1
|
Tufano M, Marrone L, D'Ambrosio C, Di Giacomo V, Urzini S, Xiao Y, Matuozzo M, Scaloni A, Romano MF, Romano S. FKBP51 plays an essential role in Akt ubiquitination that requires Hsp90 and PHLPP. Cell Death Dis 2023; 14:116. [PMID: 36781840 PMCID: PMC9925821 DOI: 10.1038/s41419-023-05629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
FKBP51 plays a relevant role in sustaining cancer cells, particularly melanoma. This cochaperone participates in several signaling pathways. FKBP51 forms a complex with Akt and PHLPP, which is reported to dephosphorylate Akt. Given the recent discovery of a spliced FKBP51 isoform, in this paper, we interrogate the canonical and spliced isoforms in regulation of Akt activation. We show that the TPR domain of FKBP51 mediates Akt ubiquitination at K63, which is an essential step for Akt activation. The spliced FKBP51, lacking such domain, cannot link K63-Ub residues to Akt. Unexpectedly, PHLPP silencing does not foster phosphorylation of Akt, and its overexpression even induces phosphorylation of Akt. PHLPP stabilizes levels of E3-ubiquitin ligase TRAF6 and supports K63-ubiquitination of Akt. The interactome profile of FKBP51 from melanoma cells highlights a relevant role for PHLPP in improving oncogenic hallmarks, particularly, cell proliferation.
Collapse
Affiliation(s)
- Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory Institute for Animal Production Systems in Mediterranean Environments (ISPAAM), National Research Council (CNR), Piazzale Enrico Fermi 1, Portici, 80055, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Simona Urzini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Monica Matuozzo
- Proteomics, Metabolomics and Mass Spectrometry Laboratory Institute for Animal Production Systems in Mediterranean Environments (ISPAAM), National Research Council (CNR), Piazzale Enrico Fermi 1, Portici, 80055, Naples, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory Institute for Animal Production Systems in Mediterranean Environments (ISPAAM), National Research Council (CNR), Piazzale Enrico Fermi 1, Portici, 80055, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy.
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
2
|
Shaw AK, Garcha V, Shetty V, Vinay V, Bhor K, Ambildhok K, Karande P. Diagnostic Accuracy of Salivary Biomarkers in Detecting Early Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2022; 23:1483-1495. [PMID: 35633529 PMCID: PMC9587865 DOI: 10.31557/apjcp.2022.23.5.1483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Biopsy is the gold standard for oral squamous cell carcinoma (OSCC) diagnosis. Salivary biomarkers provide promising complementary alternative diagnostic adjunct for its simple non- invasive collection and technique and to screen large population. OBJECTIVE To summarize and compare the existing evidence on diagnostic accuracy of salivary biomarkers with their estimation method in detecting early oral squamous cell carcinoma. METHODS The review protocol is registered under PROSPERO(CRD42021225704). PubMed, Google Scholar, EBSCOhost were searched from 2000 to 2020 to identify the screening potential of eight salivary biomarkers: mRNA, miRNA, DUSP100, s100P, IL-8, IL-1B, TNF-a and MMP-9. True-positive, false-positive, true-negative, false-negative, sensitivity, specificity values were extracted or calculated if not present for each study. Quality of selected studies was evaluated based on QUADAS 2 tool. Meta-analysis was performed using a bivariate model parameter for the sensitivity and specificity and summary points, summary receiver operating curve (SROC), confidence region, and prediction region were calculated. RESULTS Eighteen studies were included for qualitative synthesis and out of that 13 for meta-analysis. Sensitivity and specificity were calculated with AUC. For mRNA it was 91% and 90% with 0.96 AUC, miRNA had 91% and 91% with 0.95 AUC for PCR. IL-1B had 46% and 60% with 0.61 AUC, S100p had 45% and 90% with 0.57 AUC for ELISA. IL-8 had 54% and 74% for ELISA and 89% and 90% for PCR with 0.79 AUC and DUSP1 had 32% and 87% for ELISA and 76% and 83% for PCR with 0.83 AUC respectively. CONCLUSION Early detection of OSCC was best achieved by screening for salivary mRNA and miRNA estimated by PCR. Further investigation is required into salivary RNA as novel biomarkers and these salivary biomarkers may be potentially used for non-invasive diagnosis of early OSCC.
Collapse
Affiliation(s)
- Amar Kumar Shaw
- Department of Public Health Dentistry, Sinhgad Dental College and Hospital, Pune 411041, Maharashtra, India.
| | - Vikram Garcha
- Department of Public Health Dentistry, Sinhgad Dental College and Hospital, Pune 411041, Maharashtra, India.
| | - Vittaldas Shetty
- Department of Public Health Dentistry, Sinhgad Dental College and Hospital, Pune 411041, Maharashtra, India.
| | - Vineet Vinay
- Department of Public Health Dentistry, Sinhgad Dental College and Hospital, Pune 411041, Maharashtra, India.
| | - Ketaki Bhor
- Department of Public Health Dentistry, D Y Patil (Deemed to be University) School of Dentistry, Nerul, Navi Mumbai-400706, Maharashtra, India.
| | - Kadambari Ambildhok
- Department of Public Health Dentistry, Sinhgad Dental College and Hospital, Pune 411041, Maharashtra, India.
| | - Purnima Karande
- Department of Public Health Dentistry, Sinhgad Dental College and Hospital, Pune 411041, Maharashtra, India.
| |
Collapse
|
3
|
Rotoli D, Díaz-Flores L, Gutiérrez R, Morales M, Ávila J, Martín-Vasallo P. AmotL2, IQGAP1, and FKBP51 Scaffold Proteins in Glioblastoma Stem Cell Niches. J Histochem Cytochem 2022; 70:9-16. [PMID: 34165350 PMCID: PMC8721575 DOI: 10.1369/00221554211025480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glioma stem cells (GSCs) live in a continuous process of stemness reprogramming to achieve specific cell commitment within the so-called GSC niches, specifically located in periarteriolar regions. In this review, we analyze the expression levels, cellular and subcellular location, and role of three scaffold proteins (IQGAP1, FKBP51, and AmotL2) in GSC niches. Scaffold proteins contribute to cell differentiation, migration, and angiogenesis in glioblastoma. It could be of diagnostic interest for establishing stages, for therapeutic targets, and for improving glioblastoma prognosis, which is still at the experimental level.
Collapse
Affiliation(s)
- Deborah Rotoli
- Department of Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Instituto de Tecnología Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Istituto per l’Endocrinologia e l’Oncologia Gaetano Salvatore, Naples, Italy
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences and Department of Anatomy, Pathology, Histology and Radiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences and Department of Anatomy, Pathology, Histology and Radiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Manuel Morales
- Oncología Médica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Julio Ávila
- Department of Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Instituto de Tecnología Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Pablo Martín-Vasallo
- Pablo Martín-Vasallo, UD Bioquímica y Biología Molecular, Universidad de La Laguna, Av/Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain. E-mail:
| |
Collapse
|
4
|
Durant F, Whited JL. Finding Solutions for Fibrosis: Understanding the Innate Mechanisms Used by Super-Regenerator Vertebrates to Combat Scarring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100407. [PMID: 34032013 PMCID: PMC8336523 DOI: 10.1002/advs.202100407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Indexed: 05/08/2023]
Abstract
Soft tissue fibrosis and cutaneous scarring represent massive clinical burdens to millions of patients per year and the therapeutic options available are currently quite limited. Despite what is known about the process of fibrosis in mammals, novel approaches for combating fibrosis and scarring are necessary. It is hypothesized that scarring has evolved as a solution to maximize healing speed to reduce fluid loss and infection. This hypothesis, however, is complicated by regenerative animals, which have arguably the most remarkable healing abilities and are capable of scar-free healing. This review explores the differences observed between adult mammalian healing that typically results in fibrosis versus healing in regenerative animals that heal scarlessly. Each stage of wound healing is surveyed in depth from the perspective of many regenerative and fibrotic healers so as to identify the most important molecular and physiological variances along the way to disparate injury repair outcomes. Understanding how these powerful model systems accomplish the feat of scar-free healing may provide critical therapeutic approaches to the treatment or prevention of fibrosis.
Collapse
Affiliation(s)
- Fallon Durant
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMA02138USA
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMA02138USA
- The Harvard Stem Cell InstituteCambridgeMA02138USA
| |
Collapse
|
5
|
Annett S, Moore G, Robson T. FK506 binding proteins and inflammation related signalling pathways; basic biology, current status and future prospects for pharmacological intervention. Pharmacol Ther 2020; 215:107623. [PMID: 32622856 DOI: 10.1016/j.pharmthera.2020.107623] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
FK506 binding (FKBP) proteins are part of the highly conserved immunophilin family and its members have fundamental roles in the regulation of signalling pathways involved in inflammation, adaptive immune responses, cancer and developmental biology. The original member of this family, FKBP12, is a well-known binding partner for the immunosuppressive drugs tacrolimus (FK506) and sirolimus (rapamycin). FKBP12 and its analog, FKBP12.6, function as cis/trans peptidyl prolyl isomerases (PPIase) and they catalyse the interconversion of cis/trans prolyl conformations. Members of this family uniquely contain a PPIase domain, which may not be functional. The larger FKBPs, such as FKBP51, FKBP52 and FKBPL, contain extra regions, including tetratricopeptide repeat (TPR) domains, which are important for their versatile protein-protein interactions with inflammation-related signalling pathways. In this review we focus on the pivotal role of FKBP proteins in regulating glucocorticoid signalling, canonical and non-canonical NF-κB signalling, mTOR/AKT signalling and TGF-β signalling. We examine the mechanism of action of FKBP based immunosuppressive drugs on these cell signalling pathways and how off target interactions lead to the development of side effects often seen in the clinic. Finally, we discuss the latest advances in the role of FKBPs as therapeutic targets and the development of novel agents for a range of indications of unmet clinical need, including glucocorticoid resistance, obesity, stress-induced inflammation and novel cancer immunotherapy.
Collapse
Affiliation(s)
- Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gillian Moore
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
6
|
Rotoli D, Morales M, Maeso MDC, Ávila J, Pérez-Rodríguez ND, Mobasheri A, van Noorden CJF, Martín-Vasallo P. IQGAP1, AmotL2, and FKBP51 Scaffoldins in the Glioblastoma Microenvironment. J Histochem Cytochem 2019; 67:481-494. [PMID: 30794467 DOI: 10.1369/0022155419833334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GB) is the most frequently occurring and aggressive primary brain tumor. Glioma stem cells (GSCs) and astrocytoma cells are the predominant malignant cells occurring in GB besides a highly heterogeneous population of migrating, neovascularizing and infiltrating myeloid cells that forms a complex tumor microenvironment (TME). Cross talk between the TME cells is pivotal in the biology of this tumor and, consequently, adaptor proteins at critical junctions of signaling pathways may be crucial. Scaffold proteins (scaffolins or scaffoldins) integrate external and internal stimuli to regulate various signaling pathways, interacting simultaneously with multiple proteins involved. We investigated by double and triple immunofluorescence the localization of IQGAP1, AmotL2, and FKBP51, three closely related scaffoldins, in malignant cells and TME of human GB tumors. We found that IQGAP1 is preferentially expressed in astrocytoma cells, AmotL2 in GSCs, and FKBP51 in white blood cells in human GB tumors. As GSCs are specially the target for novel therapies, we will investigate in further studies whether AmotL2 inhibition is effective in the treatment of GB.
Collapse
Affiliation(s)
- Deborah Rotoli
- UD of Biochemistry and Molecular Biology.,Instituto de Tecnologías Biomédicas de Canarias.,Universidad de La Laguna, San Cristóbal de La Laguna, Spain.,Istituto per l'Endocrinologia e l'Oncologia Sperimentale Gaetano Salvatore, Naples, Italy.,Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz, Spain
| | - Manuel Morales
- Oncología Médica.,Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz, Spain.,Oncología Médica, Hospiten Rambla, Santa Cruz, Spain
| | - María-Del-C Maeso
- Servicio de Anatomía Patológica.,Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz, Spain
| | - Julio Ávila
- UD of Biochemistry and Molecular Biology.,Instituto de Tecnologías Biomédicas de Canarias.,Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Cornelis J F van Noorden
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Pablo Martín-Vasallo
- UD of Biochemistry and Molecular Biology.,Instituto de Tecnologías Biomédicas de Canarias.,Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
7
|
Gao Y, Elamin E, Zhou R, Yan H, Liu S, Hu S, Dong J, Wei M, Sun L, Zhao Y. FKBP51 promotes migration and invasion of papillary thyroid carcinoma through NF-κB-dependent epithelial-to-mesenchymal transition. Oncol Lett 2018; 16:7020-7028. [PMID: 30546435 PMCID: PMC6256738 DOI: 10.3892/ol.2018.9517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
FK506-binding protein 51 (FKBP51) is a member of the immunophilin family, with relevant roles in multiple signaling pathways, tumorigenesis and chemoresistance. However, the function of FKBP51 in papillary thyroid carcinoma (PTC) remains largely unknown. In the present study, increased FKBP51 expression was detected in PTC tissues as compared with adjacent normal tissues, and the expression level was associated with clinical tumor, node and metastasis stage. Using FKBP51-overexpressing K1 cells and FKBP51-knockdown TPC-1 cells, both human PTC cell lines, it was identified that FKBP51 promoted the migration and invasion of PTC, without affecting cell proliferation. Further investigation revealed that FKBP51 activated the NF-κB pathway and epithelial-to-mesenchymal transition (EMT) genes, and EMT was suppressed when NF-κB was inhibited. It was also assessed whether FKBP51 promoted the formation of cytoskeleton to promote migration and invasion of PTC using a tubulin tracker; however, no evidence of such an effect was observed. These results suggested that FKBP51 promotes migration and invasion through NF-κB-dependent EMT.
Collapse
Affiliation(s)
- Ying Gao
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China.,Department of Laboratory Medicine, Shandong Qianfoshan Hospital, Shandong University, Shandong, Jinan 250014, P.R. China
| | - Elham Elamin
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Rongfang Zhou
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Huili Yan
- Department of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Shandong, Jinan 250062, P.R. China
| | - Shuang Liu
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Shengnan Hu
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Jing Dong
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Muyun Wei
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Linying Sun
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Yueran Zhao
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| |
Collapse
|
8
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
9
|
Romano S, Simeone E, D'Angelillo A, D'Arrigo P, Russo M, Capasso M, Lasorsa VA, Zambrano N, Ascierto PA, Romano MF. FKBP51s signature in peripheral blood mononuclear cells of melanoma patients as a possible predictive factor for immunotherapy. Cancer Immunol Immunother 2017; 66:1143-1151. [PMID: 28434031 PMCID: PMC11028940 DOI: 10.1007/s00262-017-2004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/16/2017] [Indexed: 12/22/2022]
Abstract
The inhibitory immune checkpoint PD-L1/PD1 promotes the alternative splicing of the FKBP5 gene, resulting in increased expression of its variant 4 in the peripheral blood mononuclear cells of melanoma patients. The variant 4 transcript is translated into the truncated FKBP51s protein. Given the importance of co-inhibitory signalling in tumour immune escape, here we tested the potential for using FKBP51s expression to predict immunotherapy outcomes. To do this, we immunophenotyped PBMCs from 118 melanoma patients and 77 age- and sex-matched healthy controls. Blood samples were collected before patients underwent ipilimumab treatment. In 64 of the 118 patients, FKBP51s expression was also assessed in regulatory T cells (Tregs). We found that each PBMC subset analysed contained an FKBP51spos fraction, and that this fraction was greater in the melanoma patients than healthy controls. In CD4 T lymphocytes, the FKBP51sneg fraction was significantly impaired. Tregs count was increased in melanoma patients, which is in line with previous studies. Also, by analyses of FKBP51s in Tregs, we identified a subgroup of ipilimumab nonresponder patients (p = 0.002). In conclusion, FKBP51s-based immunophenotyping of melanoma patients revealed several profiles related to a negative immune regulatory control and identified an unknown Treg subset. These findings are likely to be useful in the selection of the patients that are candidate for immunotherapy.
Collapse
Affiliation(s)
- Simona Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Pansini, 5, 80131, Naples, Italy
| | - Ester Simeone
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale", Via Mariano Semmola, 80131, Naples, Italy
| | - Anna D'Angelillo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Pansini, 5, 80131, Naples, Italy
| | - Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Pansini, 5, 80131, Naples, Italy
| | - Michele Russo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Pansini, 5, 80131, Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Pansini, 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Vito Alessandro Lasorsa
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Pansini, 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Nicola Zambrano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Pansini, 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Paolo A Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale", Via Mariano Semmola, 80131, Naples, Italy.
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
10
|
Yu B, Wang J, He C, Wang W, Tang J, Zheng R, Zhou C, Zhang H, Fu Z, Li Q, Xu J. Cytokine-induced killer cell therapy for modulating regulatory T cells in patients with non-small cell lung cancer. Exp Ther Med 2017; 14:831-840. [PMID: 28673007 DOI: 10.3892/etm.2017.4562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
Previous studies have reported that regulatory T cells (Tregs), which are physiologically engaged in the maintenance of immunological self-tolerance, have a critical role in the regulation of the antitumor immune response. Targeting Tregs has the potential to augment cancer vaccine approaches. The current study therefore aimed to evaluate the role of cytokine-induced killer (CIK) cell infusion in modulating Tregs in patients with non-small cell lung cancer (NSCLC). A total of 15 patients with advanced NSCLC were treated by an infusion of CIK cells derived from autologous peripheral blood mononuclear cells (PBMCs). By using flow cytometry and liquid chip analysis, subsets of T cells and natural killer (NK) cells in peripheral blood, and plasma cytokine profiles in the treated patients, were analyzed at 2 and 4 weeks after CIK cell infusion. Cytotoxicity of PBMCs (n=15) and NK cells (n=6) isolated from NSCLC patients was evaluated before and after CIK cell therapy. Progression-free survival (PFS) and overall survival (OS) were also assessed. Analysis of the immune cell populations before and after treatment showed a significant increase in NK cells (P<0.05) concomitant with a significant decrease in Tregs (P<0.01) at 2 weeks post-infusion of CIK cells compared with the baseline. NK group 2D receptor (NKG2D) expression on NK cells was also significantly increased at 2 weeks post-infusion compared with the baseline (P<0.05). There was a positive correlation between NKG2D expression and the infusion number of CIK cells (P<0.05). When evaluated at 2 weeks after CIK cell therapy, the cytotoxicity of PBMCs and isolated NK cells was significantly increased compared with the baseline (P<0.01 and P<0.05). Correspondingly, plasma cytokine profiles showed significant enhancement of the following antitumor cytokines: Interferon (IFN)-γ (P<0.05), IFN-γ-inducible protein 10 (P<0.01), tumor necrosis factor-α (P<0.001), granulocyte-macrophage colony-stimulating factor (P<0.01), monocyte chemotactic protein-3 (P<0.01) and interleukin-21 (P<0.05) at 2 weeks post-infusion, compared with the baseline. At the same time, the expression of transforming growth factor-β1, which is primarily produced by Tregs, was significantly decreased compared with the baseline (P<0.05). Median PFS and OS in the CIK cell treatment group were significantly increased compared with the control group (PFS, 9.98 vs. 5.44 months, P=0.038; OS, 24.17 vs. 20.19 months, P=0.048). No severe side-effects were observed during the treatment period. In conclusion, CIK cell therapy was able to suppress Tregs and enhance the antitumor immunity of NK cells in advanced NSCLC patients. Therefore, CIK cell treatment may improve PFS and OS in patients with advanced NSCLC. CIK cell infusion may have therapeutic value for patients with advanced NSCLC, as a treatment that can be combined with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Baodan Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Junli Wang
- Department of Respiration, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Chen He
- Department of Respiratory Medicine, The Affiliated Shenzhen Bao'an Hospital of Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Wei Wang
- Department of Medical Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Jianli Tang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Runhui Zheng
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Huanhuan Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhiping Fu
- Department of Respiratory Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Qiasheng Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Jun Xu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
11
|
Takaoka M, Ito S, Miki Y, Nakanishi A. FKBP51 regulates cell motility and invasion via RhoA signaling. Cancer Sci 2017; 108:380-389. [PMID: 28032931 PMCID: PMC5378274 DOI: 10.1111/cas.13153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022] Open
Abstract
FK506 binding protein 51 (FKBP51), a member of the immunophilin family, is involved in multiple signaling pathways, tumorigenesis, and chemoresistance. FKBP51 expression correlates with metastatic potential in melanoma and prostate cancer. However, the functions of FKBP51, particularly involving the regulation of cell motility and invasion, are not fully understood. We discovered two novel interacting partner proteins of FKBP51, i.e., deleted in liver cancer 1 (DLC1) and deleted in liver cancer 2 (DLC2), using immunoprecipitation and mass spectrometry. DLC1 and DLC2 are Rho GTPase‐activating proteins that are frequently downregulated in various cancers. Next, we demonstrated that overexpression of FKBP51 enhances cell motility and invasion of U2OS cells via upregulation of RhoA activity and enhanced Rho‐ROCK signaling. Moreover, FKBP51‐depleted cells displayed a cortical distribution of actin filaments and decreased cell motility and invasion. Consistent with this phenotype, FKBP51 depletion caused a downregulation of RhoA activity. Considered together, our results demonstrate that FKBP51 positively controls cell motility by promoting RhoA and ROCK activation; thus, we have revealed a novel role for FKBP51 in cytoskeletal rearrangement and cell migration and invasion.
Collapse
Affiliation(s)
- Miho Takaoka
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Shun Ito
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Department of Genetic Diagnosis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akira Nakanishi
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
12
|
Rotoli D, Morales M, Ávila J, Maeso MDC, García MDP, Mobasheri A, Martín-Vasallo P. Commitment of Scaffold Proteins in the Onco-Biology of Human Colorectal Cancer and Liver Metastases after Oxaliplatin-Based Chemotherapy. Int J Mol Sci 2017; 18:ijms18040891. [PMID: 28441737 PMCID: PMC5412470 DOI: 10.3390/ijms18040891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/15/2017] [Accepted: 04/19/2017] [Indexed: 01/13/2023] Open
Abstract
Scaffold proteins play pivotal roles in the regulation of signaling pathways, integrating external and internal stimuli to various cellular outputs. We report the pattern of cellular and subcellular expression of scaffoldins angiomotin-like 2 (AmotL2), FK506 binding protein 5 (FKBP51) and IQ motif containing GTPase-activating protein 1 (IQGAP1) in colorectal cancer (CRC) and metastases in liver resected after oxaliplatin-based chemotherapy (CT). Positive immunostaining for the three scaffoldins was found in most cells in healthy colon, tumor, healthy liver and metastasized liver. The patterns of expression of AmotL2, FKBP51 and IQGAP1 show the greatest variability in immune system cells and neurons and glia cells and the least in blood vessel cells. The simultaneous subcellular localization in tumor cells and other cell types within the tumor suggest an involvement of these three scaffoldins in cancer biology, including a role in Epithelial Mesenchymal Transition. The display in differential localization and quantitative expression of AmotL2, FKBP51, and IQGAP1 could be used as biomarkers for more accurate tumor staging and as potential targets for anti-cancer therapeutics by blocking or slowing down their interconnecting functions. Tough further research needs to be done in order to improve these assessments.
Collapse
Affiliation(s)
- Deborah Rotoli
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain.
- CNR-National Research Council, Institute of Endocrinology and Experimental Oncology (IEOS), Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Manuel Morales
- Service of Medical Oncology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- Service of Medical Oncology, Hospiten® Hospitals, 38001 Santa Cruz de Tenerife, Spain.
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain.
| | - María Del Carmen Maeso
- Service of Pathology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
| | | | - Ali Mobasheri
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK.
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), Faculty of Applied Medical Sciences, King AbdulAziz University, 21589 Jeddah, Saudi Arabia.
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain.
| |
Collapse
|
13
|
Qiu B, Bell RL, Cao Y, Zhang L, Stewart RB, Graves T, Lumeng L, Yong W, Liang T. Npy deletion in an alcohol non-preferring rat model elicits differential effects on alcohol consumption and body weight. J Genet Genomics 2016; 43:421-30. [PMID: 27461754 PMCID: PMC5055068 DOI: 10.1016/j.jgg.2016.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y (NPY) is widely expressed in the central nervous system and influences many physiological processes. It is located within the rat quantitative trait locus (QTL) for alcohol preference on chromosome 4. Alcohol-nonpreferring (NP) rats consume very little alcohol, but have significantly higher NPY expression in the brain than alcohol-preferring (P) rats. We capitalized on this phenotypic difference by creating an Npy knockout (KO) rat using the inbred NP background to evaluate NPY effects on alcohol consumption. Zinc finger nuclease (ZNF) technology was applied, resulting in a 26-bp deletion in the Npy gene. RT-PCR, Western blotting and immunohistochemistry confirmed the absence of Npy mRNA and protein in KO rats. Alcohol consumption was increased in Npy(+/-) but not Npy(-/-) rats, while Npy(-/-) rats displayed significantly lower body weight when compared to Npy(+/+) rats. In whole brain tissue, expression levels of Npy-related and other alcohol-associated genes, Npy1r, Npy2r, Npy5r, Agrp, Mc3r, Mc4r, Crh and Crh1r, were significantly greater in Npy(-/-) rats, whereas Pomc and Crhr2 expressions were highest in Npy(+/-) rats. These findings suggest that the NPY-system works in close coordination with the melanocortin (MC) and corticotropin-releasing hormone (CRH) systems to modulate alcohol intake and body weight.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong Cao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China; Experimental Medicine Center, The First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Robert B Stewart
- Department of Psychology, Purdue School of Science, Indiana University-Purdue University of Indianapolis, Indianapolis, IN 46202, USA
| | - Tamara Graves
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lawrence Lumeng
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Yong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Tiebing Liang
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
14
|
Rotoli D, Morales M, Del Carmen Maeso M, Del Pino García M, Morales A, Ávila J, Martín-Vasallo P. Expression and localization of the immunophilin FKBP51 in colorectal carcinomas and primary metastases, and alterations following oxaliplatin-based chemotherapy. Oncol Lett 2016; 12:1315-1322. [PMID: 27446431 PMCID: PMC4950813 DOI: 10.3892/ol.2016.4772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/29/2016] [Indexed: 01/17/2023] Open
Abstract
The immunophilin FK506-binding protein 5 (FKBP51) is a scaffold protein that serves a pivotal role in the regulation of multiple signaling pathways, integrating external and internal stimuli into distinct signal outputs. In a previous study, we identified several genes that are significantly up- or downregulated in the peripheral white cells (PWCs) of colorectal adenocarcinoma (CRC) patients undergoing oxaliplatin-based chemotherapy. In our screening, FKBP51 gene expression was downregulated following chemotherapy. In order to determine whether this alteration in gene expression observed in PWCs may be detected at the protein level in tumors and metastases following the administration of adjuvant chemotherapy, an immunohistochemical analysis of FKBP51 in CRC and primary metastasis tissues was performed. The present study confirmed the downregulation of FKBP51 gene expression elicited by chemotherapy with folinic acid (leucovorin), fluorouracil and oxaliplatin in metastasized liver tissue that had been resected after the oxaliplatin-based chemotherapy, compared with tissue section samples of CRC from patients (prior to antineoplastic treatment). Furthermore, the results indicated that, in CRC tissue sections, the expression of FKBP51 protein is associated with an immature phenotype of stromal fibroblasts and with the epithelial-to-mesenchymal transition (EMT) phenotype, suggesting a role for this protein in the EMT process in CRC. Finally, the observation that only certain cells of the stroma express FKBP51 protein suggests a potential role for this immunophilin as a stroma cell subtype marker.
Collapse
Affiliation(s)
- Deborah Rotoli
- Developmental Biology Laboratory, UD- Biochemistry and Molecular Biology and Centre for Biomedical Research of the Canary Islands, La Laguna University, La Laguna, 38206 Tenerife, Spain; National Research Council, Institute of Endocrinology and Experimental Oncology, I-80131 Naples, Italy
| | - Manuel Morales
- Service of Medical Oncology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; Unit of Medical Oncology, Hospiten Hospitals, Santa Cruz de Tenerife, 38001 Tenerife, Spain
| | - María Del Carmen Maeso
- Service of Pathology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | | | - Araceli Morales
- Department of Physiology, Institute of Biomedical Technologies, School of Medicine and Centre for Biomedical Research of The Canary Islands, University of La Laguna, La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Julio Ávila
- Developmental Biology Laboratory, UD- Biochemistry and Molecular Biology and Centre for Biomedical Research of the Canary Islands, La Laguna University, La Laguna, 38206 Tenerife, Spain
| | - Pablo Martín-Vasallo
- Developmental Biology Laboratory, UD- Biochemistry and Molecular Biology and Centre for Biomedical Research of the Canary Islands, La Laguna University, La Laguna, 38206 Tenerife, Spain
| |
Collapse
|
15
|
Vajaria BN, Patel KR, Begum R, Patel PS. Sialylation: an Avenue to Target Cancer Cells. Pathol Oncol Res 2015; 22:443-7. [PMID: 26685886 DOI: 10.1007/s12253-015-0033-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/15/2015] [Indexed: 02/01/2023]
Abstract
Tumorigenesis and metastasis are frequently associated with altered structure and expression of oligosaccharides on cell surface glycoproteins and glycolipids. The expression of sialylated glycoconjugates has been shown to change during development, differentiation, disease and oncogenic transformation. Abnormal sialylation in cancer cell is a distinctive feature associated with malignant properties including invasiveness and metastatic potential. The alterations in sialylation is accompanied by changes in sialic acid, sialidase activity, sialyltransferase (ST) activity or sialoproteins. The present review summarizes the reports on alterations of sialic acid, linkage specific STs and sialoproteins, sialidase activity together with different subtypes of ST and sialidases mRNA expressions in various cancers like lung, breast, oral, cervical, ovarian, pancreatic etc. Sialic acids are widely distributed in nature as terminal sugars of oligosaccharides attached to proteins or lipids. The increase shedding of sialic acid observed in malignant tumors may be due to different types of sialidases. The amount of sialic acid is governed by levels of sialidases and STs. Various types of STs are also involved in formation of different types sialylated tumor associated carbohydrate antigens which plays important role in metastasis. The alterations associated with sialylation aids in early diagnosis, prognosis and post treatment monitoring in various cancers. Recently newer drugs targeting different interplays of sialylation have been developed, which might have profound effect in inhibiting sialylation and thus cancer metastasis and infiltration.
Collapse
Affiliation(s)
- Bhairavi N Vajaria
- Biochemistry Research Division, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, Gujarat, 380 016, India
| | - Kinjal R Patel
- Biochemistry Research Division, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, Gujarat, 380 016, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, India
| | - Prabhudas S Patel
- Biochemistry Research Division, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, Gujarat, 380 016, India.
| |
Collapse
|
16
|
Romano S, Xiao Y, Nakaya M, D'Angelillo A, Chang M, Jin J, Hausch F, Masullo M, Feng X, Romano MF, Sun SC. FKBP51 employs both scaffold and isomerase functions to promote NF-κB activation in melanoma. Nucleic Acids Res 2015; 43:6983-93. [PMID: 26101251 PMCID: PMC4538817 DOI: 10.1093/nar/gkv615] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 06/02/2015] [Indexed: 12/24/2022] Open
Abstract
Melanoma is the most aggressive skin cancer; its prognosis, particularly in advanced stages, is disappointing largely due to the resistance to conventional anticancer treatments and high metastatic potential. NF-κB constitutive activation is a major factor for the apoptosis resistance of melanoma. Several studies suggest a role for the immunophilin FKBP51 in NF-κB activation, but the underlying mechanism is still unknown. In the present study, we demonstrate that FKBP51 physically interacts with IKK subunits, and facilitates IKK complex assembly. FKBP51-knockdown inhibits the binding of IKKγ to the IKK catalytic subunits, IKK-α and -β, and attenuates the IKK catalytic activity. Using FK506, an inhibitor of the FKBP51 isomerase activity, we found that the IKK-regulatory role of FKBP51 involves both its scaffold function and its isomerase activity. Moreover, FKBP51 also interacts with TRAF2, an upstream mediator of IKK activation. Interestingly, both FKBP51 TPR and PPIase domains are required for its interaction with TRAF2 and IKKγ, whereas only the TPR domain is involved in interactions with IKKα and β. Collectively, these results suggest that FKBP51 promotes NF-κB activation by serving as an IKK scaffold as well as an isomerase. Our findings have profound implications for designing novel melanoma therapies based on modulation of FKBP51.
Collapse
Affiliation(s)
- Simona Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yichuan Xiao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Mako Nakaya
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna D'Angelillo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy
| | - Mikyoung Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin Jin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Felix Hausch
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, München 80804, Germany
| | - Mariorosario Masullo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy Department of Movement Sciences and Wellness, University of Naples 'Parthenope', Naples 80133, Italy
| | - Xixi Feng
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, München 80804, Germany
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Interleukin-8 is a key mediator of FKBP51-induced melanoma growth, angiogenesis and metastasis. Br J Cancer 2015; 112:1772-81. [PMID: 25942396 PMCID: PMC4647250 DOI: 10.1038/bjc.2015.154] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 01/04/2023] Open
Abstract
Background: FKBP51 is overexpressed in melanoma and impacts tumour cell properties. However, its comprehensive role in melanoma pathogenesis and underlying mechanism(s) remain elusive. Methods: FKBP51 was stably silenced in aggressive melanoma cell lines and its effect examined in vitro and in mouse model. Histological/immunohistochemical analyses were performed to confirm metastasis, angiogenesis and neutrophil infiltration. Gene expression was analyzed by qRT–PCR, immunoblot and/or ELISA. NF-κB transcriptional activity and promoter binding were monitored by luciferase-based promoter-reporter and ChIP assays, respectively. Interleukin (IL)-8 inhibition was achieved by gene silencing or neutralising-antibody treatment. Results: FKBP51 silencing reduced melanoma growth, metastasis, angiogenesis and neutrophil infiltration and led to IL-8 downregulation through NF-κB suppression in cell lines and tumour xenografts. IL-8 inhibition drastically decreased growth, migration and invasiveness of FKPB51-overexpressing cells; whereas its treatment partially restored the suppressed phenotypes of FKBP51-silenced melanoma cells. Interleukin-8 depletion in conditioned medium (CM) of FKBP51-overexpressing melanoma cells inhibited endothelial cell proliferation and capillary-like structure formation, whereas its treatment promoted these effects in endothelial cells cultured in CM of FKBP51-silenced melanoma cells. Conclusions: FKBP51 promotes melanoma growth, metastasis and angiogenesis, and IL-8 plays a key role in these processes. Thus, targeting of FKBP51 or its upstream or downstream regulatory pathways could lead to effective therapeutic strategies against melanoma.
Collapse
|
18
|
Romano S, D'Angelillo A, Romano MF. Pleiotropic roles in cancer biology for multifaceted proteins FKBPs. Biochim Biophys Acta Gen Subj 2015; 1850:2061-8. [PMID: 25592270 DOI: 10.1016/j.bbagen.2015.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND FK506 binding proteins (FKBP) are multifunctional proteins highly conserved across the species and abundantly expressed in the cell. In addition to a well-established role in immunosuppression, FKBPs modulate several signal transduction pathways in the cell, due to their isomerase activity and the capability to interact with other proteins, inducing changes in conformation and function of protein partners. Increasing literature data support the concept that FKBPs control cancer related pathways. SCOPE OF THE REVIEW The aim of the present article is to review current knowledge on FKBPs roles in regulation of key signaling pathways associated with cancer. MAJOR CONCLUSIONS Some family members appear to promote disease while others are protective against tumorigenesis. GENERAL SIGNIFICANCE FKBPs family proteins are expected to provide new biomarkers and small molecular targets, in the near future, increasing diagnostic and therapeutic opportunities in the cancer field. This article is part of a Special Issue entitled Proline-Directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Simona Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Anna D'Angelillo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy; Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy.
| |
Collapse
|
19
|
Salivary Glyco-sialylation changes monitors oral carcinogenesis. Glycoconj J 2014; 31:649-59. [DOI: 10.1007/s10719-014-9561-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
|