1
|
Rios CI, Garcia EE, Hogdahl TS, Homer MJ, Iyer NV, Laney JW, Loelius SG, Satyamitra MM, DiCarlo AL. Radiation and Chemical Program Research for Multi-Utility and Repurposed Countermeasures: A US Department of Health and Human Services Agencies Perspective. Disaster Med Public Health Prep 2024; 18:e35. [PMID: 38384183 PMCID: PMC10948027 DOI: 10.1017/dmp.2023.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Although chemical and radiological agents cause toxicity through different mechanisms, the multiorgan injuries caused by these threats share similarities that convene on the level of basic biological responses. This publication will discuss these areas of convergence and explore "multi-utility" approaches that could be leveraged to address common injury mechanisms underlying actions of chemical and radiological agents in a threat-agnostic manner. In addition, we will provide an overview of the current state of radiological and chemical threat research, discuss the US Government's efforts toward medical preparedness, and identify potential areas for collaboration geared toward enhancing preparedness and response against radiological and chemical threats. We also will discuss previous regulatory experience to provide insight on how to navigate regulatory paths for US Food and Drug Administration (FDA) approval/licensure/clearance for products addressing chemical or radiological/nuclear threats. This publication follows a 2022 trans-agency meeting titled, "Overlapping Science in Radiation and Sulfur Mustard Exposures of Skin and Lung: Consideration of Models, Mechanisms, Organ Systems, and Medical Countermeasures," sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), a part of the National Institutes of Health (NIH). Discussions from this meeting explored the overlapping nature of radiation and chemical injury and spurred increased interest in how preparedness for one threat leads to preparedness for the other. Herein, subject matter experts from the NIAID and the Biomedical Advanced Research and Development Authority (BARDA), a part of the Administration for Strategic Preparedness and Response (ASPR), summarize the knowledge gained from recently funded biomedical research, as well as insights from the 2022 meeting. These topics include identification of common areas for collaboration, potential use of biomarkers of injury to identify injuries caused by both hazards, and common and widely available treatments that could treat damage caused by radiological or chemical threats.
Collapse
Affiliation(s)
- Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), US Department of Health and Human Services (HHS), Washington, DC, USA
| | - Efrain E. Garcia
- Chemical Medical Countermeasures (MCM) Program, Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Washington, DC, USA
| | - Thomas S. Hogdahl
- Burn/Blast MCM Program, Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Washington, DC, USA
| | - Mary J. Homer
- Radiological/Nuclear MCM Program, Division of Chemical, Biological, Radiological, and Nuclear Medical Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), HHS, Washington, DC, USA
| | - Narayan V. Iyer
- Burn/Blast MCM Program, Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Washington, DC, USA
| | - Judith W. Laney
- Chemical Medical Countermeasures (MCM) Program, Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), Washington, DC, USA
| | - Shannon G. Loelius
- Radiological/Nuclear MCM Program, Division of Chemical, Biological, Radiological, and Nuclear Medical Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Administration for Strategic Preparedness and Response (ASPR), HHS, Washington, DC, USA
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), US Department of Health and Human Services (HHS), Washington, DC, USA
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), US Department of Health and Human Services (HHS), Washington, DC, USA
| |
Collapse
|
2
|
Majd AMM, Faghihzadeh S, Pourfarzam S, Eghtedardoost M, Jamali D, Mirsharif ES, Dilmaghanian R, Ghazanfari T. Serum and sputum levels of IL-17, IL-21, TNFα and mRNA expression of IL-17 in sulfur mustard lung tissue with long term pulmonary complications (28 years after sulfur mustard exposure). Int Immunopharmacol 2019; 76:105828. [DOI: 10.1016/j.intimp.2019.105828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/16/2023]
|
3
|
Weinberger B, Malaviya R, Sunil VR, Venosa A, Heck DE, Laskin JD, Laskin DL. Mustard vesicant-induced lung injury: Advances in therapy. Toxicol Appl Pharmacol 2016; 305:1-11. [PMID: 27212445 PMCID: PMC5119915 DOI: 10.1016/j.taap.2016.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/18/2016] [Indexed: 01/17/2023]
Abstract
Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.
Collapse
Affiliation(s)
- Barry Weinberger
- Division of Neonatal and Perinatal Medicine, Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, NY 11040, USA.
| | - Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Vasanthi R Sunil
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, School of Public Health, Valhalla, NY 10595, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Lopez-de la Mora DA, Sanchez-Roque C, Montoya-Buelna M, Sanchez-Enriquez S, Lucano-Landeros S, Macias-Barragan J, Armendariz-Borunda J. Role and New Insights of Pirfenidone in Fibrotic Diseases. Int J Med Sci 2015; 12:840-7. [PMID: 26640402 PMCID: PMC4643073 DOI: 10.7150/ijms.11579] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/16/2015] [Indexed: 12/16/2022] Open
Abstract
Pirfenidone (PFD) is a non-peptide synthetic molecule issued as a broad-spectrum anti-fibrotic drug with the ability to decrease TGF-β1, TNF-α, PDGF and COL1A1 expression, which is highly related to prevent or remove excessive deposition of scar tissue in several organs. Basic and clinical evidence suggests that PFD may safely slow or inhibit the progressive fibrosis swelling after tissue injuries. Furthermore, a number of evidence suggests that this molecule will have positive effects in the treatment of other inflammatory diseases. This review contains current research in which PFD has been used as the treatment of several diseases, and focus mainly in the outcomes related to improve inflammation and fibrogenesis. Therefore, the main goal of this review is to focus on the novel findings of PFD efficacy rather than deepen in the chemical aspects of the molecule.
Collapse
Affiliation(s)
- David Alejandro Lopez-de la Mora
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Cibeles Sanchez-Roque
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Margarita Montoya-Buelna
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Sergio Sanchez-Enriquez
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Silvia Lucano-Landeros
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| | - Jose Macias-Barragan
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico. ; 2. Departamento de Ciencias de la Salud, CUValles, University of Guadalajara, Guadalajara - Ameca km. 45.5, Ameca (46600), Mexico
| | - Juan Armendariz-Borunda
- 1. Institute for Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University of Guadalajara, Sierra Mojada St. 950, Guadalajara (44280), Mexico
| |
Collapse
|