1
|
Chiarelli R, Caradonna F, Naselli F. Autophagy and nutrigenomics: a winning team against chronic disease and tumors. Front Nutr 2024; 11:1409142. [PMID: 39703336 PMCID: PMC11655209 DOI: 10.3389/fnut.2024.1409142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Autophagy, a vital cell process, has garnered attention for its role in various diseases and potential therapeutic interventions. Dysregulation of autophagy contributes to conditions such as metabolic diseases, neurodegenerative disorders, and cancer. In diseases such as diabetes, autophagy plays a crucial role in islet β-cell maintenance and glucose homeostasis, offering potential targets for therapeutic intervention. Nutrigenomics, which explores how dietary components interact with the genome, has emerged as a promising avenue for disease management. It sheds light on how diet influences gene expression and cellular processes, offering personalized approaches to disease prevention and management. Studies have showed the impact of specific dietary components, such as polyphenols and omega-3 fatty acids, on autophagy processes, suggesting their potential therapeutic benefits in neurodegenerative conditions and metabolic disorders. In cancer, autophagy's dual role in either suppressing tumorigenesis or promoting cancer cell survival underscores the importance of understanding its modulation through dietary interventions. Combined with conventional chemotherapy drugs, dietary compounds show synergistic effects in cancer treatment. Furthermore, phytochemicals such as indicaxanthin have been found to epigenetically regulate genes involved in autophagy, offering novel insights into personalized cancer therapies. This comprehensive review has the aim to study the autophagy in a combined view with nutrigenomics effects of some dietary molecules in maintaining cellular homeostasis and responding to pathological stimuli. Overall, the intersection of autophagy and nutrigenomics effect of bioactive compounds holds promise for developing targeted interventions for various diseases, emphasizing the significance of dietary interventions in disease prevention and management.
Collapse
Affiliation(s)
- Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
KIANI AYSHAKARIM, BONETTI GABRIELE, DONATO KEVIN, KAFTALLI JURGEN, HERBST KARENL, STUPPIA LIBORIO, FIORETTI FRANCESCO, NODARI SAVINA, PERRONE MARCO, CHIURAZZI PIETRO, BELLINATO FRANCESCO, GISONDI PAOLO, BERTELLI MATTEO. Polymorphisms, diet and nutrigenomics. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E125-E141. [PMID: 36479483 PMCID: PMC9710387 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Every human being possesses an exclusive nutritional blueprint inside their genes. Bioactive food components and nutrients affect the expression of such genes. Nutrigenomics is the science that analyzes gene-nutrient interactions (nutrigenetics), which can lead to the development of personalized nutritional recommendations to maintain optimal health and prevent disease. Genomic diversity among various ethnic groups might affect nutrients bioavailability as well as their metabolism. Nutrigenomics combines different branches of science including nutrition, bioinformatics, genomics, molecular biology, molecular medicine, and epidemiology. Genes regulate intake and metabolism of different nutrients, while nutrients positively or negatively influence the expression of a number of genes; testing of specific genetic polymorphisms may therefore become a useful tool to manage weight loss and to fully understand gene-nutrient interactions. Indeed, several approaches are used to study gene-nutrient interactions: epigenetics, the study of genome modification not related to changes in nucleotide sequence; transcriptomics, the study of tissue-specific and time-specific RNA transcripts; proteomics, the study of proteins involved in biological processes; and metabolomics, the study of changes of primary and secondary metabolites in body fluids and tissues. Hence, the use of nutrigenomics to improve and optimize a healthy, balanced diet in clinical settings could be an effective approach for long-term lifestyle changes that might lead to consistent weight loss and improve quality of life.
Collapse
Affiliation(s)
| | - GABRIELE BONETTI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Gabriele Bonetti, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | | | - KAREN L. HERBST
- Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA
| | - LIBORIO STUPPIA
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - FRANCESCO FIORETTI
- Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy
| | - SAVINA NODARI
- Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy
| | - MARCO PERRONE
- Department of Cardiology and CardioLab, University of Rome Tor Vergata, Rome, Italy
| | - PIETRO CHIURAZZI
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - FRANCESCO BELLINATO
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - PAOLO GISONDI
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - MATTEO BERTELLI
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
3
|
Caio G, Lungaro L, Caputo F, Zoli E, Giancola F, Chiarioni G, De Giorgio R, Zoli G. Nutritional Treatment in Crohn's Disease. Nutrients 2021; 13:nu13051628. [PMID: 34066229 PMCID: PMC8151495 DOI: 10.3390/nu13051628] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease (IBD) which can affect any part of the whole gastrointestinal tract (from mouth to anus). Malnutrition affects 65-75% of CD patients, and it is now well acknowledged that diet is of paramount importance in the management of the disease. In this review, we would like to highlight the most recent findings in the field of nutrition for the treatment of CD. Our analysis will cover a wide range of topics, from the well-established diets to the new nutritional theories, along with the recent progress in emerging research fields, such as nutrigenomics.
Collapse
Affiliation(s)
- Giacomo Caio
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
- Center for the Study and Treatment of Chronic Inflammatory Intestinal Diseases (IBD) and Gastroenterological Manifestations of Rare Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital-Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (G.C.); (G.Z.); Tel.: +39-0532-236823 (G.C.); +39-051-6838307 (G.Z.)
| | - Lisa Lungaro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
- Department of Internal Medicine, Santissima Annunziata Hospital, Cento (Ferrara), University of Ferrara, 44042 Ferrara, Italy
| | - Fabio Caputo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
- Center for the Study and Treatment of Chronic Inflammatory Intestinal Diseases (IBD) and Gastroenterological Manifestations of Rare Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Internal Medicine, Santissima Annunziata Hospital, Cento (Ferrara), University of Ferrara, 44042 Ferrara, Italy
| | - Eleonora Zoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
- Department of Internal Medicine, Santissima Annunziata Hospital, Cento (Ferrara), University of Ferrara, 44042 Ferrara, Italy
| | - Fiorella Giancola
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
| | - Giuseppe Chiarioni
- Division of Gastroenterology of the University of Verona, A.O.U.I. Verona, 37126 Verona, Italy;
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7080, USA
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
- Center for the Study and Treatment of Chronic Inflammatory Intestinal Diseases (IBD) and Gastroenterological Manifestations of Rare Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.L.); (F.C.); (E.Z.); (F.G.); (R.D.G.)
- Center for the Study and Treatment of Chronic Inflammatory Intestinal Diseases (IBD) and Gastroenterological Manifestations of Rare Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Internal Medicine, Santissima Annunziata Hospital, Cento (Ferrara), University of Ferrara, 44042 Ferrara, Italy
- Correspondence: (G.C.); (G.Z.); Tel.: +39-0532-236823 (G.C.); +39-051-6838307 (G.Z.)
| |
Collapse
|
4
|
Raiten DJ, Combs GF, Steiber AL, Bremer AA. Perspective: Nutritional Status as a Biological Variable (NABV): Integrating Nutrition Science into Basic and Clinical Research and Care. Adv Nutr 2021; 12:1599-1609. [PMID: 34009250 PMCID: PMC8483963 DOI: 10.1093/advances/nmab046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/26/2021] [Accepted: 03/18/2021] [Indexed: 01/02/2023] Open
Abstract
The field of nutrition has evolved from one focused primarily on discovery of the identities, metabolic functions, and requirements for essential nutrients to one focused on the application of that knowledge to the development and implementation of dietary recommendations to promote health and prevent disease. This evolution has produced a deeper appreciation of not only the roles of nutrients, but also factors affecting their functions in increasingly complex global health contexts. The intersection of nutrition with an increasingly more complex global health context necessitates a view of nutritional status as a biological variable (NABV), the study of which includes an appreciation that nutritional status is: 1) not limited to dietary exposure; 2) intimately and inextricably involved in all aspects of human health promotion, disease prevention, and treatment; and 3) both an input and an outcome of health and disease. This expanded view of nutrition will inform future research by facilitating considerations of the contexts and variability associated with the many interacting factors affecting and affected by nutritional status. It will also demand new tools to study multifactorial relations to the end of increasing precision and the development of evidence-based, safe, and effective standards of health care, dietary interventions, and public health programs.
Collapse
Affiliation(s)
| | - Gerald F Combs
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA,
USA
| | | | - Andrew A Bremer
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Naureen Z, Miggiano GAD, Aquilanti B, Velluti V, Matera G, Gagliardi L, Zulian A, Romanelli R, Bertelli M. Genetic test for the prescription of diets in support of physical activity. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020011. [PMID: 33170161 PMCID: PMC8023120 DOI: 10.23750/abm.v91i13-s.10584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 01/03/2023]
Abstract
Owing to the fields of nutrigenetics and nutrigenomics today we can think of devising approaches to optimize health, delay onset of diseases and reduce its severity according to our genetic blue print. However this requires a deep understanding of nutritional impact on expression of genes that may result in a specific phenotype. The extensive research and observational studies during last two decades reporting interactions between genes, diet and physical activity suggest a cross talk between various genetic and environmental factors and lifestyle interventions. Although considerable efforts have been made in unraveling the mechanisms of gene-diet interactions the scientific evidences behind developing commercial genetic tests for providing personalized nutrition recommendations are still scarce. In this scenario the current mini-review aims to provide useful insights into salient feature of nutrition based genetic research and its commercial application and the ethical issue and concerns related to its outcome.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | | | - Barbara Aquilanti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Valeria Velluti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Giuseppina Matera
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Lucilla Gagliardi
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | | | | | - Matteo Bertelli
- MAGI'S LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy; EBTNA-LAB, Rovereto (TN), Italy.
| |
Collapse
|
6
|
Gambaro RC, Seoane A, Padula G. Oxidative Stress and Genomic Damage Induced In Vitro in Human Peripheral Blood by Two Preventive Treatments of Iron Deficiency Anemia. Biol Trace Elem Res 2019; 190:318-326. [PMID: 30443707 DOI: 10.1007/s12011-018-1576-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 11/28/2022]
Abstract
Iron deficiency is the most prevalent nutritional deficiency and the main cause of anemia worldwide. Since children aged 6-24 months are among the most vulnerable groups at risk, daily supplementation with ferrous sulfate is recommended by the Argentine Society of Pediatrics as preventive treatment of anemia. However, a single weekly dose would have fewer adverse side effects and has been therefore proposed as an alternative treatment. Ferrous sulfate is known by its pro-oxidative properties, which may lead to increased oxidative stress as well as lipid, protein, and DNA damage. We analyzed the effect of daily and weekly preventive treatment of iron deficiency anemia (IDA) on cell viability, oxidative stress, chromosome, and cytomolecular damage in peripheral blood cultured in vitro. The study protocol included the following: untreated negative control; bleomycin, hydrogen peroxide, or ethanol-treated positive control; daily 0.14 mg ferrous sulfate-supplemented group; and weekly 0.55 mg ferrous sulfate-supplemented group. We assessed cell viability (methyl-thiazolyl-tetrazolium and neutral red assays), lipid peroxidation (thiobarbituric acid reactive substances assay), antioxidant response (superoxide dismutase and catalase enzyme analysis), chromosome damage (cytokinesis-blocked micronucleus cytome assay), and cytomolecular damage (comet assay). Lipid peroxidation, antioxidant response, and chromosome and cytomolecular damage decreased after weekly ferrous sulfate supplementation (p < 0.05), suggesting less oxygen free radical production and decreased oxidative stress and genomic damage. Such a decrease in oxidative stress and genomic damage in vitro positions weekly supplementation as a better alternative for IDA treatment. Further studies in vivo would be necessary to corroborate whether weekly supplementation could improve IDA preventive treatment compliance in children.
Collapse
Affiliation(s)
- Rocío Celeste Gambaro
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calle 60 y 118 s/n, 1900, La Plata, Argentina.
| | - Analía Seoane
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calle 60 y 118 s/n, 1900, La Plata, Argentina
| | - Gisel Padula
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calle 60 y 118 s/n, 1900, La Plata, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
7
|
Mascolo E, Amoroso N, Saggio I, Merigliano C, Vernì F. Pyridoxine/pyridoxamine 5'-phosphate oxidase (Sgll/PNPO) is important for DNA integrity and glucose homeostasis maintenance in Drosophila. J Cell Physiol 2019; 235:504-512. [PMID: 31506944 DOI: 10.1002/jcp.28990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Pyridoxine/pyridoxamine 5'-phosphate oxidase (PNPO) and pyridoxal kinase (PDXK) cooperate to produce pyridoxal 5'-phosphate (PLP), the active form of vitamin B6. PDXK phosphorylates pyridoxine, pyridoxamine, and pyridoxal by producing PNP, PMP, and PLP, whereas PNPO oxidizes PNP, PMP, into PLP. We previously demonstrated that PDXK depletion in Drosophila and human cells impacts on glucose metabolism and DNA integrity. Here we characterized sgll, the Drosophila ortholog of PNPO gene, showing that its silencing by RNA interference elicits chromosome aberrations (CABs) in brains and induces diabetic hallmarks such as hyperglycemia and small body size. We showed that in sgllRNAi neuroblasts CABs are largely produced by the genotoxic effect of the advanced glycation end products triggered by high glucose. As in sgllRNAi cells, part of PLP is still produced by PDXK activity, these data suggest that PLP dosage need to be tightly regulated to guarantee glucose homeostasis and DNA integrity.
Collapse
Affiliation(s)
- Elisa Mascolo
- Dipartimento di Biologia e Biotecnologie "C. Darwin,", Sapienza Università di Roma, Rome, Italy
| | - Noemi Amoroso
- Dipartimento di Biologia e Biotecnologie "C. Darwin,", Sapienza Università di Roma, Rome, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie "C. Darwin,", Sapienza Università di Roma, Rome, Italy.,School of Biological Science, Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Chiara Merigliano
- Dipartimento di Biologia e Biotecnologie "C. Darwin,", Sapienza Università di Roma, Rome, Italy.,University of Southern California, Los Angeles, USA
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie "C. Darwin,", Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
8
|
Aguirre-Portolés C, Fernández LP, Ramírez de Molina A. Precision Nutrition for Targeting Lipid Metabolism in Colorectal Cancer. Nutrients 2017; 9:nu9101076. [PMID: 28956850 PMCID: PMC5691693 DOI: 10.3390/nu9101076] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
Cancer is a multistage and multifactorial condition with genetic and environmental factors modulating tumorogenesis and disease progression. Nevertheless, cancer is preventable, as one third of cancer deaths could be avoided by modifying key risk factors. Nutrients can directly affect fundamental cellular processes and are considered among the most important risk factors in colorectal cancer (CRC). Red and processed meat, poultry consumption, fiber, and folate are the best-known diet components that interact with colorectal cancer susceptibility. In addition, the direct association of an unhealthy diet with obesity and dysbiosis opens new routes in the understanding of how daily diet nutrients could influence cancer prognosis. In the “omics” era, traditional nutrition has been naturally evolved to precision nutrition where technical developments have contributed to a more accurate discipline. In this sense, genomic and transcriptomic studies have been extensively used in precision nutrition approaches. However, the relation between CRC carcinogenesis and nutrition factors is more complex than originally expected. Together with classical diet-nutrition-related genes, nowadays, lipid-metabolism-related genes have acquired relevant interest in precision nutrition studies. Lipids regulate very diverse cellular processes from ATP synthesis and the activation of essential cell-signaling pathways to membrane organization and plasticity. Therefore, a wide range of tumorogenic steps can be influenced by lipid metabolism, both in primary tumours and distal metastasis. The extent to which genetic variants, together with the intake of specific dietary components, affect the risk of CRC is currently under investigation, and new therapeutic or preventive applications must be explored in CRC models. In this review, we will go in depth into the study of co-occurring events, which orchestrate CRC tumorogenesis and are essential for the evolution of precision nutrition paradigms. Likewise, we will discuss the application of precision nutrition approaches to target lipid metabolism in CRC.
Collapse
Affiliation(s)
- Cristina Aguirre-Portolés
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain.
| | - Lara P Fernández
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain.
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, E-28049 Madrid, Spain.
| |
Collapse
|
9
|
Imaoka T, Ishii N, Kawaguchi I, Homma-Takeda S, Doi K, Daino K, Nakanishi I, Tagami K, Kokubo T, Morioka T, Hosoki A, Takabatake M, Yoshinaga S. Biological measures to minimize the risk of radiotherapy-associated second cancer: A research perspective. Int J Radiat Biol 2016; 92:289-301. [DOI: 10.3109/09553002.2016.1152413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tatsuhiko Imaoka
- National Institute of Radiological Sciences, Radiobiology for Children's Health Program, Research Center for Radiation Protection, Chiba, Japan
- Radiation Effect Accumulation and Prevention Project, Fukushima Projects Headquarters, Chiba, Japan
| | - Nobuyoshi Ishii
- Waste Management Research Team, Research Center for Radiation Protection, Chiba, Japan
| | - Isao Kawaguchi
- Regulatory Sciences Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Shino Homma-Takeda
- National Institute of Radiological Sciences, Radiobiology for Children's Health Program, Research Center for Radiation Protection, Chiba, Japan
- Radiation Effect Accumulation and Prevention Project, Fukushima Projects Headquarters, Chiba, Japan
| | - Kazutaka Doi
- Regulatory Sciences Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
- Project for Human Health, Fukushima Projects Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| | - Kazuhiro Daino
- National Institute of Radiological Sciences, Radiobiology for Children's Health Program, Research Center for Radiation Protection, Chiba, Japan
- Radiation Effect Accumulation and Prevention Project, Fukushima Projects Headquarters, Chiba, Japan
| | - Ikuo Nakanishi
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Keiko Tagami
- Waste Management Research Team, Research Center for Radiation Protection, Chiba, Japan
| | - Toshiaki Kokubo
- Department of Technical Support and Development, Research Development and Support Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Takamitsu Morioka
- National Institute of Radiological Sciences, Radiobiology for Children's Health Program, Research Center for Radiation Protection, Chiba, Japan
- Radiation Effect Accumulation and Prevention Project, Fukushima Projects Headquarters, Chiba, Japan
| | - Ayaka Hosoki
- Radiation Effect Accumulation and Prevention Project, Fukushima Projects Headquarters, Chiba, Japan
| | - Masaru Takabatake
- National Institute of Radiological Sciences, Radiobiology for Children's Health Program, Research Center for Radiation Protection, Chiba, Japan
| | - Shinji Yoshinaga
- Regulatory Sciences Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
- Project for Human Health, Fukushima Projects Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
10
|
Ferguson LR. Nutritional Modulation of Gene Expression: Might This be of Benefit to Individuals with Crohn's Disease? Front Immunol 2015; 6:467. [PMID: 26441972 PMCID: PMC4566049 DOI: 10.3389/fimmu.2015.00467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/27/2015] [Indexed: 12/18/2022] Open
Abstract
The incidence of inflammatory bowel diseases (IBD), including Crohn's disease (CD), is increasing worldwide, especially in young children and adolescents. Although hospitalized patients are usually provided with enteral or parenteral support, continuing care typically requires a trial-and-error approach to suppressing symptoms and maintaining disease remission. Current nutritional advice does not differ from general population guidelines. International collaborative studies have revealed 163 distinct genetic loci affecting susceptibility to IBD, in some of which host-microbe interactions can be seen to play an important role. The nature of these loci enables a rationale for predicting nutritional requirements that may not be evident through standard therapeutic approaches. Certain recognized nutrients, such as vitamin D and long-chain omega-3 polyunsaturated fatty acids, may be required at higher than anticipated levels. Various phytochemicals, not usually considered in the same class as classic nutrients, could play an important role. Prebiotics and probiotics may also be beneficial. Genomic approaches enable proof of principle of nutrient optimization rather than waiting for disease symptoms to appear and/or progress. We suggest a paradigm shift in diagnostic tools and nutritional therapy for CD, involving a systems biology approach for implementation.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland , Auckland , New Zealand ; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Auckland , New Zealand
| |
Collapse
|
11
|
Bull C, Christensen H, Fenech M. Cortisol is not associated with telomere shortening or chromosomal instability in human lymphocytes cultured under low and high folate conditions. PLoS One 2015; 10:e0119367. [PMID: 25748629 PMCID: PMC4352017 DOI: 10.1371/journal.pone.0119367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/13/2015] [Indexed: 01/13/2023] Open
Abstract
Chronic psychological stress and nutritional deficiencies are factors that impact negatively on human health and disease risk. Chronic stress has been associated with accelerated leukocyte telomere shortening in numerous cohorts, however, a mechanistic link has proven elusive. This study tested the hypotheses that chronic exposure to the stress hormone, cortisol, causes telomere shortening and chromosome instability (CIN) in vitro, and that these effects would be further exacerbated by folate (vitamin B9) deficiency. Primary human lymphocytes were maintained in vitro for 12 days in medium containing either 25 nM folic acid (FA(low)) or 100 nM FA (FA(high)), together with either 0, 400, 1000 or 3500 nM cortisol. The interactive effects of cortisol and FA were examined by comparing telomere length (TL), biomarkers of DNA damage, and cytostasis. At day 12 TL was 5-17% longer in lymphocytes cultured in FA(low) conditions (mean ± SD;10.2% ± 1.6), compared with those in FA(high) medium (9.1% ± 1, p = 0.02). Refuting the hypothesis, TL was consistently greater in the presence of cortisol. The effect of FA deficiency on the frequency of DNA damage was significant for nucleoplasmic bridges, circular nuclei, micronuclei and nuclear buds, (p < 0.0001-0.001). The effect of cortisol, however, was negligible, only reaching statistical significance for the frequency of fused nuclei (p = 0.04). Cortisol was significantly associated with reduced cell division and growth and had an apparent protective effect on cell viability in the FA(low) conditions. Conclusions: Both chronic cortisol exposure, and folate deficiency, resulted in telomere elongation, however, the effect of cortisol was marginal relative to that of folate. Cortisol was not associated with increased chromosomal instability, but caused a significant reduction in cell division and growth. Together these results indicate that cortisol is not directly genotoxic and that the telomere shortening associated with increased psychological stress in vivo may not be explained by a direct effect of cortisol.
Collapse
Affiliation(s)
- Caroline Bull
- Nutritional Genomics and DNA Damage Diagnostics Laboratory, CSIRO Animal, Food and Health Sciences, Adelaide, South Australia, Australia
- Department of Microbiology & Immunology, School of Molecular & Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| | - Helen Christensen
- Black Dog Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Michael Fenech
- Nutritional Genomics and DNA Damage Diagnostics Laboratory, CSIRO Animal, Food and Health Sciences, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Lee SL, Thomas P, Fenech M. Genome instability biomarkers and blood micronutrient risk profiles associated with mild cognitive impairment and Alzheimer's disease. Mutat Res 2015; 776:54-83. [PMID: 26364206 DOI: 10.1016/j.mrfmmm.2014.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/06/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022]
Abstract
Successful maintenance of metabolic systems relating to accurate DNA replication and repair is critical for optimal lifelong human health. Should this homeostatic balance become impaired, genomic instability events can arise, compromising the integrity of the genome, which may result in gene expression and human disease. Both genome instability and micronutrient imbalance have been identified and implicated in diseases associated with accelerated ageing which potentially leads to an increased risk for the future development of clinically defined neurodegenerative disorders. Cognitive decline leading to the clinical diagnosis of mild cognitive impairment (MCI) has been shown to predict an increased risk in later life of developing Alzheimer's disease (AD). Knowledge on the impact of dietary factors in relation to MCI and AD risk is improving but incomplete; in particular the role of nutrient combinations (i.e. nutriomes) has not been thoroughly investigated. Currently, there is a need for preventative strategies as well as the identification of robust and reproducible diagnostic biomarkers that will allow identification of those individuals with increased risk for neurodegenerative diseases. Growing evidence suggests cells originating from different somatic tissues derived from individuals that have been clinically diagnosed with neurodegenerative disorders exhibit elevated frequencies of DNA damage compared to tissues of cognitively normal individuals which could be due to malnutrition. The objective of this review is to discuss current evidence and identify knowledge gaps relating to genome instability biomarkers and blood micronutrient profiles from human studies of MCI and AD that may be specific to and contribute to the increased risk of these diseases. This is a vital step in order to create research strategies for the future development of diagnostics that are indicative of dementia risk and to inform preventative therapies.
Collapse
Affiliation(s)
- Sau Lai Lee
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia; Discipline of Physiology, School of Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Philip Thomas
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia
| | - Michael Fenech
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia.
| |
Collapse
|
13
|
Ray S. Micronutrient, Genome Stabili ty and Degenerative Diseases: Nutrigenomics Concept of Disease Prevention - An Overview. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2014. [DOI: 10.12944/crnfsj.2.3.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diet is a key factor in determining genomic stability is more important than previously imagined because it impacts on all relevant pathways like exposure to dietary carcinogens, DNA repair, DNA synthesis, epigenetic damage and apoptosis. Recent research focuses into how a single micronutrient deficiency is leading to genomic instability and development of degenerative diseases in various stages of life.The study aimed at finding the nutrigenomic mechanism of how a marginal deficiency of any single micronutrient is interrupting in DNA repairing, methylation and synthesis by taking nutrient-nutrient and nutrient-gene interaction into consideration. It also focuses on how recommended dietary allowance is important in achieving DNA integrity and genome stability to prevent degenerative diseases.Exhaustive review of research papers in genome health nutrigenomicsis involved in this study to explore, assimilate and analyze data to understand the importance of micronutrient in maintaining methylation of CpG sequence and preventing DNA oxidation or uracil misincorporation in DNA to stop disease occurrence in individuals.The study finds a direct link between micronutrient deficiency and increased epigenomic damage, resulting into elevated risk for adverse health outcomes during various stages of life like infertility, tumor development and cancer. The overview study concludes with a vision for a paradigm shift in disease prevention strategy based on diagnosis and micro-nutritional intervention of genome or epigenome damage on an individual basis, i.e. personalized prevention of degenerative diseases in genome health clinic.
Collapse
Affiliation(s)
- Subhasree Ray
- Research scholar, Department of Food Science & Nutrition, SNDT Women’s University, Juhu, Mumbai – 400049, Maharashtra, India
| |
Collapse
|
14
|
Bauer DC, Gaff C, Dinger ME, Caramins M, Buske FA, Fenech M, Hansen D, Cobiac L. Genomics and personalised whole-of-life healthcare. Trends Mol Med 2014; 20:479-86. [PMID: 24801560 DOI: 10.1016/j.molmed.2014.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/30/2022]
Abstract
Genome sequencing has the potential for stratified cancer treatment and improved diagnostics for rare disorders. However, sequencing needs to be utilised in risk stratification on a population scale to deepen the impact on the health system by addressing common diseases, where individual genomic variants have variable penetrance and minor impact. As the accuracy of genomic risk predictors is bounded by heritability, environmental factors such as diet, lifestyle, and microbiome have to be considered. Large-scale, longitudinal research programmes need to study the intrinsic properties between both genetics and environment to unravel their risk contribution. During this discovery process, frameworks need to be established to counteract unrealistic expectations. Sufficient scientific evidence is needed to interpret sources of uncertainty and inform decision making for clinical management and personal health.
Collapse
Affiliation(s)
- Denis C Bauer
- CSIRO Preventative Health Flagship and CSIRO Computational Informatics, Sydney, NSW 2113, Australia.
| | - Clara Gaff
- The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Marcel E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Melody Caramins
- School of Medical Sciences, University of New South Wales, Sydney, Australia; Laverty/SDS Pathology, 60 Waterloo Road, North Ryde, NSW 2113, Australia
| | - Fabian A Buske
- Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Michael Fenech
- CSIRO Preventative Health National Research Flagship, Adelaide, SA 5000, Australia; CSIRO Animal, Food, and Health Sciences, Gate 13 Kintore Avenue, Adelaide, SA 5000, Australia
| | - David Hansen
- Australian E-Health Research Centre and CSIRO Computational Informatics, Herston, QLD 4029, Australia
| | - Lynne Cobiac
- CSIRO Preventative Health National Research Flagship, Adelaide, SA 5000, Australia
| |
Collapse
|
15
|
Main PAE, Thomas P, Esterman A, Fenech MF. Necrosis is increased in lymphoblastoid cell lines from children with autism compared with their non-autistic siblings under conditions of oxidative and nitrosative stress. Mutagenesis 2014; 28:475-84. [PMID: 23766106 DOI: 10.1093/mutage/get025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders are a heterogeneous group of neurodevelopmental conditions characterised by impairments in reciprocal social interaction, communication and stereotyped behaviours. As increased DNA damage events have been observed in a range of other neurological disorders, it was hypothesised that they would be elevated in lymphoblastoid cell lines (LCLs) obtained from children with autism compared with their non-autistic siblings. Six case-sibling pairs of LCLs from children with autistic disorder and their non-autistic siblings were obtained from the Autism Genetic Resource Exchange (AGRE) and cultured in standard RPMI-1640 tissue culture medium. Cells were exposed to medium containing either 0, 25, 50, 100 and 200 µM hydrogen peroxide (an oxidative stressor) or 0, 5, 10, 20 and 40 µM s-nitroprusside (a nitric oxide producer) for 1h. Following exposure, the cells were microscopically scored for DNA damage, cytostasis and cytotoxicity biomarkers as measured using the cytokinesis-block micronucleus cytome assay. Necrosis was significantly increased in cases relative to controls when exposed to oxidative and nitrosative stress (P = 0.001 and 0.01, respectively). Nuclear division index was significantly lower in LCLs from children with autistic disorder than their non-autistic siblings when exposed to hydrogen peroxide (P = 0.016), but there was no difference in apoptosis, micronucleus frequency, nucleoplasmic bridges or nuclear buds. Exposure to s-nitroprusside significantly increased the number of micronuclei in non-autistic siblings compared with cases (P = 0.003); however, other DNA damage biomarkers, apoptosis and nuclear division did not differ significantly between groups. The findings of this study show (i) that LCLs from children with autism are more sensitive to necrosis under conditions of oxidative and nitrosative stress than their non-autistic siblings and (ii) refutes the hypothesis that children with autistic disorder are abnormally susceptible to DNA damage.
Collapse
Affiliation(s)
- Penelope A E Main
- Sansom Institute of Health Research, University of South Australia, North Terrace, Adelaide, Australia
| | | | | | | |
Collapse
|
16
|
Kirsch-Volders M, Bonassi S, Knasmueller S, Holland N, Bolognesi C, Fenech MF. Commentary: Critical questions, misconceptions and a road map for improving the use of the lymphocyte cytokinesis-block micronucleus assay for in vivo biomonitoring of human exposure to genotoxic chemicals—A HUMN project perspective. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 759:49-58. [DOI: 10.1016/j.mrrev.2013.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 11/16/2022]
|
17
|
Fenech M. Diet and genome health. Nutr Diet 2013. [DOI: 10.1111/1747-0080.12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Lu L, Ni J, Zhou T, Xu W, Fenech M, Wang X. Choline and/or folic acid deficiency is associated with genomic damage and cell death in human lymphocytes in vitro. Nutr Cancer 2012; 64:481-7. [PMID: 22439759 DOI: 10.1080/01635581.2012.660671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Choline and folate are interrelated methyl donors. Previous studies showed that folate prevents genomic damage in human lymphocytes in vitro; however, the association between choline and human genomic stability is uncertain. To explore the genotoxicity, cytotoxicity, and cytostatic effects and possible interactions of choline and/or folate deficiency on the human genome, lymphocytes from 6 volunteers were cultured in 18 combinations of choline (CC) and folic acid (FA) media for 9 days. The genotoxicity was evaluated by micronuclei, nucleoplasmic bridges, and nuclear buds in the binucleated cell; the cytotoxicity indices included apoptosis and necrosis, and the cytostatic effects were indicated by nuclear division index (NDI). Across all choline concentrations, the frequencies of all biomarkers except NDI were diminished when FA concentration was more than or equal to 120 nmol/L. The frequencies of micronuclei, buds, and necrosis were significantly higher at lower levels of CC (0-6 μmol/L) compared with higher concentrations of CC (12-21.5 μmol/L) while maintaining the same FA concentration. We concluded that both choline and folate significantly impact genomic stability and cell death, although effects of folate were 2.5- to 6.2-fold greater, depending on the biomarker and dose. A combination of 12 μmol/L CC and 120 nmol/L FA appears to be optimal for genomic integrity in vitro.
Collapse
Affiliation(s)
- Lin Lu
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | | | | | | | | | | |
Collapse
|
19
|
Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev 2012; 38:726-36. [PMID: 22342103 DOI: 10.1016/j.ctrv.2012.01.004] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/22/2011] [Accepted: 01/15/2012] [Indexed: 01/11/2023]
Abstract
Methionine is an essential amino acid with many key roles in mammalian metabolism such as protein synthesis, methylation of DNA and polyamine synthesis. Restriction of methionine may be an important strategy in cancer growth control particularly in cancers that exhibit dependence on methionine for survival and proliferation. Methionine dependence in cancer may be due to one or a combination of deletions, polymorphisms or alterations in expression of genes in the methionine de novo and salvage pathways. Cancer cells with these defects are unable to regenerate methionine via these pathways. Defects in the metabolism of folate may also contribute to the methionine dependence phenotype in cancer. Selective killing of methionine dependent cancer cells in co-culture with normal cells has been demonstrated using culture media deficient in methionine. Several animal studies utilizing a methionine restricted diet have reported inhibition of cancer growth and extension of a healthy life-span. In humans, vegan diets, which can be low in methionine, may prove to be a useful nutritional strategy in cancer growth control. The development of methioninase which depletes circulating levels of methionine may be another useful strategy in limiting cancer growth. The application of nutritional methionine restriction and methioninase in combination with chemotherapeutic regimens is the current focus of clinical studies.
Collapse
Affiliation(s)
- Paul Cavuoto
- CSIRO Food and Nutritional Sciences, P.O. Box 10041, Adelaide BC, SA 5000, Australia.
| | | |
Collapse
|
20
|
Moncayo R. Reflections on the theory of "silver bullet" octreotide tracers: implications for ligand-receptor interactions in the age of peptides, heterodimers, receptor mosaics, truncated receptors, and multifractal analysis. EJNMMI Res 2011; 1:9. [PMID: 22214590 PMCID: PMC3251005 DOI: 10.1186/2191-219x-1-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/26/2011] [Indexed: 12/25/2022] Open
Abstract
The classical attitude of Nuclear Medicine practitioners on matters of peptide-receptor interactions has maintained an intrinsic monogamic character since many years. New advances in the field of biochemistry and even in clinical Nuclear Medicine have challenged this type of thinking, which prompted me to work on this review. The central issue of this paper will be the use of somatostatin analogs, i.e., octreotide, in clinical imaging procedures as well as in relation to neuroendocirne tumors. Newly described characteristics of G-protein coupled receptors such as the formation of receptor mosaics will be discussed. A small section will enumerate the regulatory processes found in the cell membrane. Possible new interpretations, other than tumor detection, based on imaging procedures with somatostatin analogs will be presented. The readers will be taken to situations such as inflammation, nociception, mechanosensing, chemosensing, fibrosis, taste, and vascularity where somatostatin is involved. Thyroid-associated orbitopathy will be used as a model for the development of multi-agent therapeutics. The final graphical summary depicts the multifactorial properties of ligand binding.
Collapse
Affiliation(s)
- Roy Moncayo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
21
|
Fenech M, El-Sohemy A, Cahill L, Ferguson LR, French TAC, Tai ES, Milner J, Koh WP, Xie L, Zucker M, Buckley M, Cosgrove L, Lockett T, Fung KYC, Head R. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 4:69-89. [PMID: 21625170 DOI: 10.1159/000327772] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nutrigenetics and nutrigenomics hold much promise for providing better nutritional advice to the public generally, genetic subgroups and individuals. Because nutrigenetics and nutrigenomics require a deep understanding of nutrition, genetics and biochemistry and ever new 'omic' technologies, it is often difficult, even for educated professionals, to appreciate their relevance to the practice of preventive approaches for optimising health, delaying onset of disease and diminishing its severity. This review discusses (i) the basic concepts, technical terms and technology involved in nutrigenetics and nutrigenomics; (ii) how this emerging knowledge can be applied to optimise health, prevent and treat diseases; (iii) how to read, understand and interpret nutrigenetic and nutrigenomic research results, and (iv) how this knowledge may potentially transform nutrition and dietetic practice, and the implications of such a transformation. This is in effect an up-to-date overview of the various aspects of nutrigenetics and nutrigenomics relevant to health practitioners who are seeking a better understanding of this new frontier in nutrition research and its potential application to dietetic practice.
Collapse
Affiliation(s)
- Michael Fenech
- CSIRO Preventative Health National Research Flagship, Adelaide, SA, Australia. michael.fenech @ csiro.au
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Furness DLF, Dekker GA, Roberts CT. DNA damage and health in pregnancy. J Reprod Immunol 2011; 89:153-62. [PMID: 21511343 DOI: 10.1016/j.jri.2011.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/07/2011] [Accepted: 02/24/2011] [Indexed: 01/08/2023]
Abstract
In healthy pregnancy reactive oxygen species and antioxidants remain in balance and DNA damage is repaired effectively. However, pregnancy is an inflammatory state exhibiting increased susceptibility to oxidative stress such that this balance can be easily disrupted. Increased DNA damage has been shown to be involved in many pathological states including pregnancy complications. Modern lifestyles including exposure to pollutants, poor diet, and lack of exercise cause excess inflammation, oxidative stress, and ultimately DNA damage. There is a growing body of literature providing evidence that these lifestyle changes are increasing our risk of infertility, miscarriage, and late-gestation pregnancy complications. Moreover, baseline DNA damage rises with age and couples in developed societies are delaying childbirth, placing them at further risk. In order to understand the effect of lifestyle and DNA damage on pregnancy health we require large prospective studies, with the collection of samples prior to conception and endpoints of time-to-pregnancy, early pregnancy loss, and late-gestation maternal and fetal health.
Collapse
Affiliation(s)
- D L F Furness
- The University of Adelaide, Robinson Institute, Research Centre for Reproductive Health, Adelaide, South Australia 5005, Australia.
| | | | | |
Collapse
|