSP) in 5 ccRCC-derived cell lines before and after treatment with 5-aza-2'-deoxycytidine (5-AzaC). MSP was further performed for 101 ccRCC primary tumors and 20 adjacent normal tissues. Some cell lines and specimens were examined by subsequent bisulfite genomic sequencing (BGS) and real-time PCR. Further, we analyzed the relationship between the ADAMTS18 gene methylation and clinicopathological features, including short-term disease-free survival (DFS), in patients with ccRCC. ADAMTS18 down-regulation and hypermethylation were detected in the ccRCC-derived cell lines using RT-PCR and MSP. Treatment with 5-AzaC reversed the hypermethylation of the ADAMTS18 gene and restored its expression. Hypermethylation was further detected in 44 of 101 (43.6%) primary tumors and 3 of 20 (15.0%) adjacent normal tissues. However, a significant difference between both groups was observed (p = 0.02). BGS analysis and real-time PCR were subsequently performed to confirm the results of RT-PCR and MSP. Furthermore, the methylation status of ADAMTS18 was not significantly associated with gender, age, location, tumor diameter, pathological stage, nuclear grade or short-term DFS in patients with ccRCC (p > 0.05). The ADAMTS18 gene is often down-regulated by hypermethylation in ccRCC-derived cell lines and primary tumors, indicating its critical role as a TSG in ccRCC. We conclude that ADAMTS18 gene hypermethylation may be involved in the tumorigenesis of ccRCC and may serve as a novel biomarker for this disease.
Collapse
|
31
|
Roessler J, Ammerpohl O, Gutwein J, Steinemann D, Schlegelberger B, Weyer V, Sariyar M, Geffers R, Arnold N, Schmutzler R, Bartram CR, Heinrich T, Abbas M, Antonopoulos W, Schipper E, Hasemeier B, Kreipe H, Lehmann U. The CpG island methylator phenotype in breast cancer is associated with the lobular subtype. Epigenomics 2014; 7:187-99. [PMID: 25347269 DOI: 10.2217/epi.14.74] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Aberrations in DNA methylation patterns are well-described in human malignancies. However, the existence of the 'CpG island methylator phenotype' (CIMP) in human breast cancer is still controversial. MATERIALS & METHODS Illumina's HumanMethylation 450K BeadChip was used to analyze genome-wide DNA methylation patterns. Chromosomal abnormalities were determined by array-based CGH. RESULTS Invasive lobular breast carcinomas exhibit the highest number of differentially methylated CpG sites and a strong inverse correlation of aberrant DNA hypermethylation and copy number alterations. Nine differentially methylated regions within seven genes discriminating the investigated subgroups were identified and validated in an independent validation cohort and correlated to a better relapse-free survival. CONCLUSION These results depict a clear difference between genetically and epigenetically unstable breast carcinomas indicating different ways of tumor progression and/or initiation, which strongly supports the association of CIMP with the lobular subtype and provide new options for detection and therapy.
Collapse
Affiliation(s)
- Jessica Roessler
- Institute of Pathology, Hannover Medical School, Carl-Neuber-Str. 1, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Overexpression of FABP7 promotes cell growth and predicts poor prognosis of clear cell renal cell carcinoma. Urol Oncol 2014; 33:113.e9-17. [PMID: 25192834 DOI: 10.1016/j.urolonc.2014.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Renal cell carcinoma (RCC) is one of the most lethal urologic malignancies; however, the molecular events supporting RCC carcinogenesis remain poorly understood. The aim of the present study was to determine the differential expression of genes between normal kidney and clear cell RCC (ccRCC) samples and investigate the biological function of the most frequently altered gene in RCC cells. MATERIALS AND METHODS The gene expression profiles of 60 ccRCC and matched normal kidney samples from The Cancer Genome Atlas were analyzed. The altered genes were subjected to functional annotation clustering and integrative pathway analysis. The expression of one of the most frequently altered gene, fatty acid-binding protein (FABP) 7, in ccRCC and matched normal kidney samples was verified by immunohistochemistry and the association between FABP7 level and patient survival was investigated. Furthermore, FABP7 DNA copy number alteration, methylation, and mutation status in ccRCC from The Cancer Genome Atlas were analyzed. Finally, FABP7-overexpressing RCC cells were generated to determine the function of FABP7 in cell growth and the potential mechanisms of action. RESULTS FABP7 was significantly up-regulated in ccRCC, and the expression of FABP7 positively correlated with advanced clinical stage and poor survival of patients with ccRCC. FABP7 DNA copy number alteration was not frequently detected in ccRCC, and no mutation of FABP7 was found. FABP7 messenger RNA expression inversely correlated with its DNA methylation. Overexpression of FABP7 in RCC cells enhanced cell growth, clonogenicity, cell cycle progression and activated both extracellular-signal-regulated kinases (ERK) and signal transducer and activator of transcription 3 (Stat3) signaling. CONCLUSION FABP7 is overexpressed in ccRCC and promotes cell growth by the activation of ERK and Stat3 signaling pathways. Evidence from the clinical observations and experimental data suggests that FABP7 is a novel prognostic marker and potential therapeutic target for ccRCC.
Collapse
|