1
|
Mukherjee K, Dutta P, Giri TK. Al 3+/Ca 2+ cross-linked hydrogel matrix tablet of etherified tara gum for sustained delivery of tramadol hydrochloride in gastrointestinal milieu. Int J Biol Macromol 2023; 232:123448. [PMID: 36709815 DOI: 10.1016/j.ijbiomac.2023.123448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Tara gum (TG) was derivatized to carboxymethyl TG (CMTG) and then cross-linked with Al3+/Ca2+ ions to prepare Al/Ca cross-linked CMTG matrices for sustained delivery of Tramadol Hydrochloride (TH), a highly water-soluble drug. The effect of Al3+/Ca2+ ions concentration on swelling, erosion, and drug release behavior from Al/Ca-CMTG matrices was investigated. Al-CMTG matrices had greater cross-linking density, produced a more rigid and denser hydrogel layer than Ca-CMTG matrices. The rate of swelling, erosion, and in vitro drug release from Al-CMTG matrices was slower than from Ca-CMTG matrices. The most important finding of our study indicated that at the same concentration of cross-linking ions, the release of TH from Al-CMTG matrices was slower compared to Ca-CMTG matrices. The optimized formulation containing 9 % w/w AlCl3 in CMTG matrices released TH in a sustained manner up to 12 h in the gastrointestinal milieu. Moreover, it was observed that the prepared optimized formulation exhibited a more sustained release of TH compared to the marketed product.
Collapse
Affiliation(s)
- Kaushik Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Pallobi Dutta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
2
|
Yanev P, van Tilborg GA, Boere KWM, Stowe AM, van der Toorn A, Viergever MA, Hennink WE, Vermonden T, Dijkhuizen RM. Thermosensitive Biodegradable Hydrogels for Local and Controlled Cerebral Delivery of Proteins: MRI-Based Monitoring of In Vitro and In Vivo Protein Release. ACS Biomater Sci Eng 2023; 9:760-772. [PMID: 36681938 PMCID: PMC9930091 DOI: 10.1021/acsbiomaterials.2c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hydrogels have been suggested as novel drug delivery systems for sustained release of therapeutic proteins in various neurological disorders. The main advantage these systems offer is the controlled, prolonged exposure to a therapeutically effective dose of the released drug after a single intracerebral injection. Characterization of controlled release of therapeutics from a hydrogel is generally performed in vitro, as current methods do not allow for in vivo measurements of spatiotemporal distribution and release kinetics of a loaded protein. Importantly, the in vivo environment introduces many additional variables and factors that cannot be effectively simulated under in vitro conditions. To address this, in the present contribution, we developed a noninvasive in vivo magnetic resonance imaging (MRI) method to monitor local protein release from two injected hydrogels of the same chemical composition but different initial water contents. We designed a biodegradable hydrogel formulation composed of low and high concentration thermosensitive polymer and thiolated hyaluronic acid, which is liquid at room temperature and forms a gel due to a combination of physical and chemical cross-linking upon injection at 37 °C. The in vivo protein release kinetics from these gels were assessed by MRI analysis utilizing a model protein labeled with an MR contrast agent, i.e. gadolinium-labeled albumin (74 kDa). As proof of principle, the release kinetics of the hydrogels were first measured with MRI in vitro. Subsequently, the protein loaded hydrogels were administered in male Wistar rat brains and the release in vivo was monitored for 21 days. In vitro, the thermosensitive hydrogels with an initial water content of 81 and 66% released 64 ± 3% and 43 ± 3% of the protein loading, respectively, during the first 6 days at 37 °C. These differences were even more profound in vivo, where the thermosensitive hydrogels released 83 ± 16% and 57 ± 15% of the protein load, respectively, 1 week postinjection. Measurement of volume changes of the gels over time showed that the thermosensitive gel with the higher polymer concentration increased more than 4-fold in size in vivo after 3 weeks, which was substantially different from the in vitro behavior where a volume change of 35% was observed. Our study demonstrates the potential of MRI to noninvasively monitor in vivo intracerebral protein release from a locally administered in situ forming hydrogel, which could aid in the development and optimization of such drug delivery systems for brain disorders.
Collapse
Affiliation(s)
- Pavel Yanev
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht3584 CX, The Netherlands,Department
of Neurology, University of Kentucky, Lexington, Kentucky40506, United States
| | - Geralda A.F. van Tilborg
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht3584 CX, The Netherlands,E-mail:
| | - Kristel W. M. Boere
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, University Utrecht, Utrecht3584 CG, The Netherlands
| | - Ann M. Stowe
- Department
of Neurology, University of Kentucky, Lexington, Kentucky40506, United States
| | - Annette van der Toorn
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht3584 CX, The Netherlands
| | - Max A. Viergever
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht3584 CX, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, University Utrecht, Utrecht3584 CG, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, University Utrecht, Utrecht3584 CG, The Netherlands
| | - Rick M. Dijkhuizen
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht3584 CX, The Netherlands
| |
Collapse
|
3
|
Noureen S, Noreen S, Ghumman SA, Batool F, Hameed H, Hasan S, Noreen F, Elsherif MA, Bukhari SNA. Prunus armeniaca Gum-Alginate Polymeric Microspheres to Enhance the Bioavailability of Tramadol Hydrochloride: Formulation and Evaluation. Pharmaceutics 2022; 14:pharmaceutics14050916. [PMID: 35631501 PMCID: PMC9144292 DOI: 10.3390/pharmaceutics14050916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Combinations of polymers can improve the functional properties of microspheres to achieve desired therapeutic goals. Hence, the present study aimed to formulate Prunus armeniaca gum (PAG) and sodium alginate microsphere for sustained drug release. Blended and coated microspheres were prepared using the ionotropic gelation technique. The effect of polymer concentration variation was studied on the structural and functional properties of formulated microspheres. FTIR, XRD, and thermal analysis were performed to characterize the microspheres. All the formulations were well-formed spherical beads having an average diameter from 579.23 ± 07.09 to 657.67 ± 08.74 μm. Microspheres entrapped drugs within the range 65.86 ± 0.26–83.74 ± 0.79%. The pH-dependent swelling index of coated formulations was higher than blended. FTIR spectra confirmed the presence of characteristic peaks of entrapped Tramadol hydrochloride showing no drug-polymer interaction. In vitro drug release profile showed sustained release following the Korsmeyer-Peppas kinetic model with an R2 value of 0.9803–0.9966. An acute toxicology study employing the oral route in Swiss albino mice showed no signs of toxicity. It can be inferred from these results that blending PAG with sodium alginate can enhance the stability of alginate microspheres and improve its drug release profile by prolonging the release time.
Collapse
Affiliation(s)
- Shazia Noureen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +92-3018434400 (S.N.); +966-565-738-896 (S.N.A.B.)
| | | | - Fozia Batool
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
| | - Huma Hameed
- IRSET, EHSEP, INSERM, University of Rennes 1, 35000 Rennes, France;
| | - Sara Hasan
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Fozia Noreen
- Department of Chemistry, University of Sialkot, Sialkot 51010, Pakistan;
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +92-3018434400 (S.N.); +966-565-738-896 (S.N.A.B.)
| |
Collapse
|
4
|
Yee Kuen C, Masarudin MJ. Chitosan Nanoparticle-Based System: A New Insight into the Promising Controlled Release System for Lung Cancer Treatment. Molecules 2022; 27:473. [PMID: 35056788 PMCID: PMC8778092 DOI: 10.3390/molecules27020473] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has been recognized as one of the most often diagnosed and perhaps most lethal cancer diseases worldwide. Conventional chemotherapy for lung cancer-related diseases has bumped into various limitations and challenges, including non-targeted drug delivery, short drug retention period, low therapeutic efficacy, and multidrug resistance (MDR). Chitosan (CS), a natural polymer derived from deacetylation of chitin, and comprised of arbitrarily distributed β-(1-4)-linked d-glucosamine (deacetylated unit) and N-acetyl-d-glucosamine (acetylated unit) that exhibits magnificent characteristics, including being mucoadhesive, biodegradable, and biocompatible, has emerged as an essential element for the development of a nano-particulate delivery vehicle. Additionally, the flexibility of CS structure due to the free protonable amino groups in the CS backbone has made it easy for the modification and functionalization of CS to be developed into a nanoparticle system with high adaptability in lung cancer treatment. In this review, the current state of chitosan nanoparticle (CNP) systems, including the advantages, challenges, and opportunities, will be discussed, followed by drug release mechanisms and mathematical kinetic models. Subsequently, various modification routes of CNP for improved and enhanced therapeutic efficacy, as well as other restrictions of conventional drug administration for lung cancer treatment, are covered.
Collapse
Affiliation(s)
- Cha Yee Kuen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Mohammadi F, Vosough A, Tanideh N, Mohammadi Samani S, Ahmadi F. Hyaluronic Acid Scaffolds and Injectable Gels for Healing of Induced Arthritis in Rat Knee: Effect of Prednisolone Revisited. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Self-inflating floating nanofiber membranes for controlled drug delivery. Int J Pharm 2020; 579:119164. [DOI: 10.1016/j.ijpharm.2020.119164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022]
|
7
|
Croitoru C, Pop MA, Bedo T, Cosnita M, Roata IC, Hulka I. Physically Crosslinked Poly (Vinyl Alcohol)/Kappa-Carrageenan Hydrogels: Structure and Applications. Polymers (Basel) 2020; 12:E560. [PMID: 32138357 PMCID: PMC7182908 DOI: 10.3390/polym12030560] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
This paper discusses the structure morphology and the thermal and swelling behavior of physically crosslinked hydrogels, obtained from applying four successive freezing-thawing cycles to poly (vinyl alcohol) blended with various amounts of κ-carrageenan. The addition of carrageenan in a weight ratio of 0.5 determines a twofold increase in the swelling degree and the early diffusion coefficients of the hydrogels when immersed in distilled water, due to a decrease in the crystallinity of the polymer matrix. The diffusion of water into the polymer matrix could be considered as a relaxation-controlled transport (anomalous diffusion). The presence of the sulfate groups determines an increased affinity of the hydrogels towards crystal violet cationic dye. A maximum physisorption capacity of up to 121.4 mg/g for this dye was attained at equilibrium.
Collapse
Affiliation(s)
- Catalin Croitoru
- Materials Engineering and Welding Department, Transilvania University of Brasov, Eroilor 29 Str, 500036 Brasov, Romania;
| | - Mihai Alin Pop
- Materials Science Department, Transilvania University of Brasov, Eroilor 29 Str, 500036 Brasov, Romania;
| | - Tibor Bedo
- Materials Science Department, Transilvania University of Brasov, Eroilor 29 Str, 500036 Brasov, Romania;
| | - Mihaela Cosnita
- Product Design Mechatronics and Environment Department, Transilvania University of Brasov, Eroilor 29 Str, 500036 Brasov, Romania;
| | - Ionut Claudiu Roata
- Materials Engineering and Welding Department, Transilvania University of Brasov, Eroilor 29 Str, 500036 Brasov, Romania;
| | - Iosif Hulka
- Research Institute of renewable energy–ICER, Politehnica University of Timisoara, Piata Victoriei Str., 300006 Timisoara, Romania;
| |
Collapse
|
8
|
The role of emulsion parameters in tramadol sustained-release from electrospun mats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1493-1501. [DOI: 10.1016/j.msec.2019.02.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 01/04/2023]
|
9
|
Long J, Nand AV, Bunt C, Seyfoddin A. Controlled release of dexamethasone from poly(vinyl alcohol) hydrogel. Pharm Dev Technol 2019; 24:839-848. [PMID: 30932724 DOI: 10.1080/10837450.2019.1602632] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study investigated a chemically crosslinked poly(vinyl alcohol) (PVA) hydrogel controlled drug delivery system to deliver the anti-inflammatory drug dexamethasone (DEX). The PVA hydrogels, with different crosslinking densities, were characterized by swelling studies, electron scanning microscopy, viscosity, Fourier transform infrared spectroscopy (FTIR) and in vitro release assessment. Increasing crosslinking density slowed and decreased swelling and water absorption. FTIR analysis suggested DEX has possible interactions with the crosslinker and the PVA polymer. In vitro release of DEX from PVA hydrogels was sustained for 33 days and appeared to fit the Higuchi and Korsmeyer-Peppas models. This work indicates the likelihood of PVA hydrogel as a controlled drug release system for DEX for anti-inflammatory uses.
Collapse
Affiliation(s)
- Jingjunjiao Long
- a Drug Delivery Research Group, Faculty of Health and Environmental Sciences, Auckland University of Technology , Auckland , New Zealand
| | - Ashveen V Nand
- b Health and Community and Animal and Environmental Sciences Network , Unitec Institute of Technology, Mount Albert , Auckland , New Zealand
| | - Craig Bunt
- c Department of Agricultural Sciences, Faculty of Agriculture and Life Sciences , Lincoln University , Canterbury , New Zealand
| | - Ali Seyfoddin
- a Drug Delivery Research Group, Faculty of Health and Environmental Sciences, Auckland University of Technology , Auckland , New Zealand.,d Drug Delivery Research Group , Faculty of Health and Environmental Sciences, Auckland University of Technology , Auckland , New Zealand
| |
Collapse
|
10
|
Md Rasib SZ, Md Akil H, Khan A, Abdul Hamid ZA. Controlled release studies through chitosan-based hydrogel synthesized at different polymerization stages. Int J Biol Macromol 2019; 128:531-536. [PMID: 30708001 DOI: 10.1016/j.ijbiomac.2019.01.190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
An earlier study showed that the behaviour of chitosan-poly(methacrylic acid‑co‑N‑isopropylacrylamide) [chitosan‑p(MAA‑co‑NIPAM)] hydrogels synthesized at different reaction times are affected with regard to their pH and temperature sensitivities. The study was continued in this paper to identify the effects of different reaction times on the degradation, efficiency of rifampicin (Rif) loading and the Rif release profile under two different pH conditions (acidic and basic). The results that were obtained showed that the hydrogel had a faster degradation rate in the acidic condition than in the basic condition, where there was a loss of approximately 50% and 20%, respectively in its original weight within two weeks. The Rif loading efficiency was within 50% and the drug release was controlled by characteristics that were developed beyond the polymerization stages of the synthesis. Therefore, the reaction time for the synthesis of the hydrogel can be considered as a way to control the behaviour of the hydrogel as well as to modify the drug release profile in the chitosan‑p(MAA‑co‑NIPAM) hydrogel.
Collapse
Affiliation(s)
- Siti Zalifah Md Rasib
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Hazizan Md Akil
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
11
|
Sen Gupta S, Ghosh M. Octacosanol educes physico-chemical attributes, release and bioavailability as modified nanocrystals. Eur J Pharm Biopharm 2017. [DOI: 10.1016/j.ejpb.2017.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Anwar H, Ahmad M, Minhas MU, Rehmani S. Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, Optimization and in-vitro characterization. Carbohydr Polym 2017; 166:183-194. [DOI: 10.1016/j.carbpol.2017.02.080] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/05/2017] [Accepted: 02/20/2017] [Indexed: 02/02/2023]
|
13
|
Chella N, Daravath B, Kumar D, Tadikonda RR. Formulation and Pharmacokinetic Evaluation of Polymeric Dispersions Containing Valsartan. Eur J Drug Metab Pharmacokinet 2017; 41:517-26. [PMID: 26156887 DOI: 10.1007/s13318-015-0290-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Valsartan exhibits poor aqueous solubility and dissolution rate limited absorption. The lower solubility in the upper part of gastrointestinal tract (pH-dependant solubility) where its absorption window exists further contributes to the low oral bioavailability of valsartan. OBJECTIVE The present work was aimed to improve the in vivo pharmacokinetics of valsartan by preparing amorphous polymeric dispersions using Eudragit E 100 as carrier. Eudragit E 100 is a cationic polymer soluble in gastric fluid up to pH 5.0 and exhibits pH-dependent release. Hence, the dispersions prepared using Eudragit E 100 rapidly dissolves at lower pH presenting drug in molecularly dispersed and soluble form at its absorption site. METHODS Polymeric solid dispersions were prepared in different drug-to-carrier ratios. The prepared dispersions were evaluated for drug-carrier interactions, solid-state transitions and drug-release properties with the help of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and in vitro dissolution studies. The optimized formulation containing valsartan was tested in rats for bioavailability and pharmacokinetic parameters and compared with that of valsartan pure drug. RESULTS The results from FTIR studies indicated no interactions between drug and excipients. DSC studies confirmed reduction in crystallinity of drug. The dissolution studies performed in 0.1 N HCl showed significant improvement (p < 0.05) in the dissolution of valsartan. In vivo pharmacokinetic studies showed 199 % relative bioavailability with significant improvement (p < 0.05) in area under the curve compared to valsartan pure drug. CONCLUSION Eudragit E 100 can be used to improve the dissolution of drugs that show low solubility at lower pH and thereby enhancing the bioavailability.
Collapse
Affiliation(s)
- Naveen Chella
- National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India.,Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Bhaskar Daravath
- Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India.,Department of Pharmaceutics, Sri Shivani College of Pharmacy, Warangal, Telangana, 506007, India
| | - Dinesh Kumar
- National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| | - Rama Rao Tadikonda
- Department of Pharmaceutics, Avanthi Institute of Pharmaceutical Sciences, Gunthapally village, Hayath Nagar, Ranga Reddy (D), Hyderabad, Telangana, 501512, India.
| |
Collapse
|
14
|
Vazzana M, Andreani T, Fangueiro J, Faggio C, Silva C, Santini A, Garcia M, Silva A, Souto E. Tramadol hydrochloride: Pharmacokinetics, pharmacodynamics, adverse side effects, co-administration of drugs and new drug delivery systems. Biomed Pharmacother 2015; 70:234-8. [DOI: 10.1016/j.biopha.2015.01.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 01/23/2015] [Indexed: 12/25/2022] Open
|
15
|
Calixto G, Yoshii AC, Rocha e Silva H, Stringhetti Ferreira Cury B, Chorilli M. Polyacrylic acid polymers hydrogels intended to topical drug delivery: preparation and characterization. Pharm Dev Technol 2014; 20:490-6. [DOI: 10.3109/10837450.2014.882941] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Kiarostami V, Rouini MR, Mohammadian R, Lavasani H, Ghazaghi M. Binary Solvents Dispersive Liquid-Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography. ACTA ACUST UNITED AC 2014; 22:25. [PMID: 24495475 PMCID: PMC3924918 DOI: 10.1186/2008-2231-22-25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 01/25/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. RESULTS Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 - 99.6%. CONCLUSIONS Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.
Collapse
Affiliation(s)
- Vahid Kiarostami
- Department of Chemistry, North Tehran Branch, Islamic Azad University, P,O, Box 1913674711, Tehran, Iran.
| | | | | | | | | |
Collapse
|
17
|
Wang J, Zhao D, Wang Y, Wu G. Imine bond cross-linked poly(ethylene glycol)-block-poly(aspartamide) complex micelle as a carrier to deliver anticancer drugs. RSC Adv 2014. [DOI: 10.1039/c3ra46160b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Malana MA, Bukhari JUD, Zohra R. Synthesis, swelling behavior, and network parameters of novel chemically crosslinked poly (acrylamide-co-methacrylate-co-acrylic acid) hydrogels. Des Monomers Polym 2013. [DOI: 10.1080/15685551.2013.840501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
| | | | - Rubab Zohra
- Department of Chemistry, Forman Christian College, A Chartered University, Lahore, Pakistan
| |
Collapse
|