1
|
Palopoli-Trojani K, Trumpis M, Chiang CH, Wang C, Williams AJ, Evans CL, Turner DA, Viventi J, Hoffmann U. High-density cortical µECoG arrays concurrently track spreading depolarizations and long-term evolution of stroke in awake rats. Commun Biol 2024; 7:263. [PMID: 38438529 PMCID: PMC10912118 DOI: 10.1038/s42003-024-05932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
Spreading depolarizations (SDs) are widely recognized as a major contributor to the progression of tissue damage from ischemic stroke even if blood flow can be restored. They are characterized by negative intracortical waveforms of up to -20 mV, propagation velocities of 3 - 6 mm/min, and massive disturbance of membrane ion homeostasis. High-density, micro-electrocorticographic (μECoG) epidural electrodes and custom, DC-coupled, multiplexed amplifiers, were used to continuously characterize and monitor SD and µECoG cortical signal evolution in awake, moving rats over days. This highly innovative approach can define these events over a large brain surface area (~ 3.4 × 3.4 mm), extending across the boundaries of the stroke, and offers sufficient electrode density (60 contacts total per array for a density of 5.7 electrodes / mm2) to measure and determine the origin of SDs in relation to the infarct boundaries. In addition, spontaneous ECoG activity can simultaneously be detected to further define cortical infarct regions. This technology allows us to understand dynamic stroke evolution and provides immediate cortical functional activity over days. Further translational development of this approach may facilitate improved treatment options for acute stroke patients.
Collapse
Affiliation(s)
| | | | | | - Charles Wang
- Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Cody L Evans
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, USA
| | - Dennis A Turner
- Biomedical Engineering, Duke University, Durham, NC, USA
- Neurosurgery, Neurobiology, Duke University, Durham, USA
- Research and Surgery Services, Durham VAMC, Durham, USA
| | | | - Ulrike Hoffmann
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, USA.
| |
Collapse
|
2
|
Sato Y, Schmitt O, Ip Z, Rabiller G, Omodaka S, Tominaga T, Yazdan-Shahmorad A, Liu J. Pathological changes of brain oscillations following ischemic stroke. J Cereb Blood Flow Metab 2022; 42:1753-1776. [PMID: 35754347 PMCID: PMC9536122 DOI: 10.1177/0271678x221105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Brain oscillations recorded in the extracellular space are among the most important aspects of neurophysiology data reflecting the activity and function of neurons in a population or a network. The signal strength and patterns of brain oscillations can be powerful biomarkers used for disease detection and prediction of the recovery of function. Electrophysiological signals can also serve as an index for many cutting-edge technologies aiming to interface between the nervous system and neuroprosthetic devices and to monitor the efficacy of boosting neural activity. In this review, we provided an overview of the basic knowledge regarding local field potential, electro- or magneto- encephalography signals, and their biological relevance, followed by a summary of the findings reported in various clinical and experimental stroke studies. We reviewed evidence of stroke-induced changes in hippocampal oscillations and disruption of communication between brain networks as potential mechanisms underlying post-stroke cognitive dysfunction. We also discussed the promise of brain stimulation in promoting post stroke functional recovery via restoring neural activity and enhancing brain plasticity.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Oliver Schmitt
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Zachary Ip
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| | - Shunsuke Omodaka
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| |
Collapse
|
3
|
Baek H, Sariev A, Lee S, Dong SY, Royer S, Kim H. Deep Cerebellar Low-Intensity Focused Ultrasound Stimulation Restores Interhemispheric Balance after Ischemic Stroke in Mice. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2073-2079. [PMID: 32746292 DOI: 10.1109/tnsre.2020.3002207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ischemic damage after stroke disrupts the complex balance of inhibitory and excitatory activity within cortical network causing brain functional asymmetry. Cerebellar deep nuclei with its extensive projections to cortical regions could be a prospective target for stimulation to restore inter-hemispheric balance and enhance neural plasticity after stroke. In our study, we repeatedly stimulated the lateral cerebellar nucleus (LCN) by low-intensity focused ultrasound (LIFU) for 3 days to enhance rehabilitation after middle cerebral artery occlusion (MCAO) in a mouse stroke model. The neural activity of the mice sensorimotor cortex was measured using epidural electrodes and analyzed with quantified electroencephalography (qEEG). Pairwise derived Brain Symmetry Index (pdBSI) and delta power were used to assess the neurorehabilitative effect of LIFU stimulation. Compared to the Stroke (non-treated) group, the LIFU group exhibited a decrease in cortical pathological delta activity, significant recovery in pdBSI and enhanced performance on the balance beam walking test. These results suggest that cerebellar LIFU stimulation could be a non-invasive method for stroke rehabilitation through the restoration of interhemispheric balance.
Collapse
|
4
|
Popa-Wagner A, Glavan DG, Olaru A, Olaru DG, Margaritescu O, Tica O, Surugiu R, Sandu RE. Present Status and Future Challenges of New Therapeutic Targets in Preclinical Models of Stroke in Aged Animals with/without Comorbidities. Int J Mol Sci 2018; 19:ijms19020356. [PMID: 29370078 PMCID: PMC5855578 DOI: 10.3390/ijms19020356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 01/02/2023] Open
Abstract
The aging process, comorbidities, and age-associated diseases are closely dependent on each other. Cerebral ischemia impacts a wide range of systems in an age-dependent manner. However, the aging process has many facets which are influenced by the genetic background and epigenetic or environmental factors, which can explain why some people age differently than others. Therefore, there is an urgent need to identify age-related changes in body functions or structures that increase the risk for stroke and which are associated with a poor outcome. Multimodal imaging, electrophysiology, cell biology, proteomics, and transcriptomics, offer a useful approach to link structural and functional changes in the aging brain, with or without comorbidities, to post-stroke rehabilitation. This can help us to improve our knowledge about senescence firstly, and in this context, aids in elucidating the pathophysiology of age-related diseases that allows us to develop therapeutic strategies or prevent diseases. These processes, including potential therapeutical interventions, need to be studied first in relevant preclinical models using aged animals, with and without comorbidities. Therefore, preclinical research on ischemic stroke should consider age as the most important risk factor for cerebral ischemia. Furthermore, the identification of effective therapeutic strategies, corroborated with successful translational studies, will have a dramatic impact on the lives of millions of people with cerebrovascular diseases.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Griffith University School of Medicine, Gold Coast Campus, QLD, Queensland Eye Institute, Brisbane, QLD 4101, Australia.
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Daniela-Gabriela Glavan
- Psychiatry Clinic Hospital, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, 200349 Craiova, Romania.
| | - Andrei Olaru
- Department of Ophthalmology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | | | - Otilia Margaritescu
- Department of Neurosurgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Oana Tica
- Department of "Mother and Child", University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Roxana Surugiu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Raluca Elena Sandu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| |
Collapse
|
5
|
Liu Q, Liu J, Wang P, Zhang Y, Li B, Yu Y, Dang H, Li H, Zhang X, Wang Z. Poly-dimensional network comparative analysis reveals the pure pharmacological mechanism of baicalin in the targeted network of mouse cerebral ischemia. Brain Res 2017; 1666:70-79. [PMID: 28465229 DOI: 10.1016/j.brainres.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
Abstract
AIM This study aimed to investigate the pure pharmacological mechanisms of baicalin/baicalein (BA) in the targeted network of mouse cerebral ischemia using a poly-dimensional network comparative analysis. METHODS Eighty mice with induced focal cerebral ischemia were randomly divided into four groups: BA, Concha Margaritifera (CM), vehicle and sham group. A poly-dimensional comparative analysis of the expression levels of 374 stroke-related genes in each of the four groups was performed using MetaCore. RESULTS BA significantly reduced the ischemic infarct volume (P<0.05), whereas CM was ineffective. Two processes and 10 network nodes were shared between "BA vs CM" and vehicle, but there were no overlapping pathways. Two pathways, three processes and 12 network nodes overlapped in "BA vs CM" and BA. The pure pharmacological mechanism of BA resulted in targeting of pathways related to development, G-protein signaling, apoptosis, signal transduction and immunity. The biological processes affected by BA were primarily found to correlate with apoptotic, anti-apoptotic and neurophysiological processes. Three network nodes changed from up-regulation to down-regulation, while mitogen-activated protein kinase kinase 6 (MAP2K6, also known as MEK6) changed from down-regulation to up-regulation in "BA vs CM" and vehicle. The changed nodes were all related to cell death and development. CONCLUSION The pure pharmacological mechanism of BA is related to immunity, apoptosis, development, cytoskeletal remodeling, transduction and neurophysiology, as ascertained using a poly-dimensional network comparative analysis.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Pengqian Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Bing Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Haixia Dang
- China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Haixia Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Xiaoxu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| |
Collapse
|
6
|
Rabiller G, He JW, Nishijima Y, Wong A, Liu J. Perturbation of Brain Oscillations after Ischemic Stroke: A Potential Biomarker for Post-Stroke Function and Therapy. Int J Mol Sci 2015; 16:25605-40. [PMID: 26516838 PMCID: PMC4632818 DOI: 10.3390/ijms161025605] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/08/2023] Open
Abstract
Brain waves resonate from the generators of electrical current and propagate across brain regions with oscillation frequencies ranging from 0.05 to 500 Hz. The commonly observed oscillatory waves recorded by an electroencephalogram (EEG) in normal adult humans can be grouped into five main categories according to the frequency and amplitude, namely δ (1-4 Hz, 20-200 μV), θ (4-8 Hz, 10 μV), α (8-12 Hz, 20-200 μV), β (12-30 Hz, 5-10 μV), and γ (30-80 Hz, low amplitude). Emerging evidence from experimental and human studies suggests that groups of function and behavior seem to be specifically associated with the presence of each oscillation band, although the complex relationship between oscillation frequency and function, as well as the interaction between brain oscillations, are far from clear. Changes of brain oscillation patterns have long been implicated in the diseases of the central nervous system including ischemic stroke, in which the reduction of cerebral blood flow as well as the progression of tissue damage have direct spatiotemporal effects on the power of several oscillatory bands and their interactions. This review summarizes the current knowledge in behavior and function associated with each brain oscillation, and also in the specific changes in brain electrical activities that correspond to the molecular events and functional alterations observed after experimental and human stroke. We provide the basis of the generations of brain oscillations and potential cellular and molecular mechanisms underlying stroke-induced perturbation. We will also discuss the implications of using brain oscillation patterns as biomarkers for the prediction of stroke outcome and therapeutic efficacy.
Collapse
Affiliation(s)
- Gratianne Rabiller
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux 33000, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux 33000, France.
| | - Ji-Wei He
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
| | - Yasuo Nishijima
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
- Department of Neurosurgery, Tohoku University Graduate School of Medicine 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Aaron Wong
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
- Rice University, 6100 Main St, Houston, TX 77005, USA.
| | - Jialing Liu
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Present status and future challenges of electroencephalography- and magnetic resonance imaging-based monitoring in preclinical models of focal cerebral ischemia. Brain Res Bull 2014; 102:22-36. [PMID: 24462642 DOI: 10.1016/j.brainresbull.2014.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 12/16/2022]
Abstract
Animal models are useful tools for better understanding the mechanisms underlying neurological deterioration after an ischemic insult as well as subsequent evolution of changes and recovery of functions. In response to the updated requirements for preclinical investigations of stroke to include relevant functional measurement techniques and biomarker endpoints, we here review the state of knowledge on application of some translational electrophysiological and neuroimaging methods, and in particular, electroencephalography monitoring and magnetic resonance imaging in rodent models of ischemic stroke. This may lead to improvement of diagnostic methods and identification of new therapeutic targets, which would considerably advance the translational value of preclinical stroke research.
Collapse
|