1
|
Derdzakyan NA, Lava CX, Hakimi AA, Johns JD, Kim HJ, Hoa M. Variability in Perioperative Steroid Therapy Regimen for Cochlear Implantation as It Relates to Hearing Preservation. Otol Neurotol 2024; 45:e28-e35. [PMID: 38085763 DOI: 10.1097/mao.0000000000004058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
HYPOTHESIS We aimed to identify practice trends and association between physician training and administration of perioperative steroids for cochlear implantation (CI) as it relates to hearing preservation. BACKGROUND Perioperative steroid therapy regimens are postulated to protect residual hearing and improve hearing preservation outcomes in CI. METHODS A 27-question online survey was developed by the senior authors using the Qualtrics Survey Tool, then distributed via email from September to November 2022 to otolaryngologists specializing in otology or neurotology and who practice in the United States or Canada. RESULTS The survey was sent to 463 physicians, 162 (35.0%) of whom completed the survey. One hundred forty-four (31.1%) responses underwent analysis. All physicians administering preoperative steroids (n = 31) prefer preoperative oral prednisone. Of 143 physicians administering intraoperative steroids, 54.5% prefer intraoperative intravenous dexamethasone. More than half (77.6%) of 85 physicians administering postoperative steroids prefer postoperative oral prednisone. Postoperative steroid administration (p < 0.006) and taper utilization (p < 0.041) were greater among physicians who complete greater than 40 CIs annually (n = 47 [71.2%]; n = 30 [49.2%]) than physicians who complete up to 40 CIs annually (n = 37 [48.7%]; n = 20 [31.3%]), respectively. Physicians practicing for 5 to 20 years after residency are more prevalent in using postoperative steroid tapers than physicians practicing for fewer than 5 years after and more than 20 years after residency (n = 37 [51.4%] versus n = 14 [25.5%], p < 0.001). CONCLUSION Consensus is needed about the optimal steroid treatment for CI patients. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
| | | | - Amir A Hakimi
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
| | - J Dixon Johns
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
| | - H Jeffrey Kim
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
2
|
Liu J, Zhu L, Bao Y, Du Z, Shi L, Hong X, Zou Z, Peng G. Injectable dexamethasone-loaded peptide hydrogel for therapy of radiation-induced ototoxicity by regulating the mTOR signaling pathway. J Control Release 2024; 365:729-743. [PMID: 38065412 DOI: 10.1016/j.jconrel.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Radiation-induced ototoxicity is associated with inflammation response and excessive reactive oxygen species in the cochlea. However, the effectiveness of many drugs in clinical settings is limited due to anatomical barriers in the inner ear and pharmacokinetic instability. To address this issue, we developed an injectable hydrogel called RADA32-HRN-dexamethasone (RHD). The RHD hydrogel possesses self-anti-inflammatory properties and can self-assemble into nanofibrous structures, ensuring controlled and sustained release of dexamethasone in the local region. Flow cytometry analysis revealed that the uptake of FITC-conjugated RHD gel by hair cells increased in a time-dependent manner. Compared to free dexamethasone solutions, dexamethasone-loaded RHD gel achieved a longer and more controlled release profile of dexamethasone. Additionally, RHD gel effectively protected against the inflammatory response, reduced excessive reactive oxygen species production, and reversed the decline in mitochondrial membrane potentials induced by ionizing radiation, leading to attenuation of apoptosis and DNA damage. Moreover, RHD gel promoted the recovery of outer hair cells and partially restored auditory function in mice exposed to ionizing radiation. These findings validated the protective effects of RHD gel against radiation-induced ototoxicity in both cell cultures and animal models. Furthermore, RHD gel enhanced the activity of the mammalian target of rapamycin (mTOR) signaling pathway, which was inhibited by ionizing radiation, thereby promoting the survival of hair cells. Importantly, intratympanic injections of RHD gel exhibited excellent biosafety and do not interfere with the anti-tumor effects of radiotherapy. In summary, our study demonstrates the therapeutic potential of injectable dexamethasone-loaded RHD hydrogel for the treatment of radiation-induced hearing loss by regulating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jingyu Liu
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Lisheng Zhu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yuqing Bao
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Zhouyuan Du
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Liangliang Shi
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hong
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Zhenwei Zou
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China.
| | - Gang Peng
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Pérez-Osorio IN, Espinosa A, Giraldo Velázquez M, Padilla P, Bárcena B, Fragoso G, Jung-Cook H, Besedovsky H, Meneses G, Sciutto Conde EL. Nose-to-Brain Delivery of Dexamethasone: Biodistribution Studies in Mice. J Pharmacol Exp Ther 2021; 378:244-250. [PMID: 34531307 DOI: 10.1124/jpet.121.000530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation (NI) is an important physiologic process which promotes the tissue repair and homeostatic maintenance in the central nervous system after different types of insults. However, when it is exacerbated and sustained in time, NI plays a critical role in the pathogenesis of different neurologic diseases. The high systemic doses required for brain-specific targeting lead to severe undesirable effects. The intranasal (IN) route has been proposed as an alternative drug administration route for a better NI control. Herein, the brain biodistribution of intranasally administered dexamethasone versus intravenously administered one is reported. A higher amount of dexamethasone was found in every analyzed region of those brains of intranasally administered mice. HPLC analysis also revealed that IN administration allows Dex to arrive faster and in a greater concentration to the brain in comparison with intravenous administration, data confirmed by immunofluorescence and HPLC analysis. These data support the proposal of the IN administration of Dex as an alternative for a more efficient control of NI. SIGNIFICANCE STATEMENT: This work highlights the biodistribution of dexamethasone after its intranasal administration. Intranasal administration allows for a faster arrival, better distribution, and a higher concentration of the drug within the brain compared to its intravenous administration. These results explain some of the evidence shown in a previous work in which dexamethasone controls neuroinflammation in a murine stroke model and can be used to propose alternative treatments for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Iván Nicolás Pérez-Osorio
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Alejandro Espinosa
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Manuel Giraldo Velázquez
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Patricia Padilla
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Brandon Bárcena
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Helgi Jung-Cook
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Hugo Besedovsky
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Gabriela Meneses
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| | - Edda Lydia Sciutto Conde
- Instituto de Investigaciones Biomédicas, (I.N.P.O, A.E., M.G.V., P.P., B.B., G.F., E.L.S.C.), Facultad de Químicas (H.J.-C.), Universidad Nacional Autónoma de México, Mexico City, Mexico; Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany (H.B.); and Departament of Parasitology, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico (G.M.)
| |
Collapse
|
4
|
Szeto B, Valentini C, Aksit A, Werth EG, Goeta S, Brown LM, Olson ES, Kysar JW, Lalwani AK. Impact of Systemic versus Intratympanic Dexamethasone Administration on the Perilymph Proteome. J Proteome Res 2021; 20:4001-4009. [PMID: 34291951 DOI: 10.1021/acs.jproteome.1c00322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucocorticoids are the first-line treatment for sensorineural hearing loss, but little is known about the mechanism of their protective effect or the impact of route of administration. The recent development of hollow microneedles enables safe and reliable sampling of perilymph for proteomic analysis. Using these microneedles, we investigate the effect of intratympanic (IT) versus intraperitoneal (IP) dexamethasone administration on guinea pig perilymph proteome. Guinea pigs were treated with IT dexamethasone (n = 6), IP dexamethasone (n = 8), or untreated for control (n = 8) 6 h prior to aspiration. The round window membrane (RWM) was accessed via a postauricular approach, and hollow microneedles were used to perforate the RWM and aspirate 1 μL of perilymph. Perilymph samples were analyzed by liquid chromatography-mass spectrometry-based label-free quantitative proteomics. Mass spectrometry raw data files have been deposited in an international public repository (MassIVE proteomics repository at https://massive.ucsd.edu/) under data set # MSV000086887. In the 22 samples of perilymph analyzed, 632 proteins were detected, including the inner ear protein cochlin, a perilymph marker. Of these, 14 proteins were modulated by IP, and three proteins were modulated by IT dexamethasone. In both IP and IT dexamethasone groups, VGF nerve growth factor inducible was significantly upregulated compared to control. The remaining adjusted proteins modulate neurons, inflammation, or protein synthesis. Proteome analysis facilitated by the use of hollow microneedles shows that route of dexamethasone administration impacts changes seen in perilymph proteome. Compared to IT administration, the IP route was associated with greater changes in protein expression, including proteins involved in neuroprotection, inflammatory pathway, and protein synthesis. Our findings show that microneedles can mediate safe and effective intracochlear sampling and hold promise for inner ear diagnostics.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Chris Valentini
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Elizabeth S Olson
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jeffrey W Kysar
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Anil K Lalwani
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
5
|
Sawamura S, Ogata G, Asai K, Razvina O, Ota T, Zhang Q, Madhurantakam S, Akiyama K, Ino D, Kanzaki S, Saiki T, Matsumoto Y, Moriyama M, Saijo Y, Horii A, Einaga Y, Hibino H. Analysis of Pharmacokinetics in the Cochlea of the Inner Ear. Front Pharmacol 2021; 12:633505. [PMID: 34012393 PMCID: PMC8128070 DOI: 10.3389/fphar.2021.633505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Hearing loss affects >5% of the global population and therefore, has a great social and clinical impact. Sensorineural hearing loss, which can be caused by different factors, such as acoustic trauma, aging, and administration of certain classes of drugs, stems primarily from a dysfunction of the cochlea in the inner ear. Few therapeutic strategies against sensorineural hearing loss are available. To develop effective treatments for this disease, it is crucial to precisely determine the behavior of ototoxic and therapeutic agents in the microenvironment of the cochlea in live animals. Since the 1980s, a number of studies have addressed this issue by different methodologies. However, there is much less information on pharmacokinetics in the cochlea than that in other organs; the delay in ontological pharmacology is likely due to technical difficulties with accessing the cochlea, a tiny organ that is encased with a bony wall and has a fine and complicated internal structure. In this review, we not only summarize the observations and insights obtained in classic and recent studies on pharmacokinetics in the cochlea but also describe relevant analytical techniques, with their strengths, limitations, and prospects.
Collapse
Affiliation(s)
- Seishiro Sawamura
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Genki Ogata
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kai Asai
- Department of Chemistry, Keio University, Yokohama, Japan
| | - Olga Razvina
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan.,G-MedEx Office, Niigata University School of Medicine, Niigata, Japan
| | - Takeru Ota
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Qi Zhang
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan.,Department of Otolaryngology, Head and Neck Surgery Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sasya Madhurantakam
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koei Akiyama
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
| | - Daisuke Ino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Sho Kanzaki
- Department of Otolaryngology, School of Medicine, Keio University, Tokyo, Japan
| | - Takuro Saiki
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshifumi Matsumoto
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masato Moriyama
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuo Saijo
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Arata Horii
- Department of Otolaryngology, Head and Neck Surgery Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, Yokohama, Japan
| | - Hiroshi Hibino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,AMED-CREST, AMED, Osaka, Japan
| |
Collapse
|
6
|
Comparison of Hearing Preservation Outcomes Using Extended Versus Single-Dose Steroid Therapy in Cochlear Implantation. Otol Neurotol 2021; 41:e449-e457. [PMID: 32176129 DOI: 10.1097/mao.0000000000002570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The purpose of this study was to compare the hearing preservation outcomes of patients who received extended versus single-dose steroid therapy in cochlear implant surgery. DESIGN Case-control. SETTING Tertiary referral centers in Taiwan from April 2017 to 2019. PARTICIPANTS A total of 70 patients aged 1 to 78 years old (mean = 18.04, standard deviation [SD] = 21.51) who received cochlear implantation via the round window approach were included in the study. Prospectively, 35 cases were enrolled for cochlear implantation with single-dose therapy. Thirty-five controls who underwent cochlear implantation with extended therapy were retrospectively enrolled after frequency matching. OUTCOME MEASURES The main outcome measure was the rate of hearing preservation. This was calculated based on the HEARRING Network formula and results were categorized as complete, partial, and minimal. Impedances served as secondary outcomes. RESULTS There was no significant difference in the complete hearing preservation rates between the extended and single-dose groups at 6 months postoperatively. Impedances were significantly lower in the extended group after 1 month and 6 months of follow up. When the complete and partial hearing preservation groups were compared, the size of round window opening and speed of insertion were found to be statistically significant. CONCLUSIONS Both extended and single-dose therapies result in good hearing preservation in patients who undergo cochlear implantation. However, better impedances can be expected from patients who received extended therapy. A slower speed of insertion and a widely opened round window play a role in hearing preservation.
Collapse
|
7
|
The Physiologic Role of Corticosteroids in Menière's Disease: An Update on Glucocorticoid-mediated Pathophysiology and Corticosteroid Inner Ear Distribution. Otol Neurotol 2021; 41:271-276. [PMID: 31821251 DOI: 10.1097/mao.0000000000002467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
: There are multiple treatment options for Ménière's disease (MD), including dietary modifications, aminoglycoside therapy, and surgery. All have limitations, ranging from limited effectiveness to permanent hearing loss. Corticosteroids have long been used to manage MD due to their relative efficacy and tolerability, but the exact mechanism for disease alleviation is uncertain. Until recently, the precise distribution and role that glucocorticoid receptors play in inner ear diseases have remained largely uninvestigated. Several studies propose they influence mechanisms of fluid regulation through ion and water homeostasis. This review will provide an update on the basic science literature describing the activity of endogenous glucocorticoids and exogenous corticosteroids in the inner ear and the relevance to MD, as well as early clinical trial data pertaining to the application of novel technologies for more effective administration of corticosteroids for the treatment of MD.
Collapse
|
8
|
Huang J, Yang L, Cao X, Wang W. Differences in hearing recovery following intratympanic alone or intravenous dexamethasone with rescue intratympanic steroids for sudden sensorineural hearing loss: A randomised trial. Clin Otolaryngol 2021; 46:546-551. [PMID: 33369870 DOI: 10.1111/coa.13706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVES This study aimed to evaluate hearing improvement at different frequencies and the safety of intratympanic (IT) and intravenous (IV) administration of dexamethasone for sudden sensorineural hearing loss (SSNHL). METHODS SSNHL patients were randomly divided into two groups within 72 hours after onset and received 24 days of dexamethasone therapy. Group A received IT dexamethasone once every other day for 24 days. Group B received IV dexamethasone for 12 days, followed by IT dexamethasone once every other day for the following 12 days. Hearing recovery and side effects were compared. RESULTS Subgroup analysis was performed to look for variation in hearing improvement in high frequency, low frequency and overall hearing at different time points. There was no evidence of a difference in hearing outcomes between IT dexamethasone and sequential IV plus IT treatments. Side effects of steroids were observed within 90 days after treatment. The local adverse effects of IT injection were mild. The systemic side effects in group B were more serious than those in group A. CONCLUSIONS IT dexamethasone was safer than IV dexamethasone, and there was no evidence of a difference in hearing outcomes between IT dexamethasone and sequential IV plus IT treatments. It is necessary to make individualised treatment decisions according to the patient's condition.
Collapse
Affiliation(s)
- Jie Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, BenQ Medical Center, The affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Xihong Cao
- Pharmaceutical Preparation Section of Mianyang Science City Hospital, Mianyang, China
| | - Wuqing Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital of Fudan university, Shanghai, China
| |
Collapse
|
9
|
Lukashkin AN, Sadreev II, Zakharova N, Russell IJ, Yarin YM. Local Drug Delivery to the Entire Cochlea without Breaching Its Boundaries. iScience 2020; 23:100945. [PMID: 32151971 PMCID: PMC7063177 DOI: 10.1016/j.isci.2020.100945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian cochlea is one of the least accessible organs for drug delivery. Systemic administration of many drugs is severely limited by the blood-labyrinth barrier. Local intratympanic administration into the middle ear would be a preferable option in this case, and the only option for many newly emerging classes of drugs, but it leads to the formation of drug concentration gradients along the extensive, narrow cochlea. The gradients are orders of magnitude and well outside the therapeutic windows. Here we present an efficient, quick, and simple method of cochlear pumping, through large-amplitude, low-frequency reciprocal oscillations of the stapes and round window, which can consistently and uniformly deliver drugs along the entire length of the intact cochlea within minutes without disrupting the cochlear boundaries. The method should facilitate novel ways of approaching the treatment of inner ear disorders because it overcomes the challenge of delivering therapeutics along the entire cochlear length. Systemic delivery of drugs to the inner ear is limited by the blood-labyrinth barrier Middle ear administration results in pronounced drug gradients along the cochlea Cochlear pumping distributes drugs evenly along the entire cochlea within minutes
Collapse
Affiliation(s)
- Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; Centre for Regenerative Medicine and Devices, University of Brighton, Brighton BN2 4GJ, UK.
| | - Ildar I Sadreev
- Faculty of Medicine, Department of Medicine, Imperial College, London SW7 2AZ, UK
| | | | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | | |
Collapse
|
10
|
Bielefeld EC, Kobel MJ. Advances and Challenges in Pharmaceutical Therapies to Prevent and Repair Cochlear Injuries From Noise. Front Cell Neurosci 2019; 13:285. [PMID: 31297051 PMCID: PMC6607696 DOI: 10.3389/fncel.2019.00285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022] Open
Abstract
Noise induces a broad spectrum of pathological injuries to the cochlea, reflecting both mechanical damage to the delicate architecture of the structures of the organ of Corti and metabolic damage within the organ of Corti and lateral wall tissues. Unlike ototoxic medications, the blood-labyrinth barrier does not offer protection against noise injury. The blood-labyrinth barrier is a target of noise injury, and can be weakened as part of the metabolic pathologies in the cochlea. However, it also offers a potential for therapeutic intervention with oto-protective compounds. Because the blood-labyrinth barrier is weakened by noise, penetration of blood-borne oto-protective compounds could be higher. However, systemic dosing for cochlear protection from noise offers other significant challenges. An alternative option to systemic dosing is local administration to the cochlea through the round window membrane using a variety of drug delivery techniques. The review will discuss noise-induced cochlear pathology, including alterations to the blood-labyrinth barrier, and then transition into discussing approaches for delivery of oto-protective compounds to reduce cochlear injury from noise.
Collapse
Affiliation(s)
- Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, Columbus, OH, United States
| | - Megan J Kobel
- Department of Speech and Hearing Science, The Ohio State University, Columbus, OH, United States.,Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
11
|
Sadreev II, Burwood GWS, Flaherty SM, Kim J, Russell IJ, Abdullin TI, Lukashkin AN. Drug Diffusion Along an Intact Mammalian Cochlea. Front Cell Neurosci 2019; 13:161. [PMID: 31080407 PMCID: PMC6497751 DOI: 10.3389/fncel.2019.00161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
Intratympanic drug administration depends on the ability of drugs to pass through the round window membrane (RW) at the base of the cochlea and diffuse from this location to the apex. While the RW permeability for many different drugs can be promoted, passive diffusion along the narrowing spiral of the cochlea is limited. Earlier measurements of the distribution of marker ions, corticosteroids, and antibiotics demonstrated that the concentration of substances applied to the RW was two to three orders of magnitude higher in the base compared to the apex. The measurements, however, involved perforating the cochlear bony wall and, in some cases, sampling perilymph. These manipulations can change the flow rate of perilymph and lead to intake of perilymph through the cochlear aqueduct, thereby disguising concentration gradients of the delivered substances. In this study, the suppressive effect of salicylate on cochlear amplification via block of the outer hair cell (OHC) somatic motility was utilized to assess salicylate diffusion along an intact guinea pig cochlea in vivo. Salicylate solution was applied to the RW and threshold elevation of auditory nerve responses was measured at different times and frequencies after application. Resultant concentrations of salicylate along the cochlea were calculated by fitting the experimental data using a mathematical model of the diffusion and clearing of salicylate in a tube of variable diameter combined with a model describing salicylate action on cochlear amplification. Concentrations reach a steady-state at different times for different cochlear locations and it takes longer to reach the steady-state at more apical locations. Even at the steady-state, the predicted concentration at the apex is negligible. Model predictions for the geometry of the longer human cochlea show even higher differences in the steady-state concentrations of the drugs between cochlear base and apex. Our findings confirm conclusions that achieving therapeutic drug concentrations throughout the entire cochlear duct is hardly possible when the drugs are applied to the RW and are distributed via passive diffusion. Assisted methods of drug delivery are needed to reach a more uniform distribution of drugs along the cochlea.
Collapse
Affiliation(s)
- Ildar I Sadreev
- Department of Medicine, Faculty of Medicine, Imperial College, London, United Kingdom
| | - George W S Burwood
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Samuel M Flaherty
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Jongrae Kim
- School of Mechanical Engineering, Institute of Design, Robotics and Optimisation, Aerospace Systems Engineering, University of Leeds, Leeds, United Kingdom
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Timur I Abdullin
- Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom.,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
12
|
Intracochlear administration of steroids with a catheter during human cochlear implantation: a safety and feasibility study. Drug Deliv Transl Res 2018; 8:1191-1199. [PMID: 29761349 DOI: 10.1007/s13346-018-0539-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Suppression of foreign body reaction, improvement of electrode-nerve interaction, and preservation of residual hearing are essential research topics in cochlear implantation. Intracochlear pharmaco- or cell-based therapies can open new horizons in this field. Local drug delivery strategies are desirable as higher local concentrations of agents can be realized and side effects can be minimized compared to systemic administrations. When administered locally at accessible, basal parts of the cochlea, drugs reach apical regions later and in much lower concentrations due to poor diffusion patterns in cochlear fluids. Therefore, new devices are needed to warrant rapid distribution of agents into all parts of the cochlea. Five patients received a deep intracochlear injection of triamcinolone with a specifically designed cochlear catheter during cochlear implantation right before inserting a cochlear implant electrode. As a measure for formation of fibrous tissue around the electrode, electrical impedances were measured in the operation room and over 4 months thereafter. No adverse events were observed peri- and postoperatively. The handling of the device was easy. Severe damage to the microstructure of the cochlea was excluded as far as possible by cone beam computed tomography and vestibular testing. A delayed rise of the impedances was seen in the catheter group compared to controls over all regions of the cochlea. A statistical significance, however, was only obtained at the midregion of the cochlea. Consequently, the cochlear catheter is a safe and feasible device for local drug delivery of pharmaceutical agents into deeper regions of the cochlea.
Collapse
|
13
|
Wang Y, Han L, Diao T, Jing Y, Wang L, Zheng H, Ma X, Qi J, Yu L. A comparison of systemic and local dexamethasone administration: From perilymph/cochlea concentration to cochlear distribution. Hear Res 2018; 370:1-10. [PMID: 30223171 DOI: 10.1016/j.heares.2018.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 11/18/2022]
Abstract
Different types of inner ear diseases can damage different cochlear subsites by different mechanisms. Steroids administered by different methods are commonly used for treating inner ear diseases. There is reason to believe that dexamethasone (Dex) may reach cochlear subsite targets via different pathways after administration by different methods: Intratympanic (IT), postaural (PA), and intraperitoneal (IP). The purpose of this study was to explore the cochlear concentration and distribution of Dex after administration by different methods. High-performance liquid chromatography-mass spectrometry and immunofluorescence technology were employed to measure and compare the Dex concentration in the perilymph and cochlear tissue and the cochlear distribution of Dex. IT administration resulted in higher Dex concentrations in the perilymph and cochlear tissues than those with the other administration methods. Intratympanic and postaural administration could result in higher Dex concentrations in the organ of Corti than systemic administration, but systemic administration could result in higher Dex concentrations in the stria vascularis than the other administration methods. A decreasing basal-apical gradient of Dex uptake was present in the cochlea after IT but not IP or PA administration. These results indicate that different administration methods result in different Dex distributions, which can be attributed to features of the cochlear vascular system and intracochlear diffusion. Our results provide clinicians with an experimental basis for the use of different steroid injection routes to optimize the effects on inner ear diseases with different target organs.
Collapse
Affiliation(s)
- Yixu Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Lin Han
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Tongxiang Diao
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Yuanyuan Jing
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Lin Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Hongwei Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Xin Ma
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Jingcui Qi
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Lisheng Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China.
| |
Collapse
|
14
|
Targeted PCR Array Analysis of Genes in Innate Immunity and Glucocorticoid Signaling Pathways in Mice Cochleae Following Acoustic Trauma. Otol Neurotol 2018; 39:e593-e600. [DOI: 10.1097/mao.0000000000001874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Fetoni AR, Eramo SLM, Di Pino A, Rolesi R, Paciello F, Grassi C, Troiani D, Paludetti G. The Antioxidant Effect of Rosmarinic Acid by Different Delivery Routes in the Animal Model of Noise-Induced Hearing Loss. Otol Neurotol 2018; 39:378-386. [PMID: 29424820 DOI: 10.1097/mao.0000000000001700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HYPOTHESIS Trans-tympanic Rosmarinic Acid (RA), as compared with the systemic administration, protects against noise-induced auditory hair cell and hearing losses in rats in vivo. BACKGROUND ROS production, lipoperoxidative damage, and an imbalance of antioxidant defences play a significant role in noise-induced hearing loss. Several molecules with antioxidant properties have been tested to restore redox homeostasis; however, drug delivery system represents a challenge for their effectiveness. In our model, acute and intense noise exposure induces hearing loss, hair cell death, and oxidative stress, with an increase in superoxide production and over-expression of lipid peroxidation in cochlear structures. METHODS RA was administrated in male Wistar rats by trans-tympanic (20 μl) and systemic (10 mg/kg) modality. In systemic administration, RA was injected 1 hour before noise exposure and once daily for the following 3 days. ABRs were measured before and at days 1, 3, 7, and 30 after noise exposure. Rhodamine-phalloidin staining, dihydroethidium and 8-isoprostane immunostainings were performed to assess and quantify outer hair cells loss, superoxide production, and lipid peroxidation in the different experimental groups. RESULTS Systemic RA administration significantly decreased noise-induced hearing loss and the improvement of auditory function was paralleled by a significant reduction in cochlear oxidative stress. The trans-tympanic modality of drug administration showed a similar degree of protection both at the functional and morphological levels. CONCLUSION The effectiveness of RA given via trans-tympanic injection could be interesting for the future application of this minimally-invasive procedure in the treatment of ROS-induced hearing loss.
Collapse
Affiliation(s)
- Anna R Fetoni
- Institute of Otolaryngology, Università Cattolica School of Medicine, Rome
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo
| | | | - Antonella Di Pino
- Institute of Otolaryngology, Università Cattolica School of Medicine, Rome
| | - Rolando Rolesi
- Institute of Otolaryngology, Università Cattolica School of Medicine, Rome
| | - Fabiola Paciello
- Institute of Otolaryngology, Università Cattolica School of Medicine, Rome
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica School of Medicine, Rome, Italy
| | - Diana Troiani
- Institute of Human Physiology, Università Cattolica School of Medicine, Rome, Italy
| | - Gaetano Paludetti
- Institute of Otolaryngology, Università Cattolica School of Medicine, Rome
| |
Collapse
|
16
|
Lee JJ, Jang JH, Choo OS, Lim HJ, Choung YH. Steroid intracochlear distribution differs by administration method: Systemic versus intratympanic injection. Laryngoscope 2017; 128:189-194. [PMID: 28304075 DOI: 10.1002/lary.26562] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/13/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Steroids have been widely used to treat inner-ear diseases such as sudden sensorineural hearing loss, tinnitus, and Meniere's disease. They can be given via either systemic or intratympanic (IT) injection. The purpose of the present study was to explore differences in intracochlear steroid distribution by the administration method employed (systemic vs. IT injection). STUDY DESIGN Animal study. METHODS Twenty-three Sprague-Dawley rats were given fluorescein isothiocyanate-labeled dexamethasone (FITC-DEX) three times (on successive days) via intraperitoneal (IP) or IT injection. Cochlear uptake of FITC-DEX was evaluated via immunohistochemistry and flow cytometry at 6 hours, and 3 and 7 days after the final injection. RESULTS FITC-DEX uptake was evident in spiral ganglion cells (SGs), the organ of Corti (OC), and the lateral walls (LWs), the basal turns of which were stained relatively prominently in both groups. Animals receiving IP injections exhibited higher FITC-DEX uptakes by the SGs and OC, whereas IT injection triggered higher-level FITC-DEX accumulation by the OC and LWs. Flow cytometry revealed that intracochlear FITC-DEX uptake by IT-injected animals was higher and more prolonged than in animals subjected to IP injections. CONCLUSION We thus describe differences in cochlear steroid distributions after systemic and IT injections. This finding could help our understanding of the pharmacokinetics of steroids in the cochlea. LEVEL OF EVIDENCE NA. Laryngoscope, 128:189-194, 2018.
Collapse
Affiliation(s)
- Jong Joo Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Bk21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
17
|
Murillo-Cuesta S, Vallecillo N, Cediel R, Celaya AM, Lassaletta L, Varela-Nieto I, Contreras J. A Comparative Study of Drug Delivery Methods Targeted to the Mouse Inner Ear: Bullostomy Versus Transtympanic Injection. J Vis Exp 2017. [PMID: 28362376 PMCID: PMC5407703 DOI: 10.3791/54951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present two minimally invasive microsurgical techniques in rodents for specific drug delivery into the middle ear so that it may reach the inner ear. The first procedure consists of perforation of the tympanic bulla, termed bullostomy; the second one is a transtympanic injection. Both emulate human clinical intratympanic procedures. Chitosan-glycerophosphate (CGP) and Ringer´s Lactate buffer (RL) were used as biocompatible vehicles for local drug delivery. CGP is a nontoxic biodegradable polymer widely used in pharmaceutical applications. It is a viscous liquid at RT but it congeals to a semi solid phase at body temperature. RL is an isotonic solution used for intravenous administrations in humans. A small volume of this vehicle is precisely placed on the Round Window (RW) niche by means of a bullostomy. A transtympanic injection fills the middle ear and allows less control but broader access to the inner ear. The safety profiles of both techniques were studied and compared by using functional and morphological tests. Hearing was evaluated by registering the Auditory Brainstem Response (ABR) before and several times after microsurgery. The cytoarchitecture and preservation level of cochlear structures were studied by conventional histological techniques in paraformaldehyde-fixed and decalcified cochlear samples. In parallel, unfixed cochlear samples were taken and immediately frozen to analyze gene expression profiles of inflammatory markers by quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR). Both procedures are suitable as drug delivery methods into the mouse middle ear, although transtympanic injection proved to be less invasive compared to bullostomy.
Collapse
Affiliation(s)
- Silvia Murillo-Cuesta
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII); Instituto de Investigación Sanitaria La Paz (IdiPAZ);
| | - Néstor Vallecillo
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM
| | - Rafael Cediel
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII); Facultad de Veterinaria, Universidad Complutense de Madrid
| | - Adelaida M Celaya
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)
| | - Luis Lassaletta
- Instituto de Investigación Sanitaria La Paz (IdiPAZ); Departmento de Otorrino laringología, Hospital Universitario La Paz
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII); Instituto de Investigación Sanitaria La Paz (IdiPAZ)
| | - Julio Contreras
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII); Facultad de Veterinaria, Universidad Complutense de Madrid
| |
Collapse
|
18
|
Kuthubutheen J, Smith L, Hwang E, Lin V. Preoperative steroids for hearing preservation cochlear implantation: A review. Cochlear Implants Int 2016; 17:63-74. [PMID: 26913646 DOI: 10.1080/14670100.2016.1148319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Preoperative steroids have been shown to be beneficial in reducing the hearing loss associated with cochlear implantation. This review article discusses the mechanism of action, effects of differing routes of administration, and side effects of steroids administered to the inner ear. Studies on the role of preoperative steroids in animal and human studies are also examined and future directions for research in this area are discussed.
Collapse
Affiliation(s)
- Jafri Kuthubutheen
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada.,b Department of Otolaryngology - Head and Neck Surgery , School of Surgery, University of Western Australia , Perth , Australia
| | - Leah Smith
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada
| | - Euna Hwang
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada
| | - Vincent Lin
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada
| |
Collapse
|
19
|
Sun C, Wang X, Chen D, Lin X, Yu D, Wu H. Dexamethasone loaded nanoparticles exert protective effects against Cisplatin-induced hearing loss by systemic administration. Neurosci Lett 2016; 619:142-8. [PMID: 26971701 DOI: 10.1016/j.neulet.2016.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 01/25/2023]
Abstract
Ototoxicity is one of the most important adverse effects of cisplatin chemotherapy. As a common treatment of acute sensorineural hearing loss, systemic administration of steroids was demonstrated ineffective against cisplatin-induced hearing loss (CIHL) in published studies. The current study aimed to evaluate the potential protective effect of dexamethasone (DEX) encapsulated in polyethyleneglycol-coated polylactic acid (PEG-PLA) nanoparticles (DEX-NPs) against cisplatin-induced hearing loss following systemic administration. DEX was fabricated into PEG-PLA nanoparticles using emulsion and evaporation technique as previously reported. DEX or DEX-NPs was administered intraperitoneally to guinea pigs 1h before cisplatin administration. Auditory brainstem response (ABR) threshold shifts were measured at four frequencies (4, 8, 16, and 24kHz) 1 day before and three days after cisplatin injection. Cochlear morphology was examined to evaluate inner ear injury induced by cisplatin exposure. A single dose of DEX-NPs 1h before cisplatin treatment resulted in a significant preservation of the functional and structural properties of the cochlea, which was equivalent to the effect of multidose (3 days) DEX injection. In contrast, no significant protective effect was observed by single dose injection of DEX. The results of histological examination of the cochleae were consistent with the functional measurements. In conclusion, a single dose DEX-NPs significantly attenuated cisplatin ototoxicity in guinea pigs after systemic administration at both histological and functional levels indicating the potential therapeutic benefits of these nanoparticles for enhancing the delivery of DEX in acute sensorineural hearing loss.
Collapse
Affiliation(s)
- Changling Sun
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200092, China; Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, The Fourth People's Hospital of Wuxi City, Wuxi 214062, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200092, China
| | - Dongye Chen
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200092, China
| | - Xin Lin
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200092, China
| | - Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200092, China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai 200092, China.
| |
Collapse
|
20
|
Ciftci Z, Deniz M, Yilmaz I, Ciftci HG, Sirin DY, Gultekin E. In vitro analysis of a novel controlled release system designed for intratympanic administration of N-acetylcysteine: a preliminary report. Am J Otolaryngol 2015; 36:786-93. [PMID: 26545472 DOI: 10.1016/j.amjoto.2015.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 11/30/2022]
Abstract
The aim of this in-vitro experimental study was to design a novel drug delivery system that may permit controlled release of N-acetylcysteine (NAC) following intratympanic administration. The system was composed of two different solutions that attained a hydrogel form within seconds after getting into contact with each other. The authors performed swelling, pH and temperature tests and analysis of controlled release of NAC from this novel controlled release system. For the structure and porosity analysis of the hydrogel, an environmental scanning electron microscope (SEM) was used. The diameter of designed hydrogel showed an increase when pH was increased. In addition, in comparison to acidic values, the pore diameter of the hydrogel increased significantly especially in physiological level. The increase in the pore diameter was also directly proportional to the increase in temperature. Spectrophotometric analysis showed that the amount of NAC released into the medium was statistically significant (p=0.038, t=-2.18, 95% CI; DF: 27). SEM analysis of the samples revealed a smooth surface topography and numerous porous structures. The authors are of the opinion that the designed hydrogel may be used as an alternative method for intratympanic delivery of NAC for otoprotective purposes. The disadvantages of intratympanic injection of the drug in its liquid form, including leakage through eustachian tube, restraining the patient in an uncomfortable position, necessity for repetitive injections and dose dependent inflammation of the middle ear epithelium, may also be avoided. Further in vivo studies should be conducted to assess its tolerability and effectivity.
Collapse
Affiliation(s)
- Zafer Ciftci
- Department of Otorhinolaryngology, School of Medicine, Namik Kemal University, Turkey.
| | - Mahmut Deniz
- Department of Otorhinolaryngology, School of Medicine, Namik Kemal University, Turkey
| | - Ibrahim Yilmaz
- Department of Pharmacovigilance and Rational Use of Drugs, Tekirdag State Hospital, Ministry of Health, Turkey
| | - Halide Gunes Ciftci
- Department of Otorhinolaryngology, Tekirdag State Hospital, Ministry of Health, Turkey
| | - Duygu Yasar Sirin
- Department of Biology, School of Arts and Sciences, Namik Kemal University, Turkey
| | - Erdogan Gultekin
- Department of Otorhinolaryngology, School of Medicine, Namik Kemal University, Turkey
| |
Collapse
|
21
|
Impact of Perioperative Oral Steroid Use on Low-frequency Hearing Preservation After Cochlear Implantation. Otol Neurotol 2015; 36:1480-5. [DOI: 10.1097/mao.0000000000000847] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
|
23
|
Dexamethasone Regulates Cochlear Expression of Deafness-associated Proteins Myelin Protein Zero and Heat Shock Protein 70, as Revealed by iTRAQ Proteomics. Otol Neurotol 2015; 36:1255-65. [DOI: 10.1097/mao.0000000000000748] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Kuthubutheen J, Coates H, Rowsell C, Nedzelski J, Chen JM, Lin V. The role of extended preoperative steroids in hearing preservation cochlear implantation. Hear Res 2015; 327:257-64. [PMID: 26117408 DOI: 10.1016/j.heares.2015.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/03/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Steroids have been shown to reduce the hearing threshold shifts associated with cochlear implantation. Previous studies have examined only the administration of steroids just prior to surgery. The aim of this study is to examine the role of extended preoperative systemic steroids in hearing preservation cochlear implantation. METHODS An animal model of cochlear implantation was used. 24 Hartley strain guinea pigs with a mean weight of 768 g and normal hearing were randomised into a control group, a second group receiving a single dose of systemic dexamethasone one day prior to surgery, and a third group receiving a daily dose of systemic dexamethasone for 5 days prior to surgery. A specially designed cochlear implant electrode by Med-EL (Innsbruck) was inserted through a dorsolateral approach to an insertion depth of 5 mm and left in-situ. Auditory brain stem responses at 8 kHz, 16 kHz and 32 kHz were measured preoperatively, and 1 week, 1 month and 2 months postoperatively. Cochlear histopathology was examined at the conclusion of the study. RESULTS At 1-week post operative, both groups receiving dexamethasone prior to implantation had smaller threshold shifts across all frequencies and which was significant at 32 kHz (p < 0.05). There were no differences among the three groups in the area of electrode related fibrosis. Spiral ganglion neuron (SGN) density was significantly higher in the group receiving steroids for 5 days, but only in the basal cochlear turn. DISCUSSION This is study demonstrates the benefits of extended preoperative systemic steroids on hearing outcomes and SGN density in an animal model of cochlear implantation surgery.
Collapse
Affiliation(s)
- Jafri Kuthubutheen
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada; School of Surgery, University of Western Australia, Perth, Western Australia, Australia.
| | - Harvey Coates
- School of Surgery, University of Western Australia, Perth, Western Australia, Australia
| | - Corwyn Rowsell
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Julian Nedzelski
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Joseph M Chen
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Vincent Lin
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
25
|
Fernandes VT, Lin VYW. Development of an ototoxicity model in the adult CBA/CaJ mouse and determination of a golden window of corticosteroid intervention for otoprotection. J Otolaryngol Head Neck Surg 2014; 43:12. [PMID: 24762042 PMCID: PMC4029804 DOI: 10.1186/1916-0216-43-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/11/2014] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the effect of timing of dexamethasone administration on auditory hair cell survival following an ototoxic insult with kanamycin and furosemide. STUDY DESIGN Controlled experimental study. SETTING Translational science experimental laboratory. METHODS 5-6 week old CBA/CaJ mice, divided into 6 groups, were injected with kanamycin (1 mg/g SC) followed by furosemide (0.5 mg/g IP). Dexamethasone (0.1 mg/g IP) was injected at either 1 hour prior to insult, +1 hr, +6 hr, +12 hr, or +72 hr post insult. Temporal bones harvested on day 7 underwent Organ of Corti dissection. Immunohistochemical staining was performed using antibodies to myosin 7a, phalloidin, and TO-PRO. RESULTS Hair cell counts demonstrate a uniform ototoxicity model with total loss of outer hair cells (OHCs) and near-total loss of inner hair cells (IHCs). The group pre-treated with dexamethasone showed a statistically significant improvement in counts compared to controls (p = 0.004). Counts from the other experimental groups given dexamethasone after the insult were highly variable but demonstrated some apical and middle turn inner hair cell survival. CONCLUSION Treatment of systemic dexamethasone prior to ototoxic insult attenuates hair cell loss in a reliable, novel, ototoxicity model using kanamycin and furosemide in CBA/CaJ mice. Dosing with dexamethasone following ototoxic insult shows promising yet variable response in hair cell survival.
Collapse
Affiliation(s)
| | - Vincent Y W Lin
- Department of Otolaryngolgy - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Suite M1-102, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|