1
|
Truong MA, Cané-Gasull P, Lens SMA. Modeling specific aneuploidies: from karyotype manipulations to biological insights. Chromosome Res 2023; 31:25. [PMID: 37640903 PMCID: PMC10462580 DOI: 10.1007/s10577-023-09735-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
An abnormal chromosome number, or aneuploidy, underlies developmental disorders and is a common feature of cancer, with different cancer types exhibiting distinct patterns of chromosomal gains and losses. To understand how specific aneuploidies emerge in certain tissues and how they contribute to disease development, various methods have been developed to alter the karyotype of mammalian cells and mice. In this review, we provide an overview of both classic and novel strategies for inducing or selecting specific chromosomal gains and losses in human and murine cell systems. We highlight how these customized aneuploidy models helped expanding our knowledge of the consequences of specific aneuploidies to (cancer) cell physiology.
Collapse
Affiliation(s)
- My Anh Truong
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Paula Cané-Gasull
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Ohira T, Yoshimura K, Kugoh H. Human artificial chromosome carrying 3p21.3-p22.2 region suppresses hTERT transcription in oral cancer cells. Chromosome Res 2023; 31:17. [PMID: 37353691 PMCID: PMC10289923 DOI: 10.1007/s10577-023-09726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]
Abstract
Telomerase is a ribonucleoprotein ribonucleic enzyme that elongates telomere repeat sequences at the ends of chromosomes and contributes to cellular immortalization. The catalytic component of telomerase, human telomerase reverse transcriptase (hTERT), has been observed to be reactivated in immortalized cells. Notably, most cancer cells have been found to have active hTERT mRNA transcription, resulting in continuous cell division, which is crucial for malignant transformation. Therefore, discovering mechanisms underlying the regulation of hTERT transcription is an attractive target for cancer-specific treatments.Loss of heterozygosity (LOH) of chromosome 3p21.3 has been frequently observed in human oral squamous cell carcinoma (OSCC). Moreover, we previously reported that HSC3 OSCC microcell hybrid clones with an introduced human chromosome 3 (HSC3#3) showed inhibition of hTERT transcription compared with the parental HSC3 cells. This study examined whether hTERT transcription regulators are present in the 3p21.3 region. We constructed a human artificial chromosome (HAC) vector (3p21.3-HAC) with only the 3p21.3-p22.2 region and performed functional analysis using the 3p21.3-HAC. HSC3 microcell hybrid clones with an introduced 3p21.3-HAC exhibited significant suppression of hTERT transcription, similar to the microcell hybrid clones with an intact chromosome 3. In contrast, HSC3 clones with truncated chromosome 3 with deletion of the 3p21.3 region (3delp21.3) showed no effect on hTERT expression levels. These results provide direct evidence that hTERT suppressor gene(s) were retained in the 3p21.3 region, suggesting that the presence of regulatory factors that control telomerase enzyme activity may be involved in the development of OSCC.
Collapse
Affiliation(s)
- Takahito Ohira
- Department of Chromosome Biomedical Engineering, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan
| | - Kaho Yoshimura
- Department of Chromosome Biomedical Engineering, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan
| | - Hiroyuki Kugoh
- Department of Chromosome Biomedical Engineering, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan.
- Division of Genome and Cellular Function, Department of Molecular and Cellular Biology, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
3
|
Human chromosome 3p21.3 carries TERT transcriptional regulators in pancreatic cancer. Sci Rep 2021; 11:15355. [PMID: 34321527 PMCID: PMC8319171 DOI: 10.1038/s41598-021-94711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
Frequent loss of heterozygosity (LOH) on the short arm of human chromosome 3 (3p) region has been found in pancreatic cancer (PC), which suggests the likely presence of tumor suppressor genes in this region. However, the functional significance of LOH in this region in the development of PC has not been clearly defined. The human telomerase reverse transcriptase gene (hTERT) contributes to unlimited proliferative and tumorigenicity of malignant tumors. We previously demonstrated that hTERT expression was suppressed by the introduction of human chromosome 3 in several cancer cell lines. To examine the functional role of putative TERT suppressor genes on chromosome 3 in PC, we introduced an intact human chromosome 3 into the human PK9 and murine LTPA PC cell lines using microcell-mediated chromosome transfer. PK9 microcell hybrids with an introduced human chromosome 3 showed significant morphological changes and rapid growth arrest. Intriguingly, microcell hybrid clones of LTPA cells with an introduced human chromosome 3 (LTPA#3) showed suppression of mTert transcription, cell proliferation, and invasion compared with LTPA#4 cells containing human chromosome 4 and parental LTPA cells. Additionally, the promoter activity of mTert was downregulated in LTPA#3. Furthermore, we confirmed that TERT regulatory gene(s) are present in the 3p21.3 region by transfer of truncated chromosomes at arbitrary regions. These results provide important information on the functional significance of the LOH at 3p for development and progression of PC.
Collapse
|
4
|
Current advances in microcell-mediated chromosome transfer technology and its applications. Exp Cell Res 2020; 390:111915. [PMID: 32092294 DOI: 10.1016/j.yexcr.2020.111915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
Chromosomes and chromosomal gene delivery vectors, human/mouse artificial chromosomes (HACs/MACs), can introduce megabase-order DNA sequences into target cells and are used for applications including gene mapping, gene expression control, gene/cell therapy, and the development of humanized animals and animal models of human disease. Microcell-mediated chromosome transfer (MMCT), which enables chromosome transfer from donor cells to target cells, is a key technology for these applications. In this review, we summarize the principles of gene transfer with HACs/MACs; their engineering, characteristics, and utility; and recent advances in the chromosome transfer technology.
Collapse
|
5
|
Uno N, Abe S, Oshimura M, Kazuki Y. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models. J Hum Genet 2017; 63:145-156. [PMID: 29180645 DOI: 10.1038/s10038-017-0378-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 11/09/2022]
Abstract
Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.
Collapse
Affiliation(s)
- Narumi Uno
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan. .,Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
6
|
CRISPR/Cas9-induced transgene insertion and telomere-associated truncation of a single human chromosome for chromosome engineering in CHO and A9 cells. Sci Rep 2017; 7:12739. [PMID: 28986519 PMCID: PMC5630592 DOI: 10.1038/s41598-017-10418-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
Chromosome engineering techniques including gene insertion, telomere-associated truncation and microcell-mediated chromosome transfer (MMCT) are powerful tools for generation of humanised model animal, containing megabase-sized genomic fragments. However, these techniques require two cell lines: homologous recombination (HR)-proficient DT40 cells for chromosome modification, and CHO cells for transfer to recipient cells. Here we show an improved technique using a combination of CRISPR/Cas9-induced HR in CHO and mouse A9 cells without DT40 cells following MMCT to recipient cells. Transgene insertion was performed in CHO cells with the insertion of enhanced green fluorescence protein (EGFP) using CRISPR/Cas9 and a circular targeting vector containing two 3 kb HR arms. Telomere-associated truncation was performed in CHO cells using CRISPR/Cas9 and a linearised truncation vector containing a single 7 kb HR arm at the 5′ end, a 1 kb artificial telomere at the 3′ end. At least 11% and 6% of the targeting efficiency were achieved for transgene insertion and telomere-associated truncation, respectively. The transgene insertion was also confirmed in A9 cells (29%). The modified chromosomes were transferrable to other cells. Thus, this CHO and A9 cell-mediated chromosome engineering using the CRISPR/Cas9 for direct transfer of the modified chromosome is a rapid technique that will facilitate chromosome manipulation.
Collapse
|
7
|
Gu H, Xin X, Pan Y, Zhang H, Tian S, Sun C. Telomerase activity as a marker for differential diagnosis of pancreatic adenocarcinoma: a systematic review and meta-analysis. Int J Biol Markers 2016; 31:e126-37. [PMID: 26616232 DOI: 10.5301/jbm.5000172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Studies evaluating the role of telomerase activity in pancreatic adenocarcinoma are inconsistent and a systemic review of the available literature may shed new light on this issue. OBJECTIVE To systematically review the usefulness of telomerase activity in distinguishing pancreatic cancer from other pancreatic diseases. METHODS A comprehensive search of the PubMed and Embase databases was conducted to identify eligible studies. Only studies evaluating telomerase activity in patients with suspected or previously diagnosed pancreatic adenocarcinomas versus nonpancreatic adenocarcinomas and published in English with a sufficient number of cases were included. The hierarchical summary receiver operating characteristic (HSROC) model was used to establish the potential value of telomerase activity in the diagnosis of pancreatic adenocarcinoma. RESULTS A total of 19 studies qualified for this meta-analysis. In distinguishing pancreatic adenocarcinoma from benign diseases, the pooled sensitivity and specificity of telomerase activity were 0.81 (95% CI, 0.68-0.90) and 0.97 (95% CI, 0.93-0.98), respectively; the diagnostic odds ratio (DOR) was 126.62 (95% CI, 49.94-320.99); beta was -1.16 (95% CI, -3.62-1.29), Z was -0.93, p was 0.35>0.1, and lambda was 6.86 (95% CI, 1.01-12.70). In distinguishing pancreatic adenocarcinoma from chronic pancreatitis, the pooled sensitivity and specificity of telomerase activity were 0.77 (95% CI, 0.61-0.88) and 0.97 (95% CI, 0.91-0.99), respectively; DOR was 117.28 (95% CI, 32.25-426.53); beta was -0.38 (95% CI, -1.89-1.13), Z was -0.49, p was 0.62>0.1, and lambda was 5.30 (95% CI, 3.37-7.24). CONCLUSIONS The present meta-analysis demonstrates that telomerase activity could be a useful biomarker for the differential diagnosis of pancreatic adenocarcinoma and benign pancreatic diseases.
Collapse
Affiliation(s)
- Huajian Gu
- Department of General Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang - PR China
| | - Xiaoyan Xin
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan - PR China
| | - Yaozhen Pan
- Department of General Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang - PR China
| | - Hong Zhang
- Department of General Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang - PR China
| | - She Tian
- Department of General Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang - PR China
| | - Chengyi Sun
- Department of General Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang - PR China
| |
Collapse
|
8
|
Studies of Tumor Suppressor Genes via Chromosome Engineering. Cancers (Basel) 2015; 8:cancers8010004. [PMID: 26729168 PMCID: PMC4728451 DOI: 10.3390/cancers8010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
The development and progression of malignant tumors likely result from consecutive accumulation of genetic alterations, including dysfunctional tumor suppressor genes. However, the signaling mechanisms that underlie the development of tumors have not yet been completely elucidated. Discovery of novel tumor-related genes plays a crucial role in our understanding of the development and progression of malignant tumors. Chromosome engineering technology based on microcell-mediated chromosome transfer (MMCT) is an effective approach for identification of tumor suppressor genes. The studies have revealed at least five tumor suppression effects. The discovery of novel tumor suppressor genes provide greater understanding of the complex signaling pathways that underlie the development and progression of malignant tumors. These advances are being exploited to develop targeted drugs and new biological therapies for cancer.
Collapse
|
9
|
Oshimura M, Uno N, Kazuki Y, Katoh M, Inoue T. A pathway from chromosome transfer to engineering resulting in human and mouse artificial chromosomes for a variety of applications to bio-medical challenges. Chromosome Res 2015; 23:111-33. [PMID: 25657031 PMCID: PMC4365188 DOI: 10.1007/s10577-014-9459-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microcell-mediated chromosome transfer (MMCT) is a technique to transfer a chromosome from defined donor cells into recipient cells and to manipulate chromosomes as gene delivery vectors and open a new avenue in somatic cell genetics. However, it is difficult to uncover the function of a single specific gene via the transfer of an entire chromosome or fragment, because each chromosome or fragment contains a set of numerous genes. Thus, alternative tools are human artificial chromosome (HAC) and mouse artificial chromosome (MAC) vectors, which can carry a gene or genes of interest. HACs/MACs have been generated mainly by either a "top-down approach" (engineered creation) or a "bottom-up approach" (de novo creation). HACs/MACs with one or more acceptor sites exhibit several characteristics required by an ideal gene delivery vector, including stable episomal maintenance and the capacity to carry large genomic loci plus their regulatory elements, thus allowing the physiological regulation of the introduced gene in a manner similar to that of native chromosomes. The MMCT technique is also applied for manipulating HACs and MACs in donor cells and delivering them to recipient cells. This review describes the lessons learned and prospects identified from studies on the construction of HACs and MACs, and their ability to drive exogenous gene expression in cultured cells and transgenic animals via MMCT. New avenues for a variety of applications to bio-medical challenges are also proposed.
Collapse
Affiliation(s)
- Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan,
| | | | | | | | | |
Collapse
|
10
|
Repression of hTERT transcription by the introduction of chromosome 3 into human oral squamous cell carcinoma. Biochem Biophys Res Commun 2015; 466:755-9. [PMID: 26410534 DOI: 10.1016/j.bbrc.2015.09.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022]
Abstract
Telomerase is a ribonucleoprotein enzyme that maintains telomere length. Telomerase activity is primarily attributed to the expression of telomerase reverse transcriptase (TERT). It has been reported that introduction of an intact human chromosome 3 into the human oral squamous cell carcinoma cell line HSC3 suppresses the tumorigenicity of these cells. However, the mechanisms that regulate tumorigenicity have not been elucidated. To determine whether this reduction in tumorigenicity was accompanied by a reduction in telomerase activity, we investigated the transcriptional activation of TERT in HSC3 microcell hybrid clones with an introduced human chromosome 3 (HSC3#3). HSC#3 cells showed inhibition of hTERT transcription compared to that of the parental HSC3 cells. Furthermore, cell fusion experiments showed that hybrids of HSC3 cells and cells of the RCC23 renal carcinoma cell line, which also exhibits suppression of TERT transcription by the introduction of human chromosome 3, also displayed suppressed TERT transcription. These results suggested that human chromosome 3 may carry functionally distinct, additional TERT repressor genes.
Collapse
|
11
|
Hiratsuka M, Ueda K, Uno N, Uno K, Fukuhara S, Kurosaki H, Takehara S, Osaki M, Kazuki Y, Kurosawa Y, Nakamura T, Katoh M, Oshimura M. Retargeting of microcell fusion towards recipient cell-oriented transfer of human artificial chromosome. BMC Biotechnol 2015; 15:58. [PMID: 26088202 PMCID: PMC4472177 DOI: 10.1186/s12896-015-0142-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/17/2015] [Indexed: 11/30/2022] Open
Abstract
Background Human artificial chromosome (HAC) vectors have some unique characteristics as compared with conventional vectors, carrying large transgenes without size limitation, showing persistent expression of transgenes, and existing independently from host genome in cells. With these features, HACs are expected to be promising vectors for modifications of a variety of cell types. However, the method of introduction of HACs into target cells is confined to microcell-mediated chromosome transfer (MMCT), which is less efficient than other methods of vector introduction. Application of Measles Virus (MV) fusogenic proteins to MMCT instead of polyethylene glycol (PEG) has partly solved this drawback, whereas the tropism of MV fusogenic proteins is restricted to human CD46- or SLAM-positive cells. Results Here, we show that retargeting of microcell fusion by adding anti-Transferrin receptor (TfR) single chain antibodies (scFvs) to the extracellular C-terminus of the MV-H protein improves the efficiency of MV-MMCT to human fibroblasts which originally barely express both native MV receptors, and are therefore resistant to MV-MMCT. Efficacy of chimeric fusogenic proteins was evaluated by the evidence that the HAC, tagged with a drug-resistant gene and an EGFP gene, was transferred from CHO donor cells into human fibroblasts. Furthermore, it was demonstrated that no perturbation of either the HAC status or the functions of transgenes was observed on account of retargeted MV-MMCT when another HAC carrying four reprogramming factors (iHAC) was transferred into human fibroblasts. Conclusions Retargeted MV-MMCT using chimeric H protein with scFvs succeeded in extending the cell spectrum for gene transfer via HAC vectors. Therefore, this technology could facilitate the systematic cell engineering by HACs. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0142-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masaharu Hiratsuka
- Division of Molecular and Cell Genetics, Department of Molecular and Cellular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Kana Ueda
- Division of Molecular Genetics and Biofunction, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Narumi Uno
- Division of Molecular Genetics and Biofunction, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan. .,Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Katsuhiro Uno
- Division of Molecular Genetics and Biofunction, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Sayaka Fukuhara
- Division of Molecular Genetics and Biofunction, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Hajime Kurosaki
- Division of Integrative Bioscience, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan.
| | - Shoko Takehara
- Division of Molecular Genetics and Biofunction, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Department of Biomedical Sciences, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Yasuhiro Kazuki
- Division of Molecular Genetics and Biofunction, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan. .,Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Yoshikazu Kurosawa
- Division of Antibody Project, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| | - Takafumi Nakamura
- Division of Integrative Bioscience, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan.
| | - Motonobu Katoh
- Division of Human Genome Science, Department of Molecular and Cellular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan. .,Japan Science and Technology Agency, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan.
| |
Collapse
|
12
|
Wu XQ, Huang C, He X, Tian YY, Zhou DX, He Y, Liu XH, Li J. Feedback regulation of telomerase reverse transcriptase: new insight into the evolving field of telomerase in cancer. Cell Signal 2013; 25:2462-8. [DOI: 10.1016/j.cellsig.2013.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/23/2013] [Indexed: 01/07/2023]
|
13
|
Canel N, Bevacqua R, Hiriart MI, Salamone D. Replication of somatic micronuclei in bovine enucleated oocytes. Cell Div 2012; 7:23. [PMID: 23173571 PMCID: PMC3564703 DOI: 10.1186/1747-1028-7-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/15/2012] [Indexed: 11/24/2022] Open
Abstract
Background Microcell-mediated chromosome transfer (MMCT) was developed to introduce a low number of chromosomes into a host cell. We have designed a novel technique combining part of MMCT with somatic cell nuclear transfer, which consists of injecting a somatic micronucleus into an enucleated oocyte, and inducing its cellular machinery to replicate such micronucleus. It would allow the isolation and manipulation of a single or a low number of somatic chromosomes. Methods Micronuclei from adult bovine fibroblasts were produced by incubation in 0.05 μg/ml demecolcine for 46 h followed by 2 mg/ml mitomycin for 2 h. Cells were finally treated with 10 μg/ml cytochalasin B for 1 h. In vitro matured bovine oocytes were mechanically enucleated and intracytoplasmatically injected with one somatic micronucleus, which had been previously exposed [Micronucleus- injected (+)] or not [Micronucleus- injected (−)] to a transgene (50 ng/μl pCX-EGFP) during 5 min. Enucleated oocytes [Enucleated (+)] and parthenogenetic [Parthenogenetic (+)] controls were injected into the cytoplasm with less than 10 pl of PVP containing 50 ng/μl pCX-EGFP. A non-injected parthenogenetic control [Parthenogenetic (−)] was also included. Two hours after injection, oocytes and reconstituted embryos were activated by incubation in 5 μM ionomycin for 4 min + 1.9 mM 6-DMAP for 3 h. Cleavage stage and egfp expression were evaluated. DNA replication was confirmed by DAPI staining. On day 2, Micronucleus- injected (−), Parthenogenetic (−) and in vitro fertilized (IVF) embryos were karyotyped. Differences among treatments were determined by Fisher′s exact test (p≤0.05). Results All the experimental groups underwent the first cell divisions. Interestingly, a low number of Micronucleus-injected embryos showed egfp expression. DAPI staining confirmed replication of micronuclei in most of the evaluated embryos. Karyotype analysis revealed that all Micronucleus-injected embryos had fewer than 15 chromosomes per blastomere (from 1 to 13), while none of the IVF and Parthenogenetic controls showed less than 30 chromosomes per spread. Conclusions We have developed a new method to replicate somatic micronuclei, by using the replication machinery of the oocyte. This could be a useful tool for making chromosome transfer, which could be previously targeted for transgenesis.
Collapse
Affiliation(s)
- Natalia Canel
- Laboratorio Biotecnología Animal, Departamento de Producción Animal, Facultad Agronomía, Universidad de Buenos Aires, Av, San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
14
|
Regulation of the human catalytic subunit of telomerase (hTERT). Gene 2012; 498:135-46. [PMID: 22381618 DOI: 10.1016/j.gene.2012.01.095] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 12/12/2022]
Abstract
Over the past decade, there has been much interest in the regulation of telomerase, the enzyme responsible for maintaining the integrity of chromosomal ends, and its crucial role in cellular immortalization, tumorigenesis, and the progression of cancer. Telomerase activity is characterized by the expression of the telomerase reverse transcriptase (TERT) gene, suggesting that TERT serves as the major limiting agent for telomerase activity. Recent discoveries have led to characterization of various interactants that aid in the regulation of human TERT (hTERT), including numerous transcription factors; further supporting the pivotal role that transcription plays in both the expression and repression of telomerase. Several studies have suggested that epigenetic modulation of the hTERT core promoter region may provide an additional level of regulation. Although these studies have provided essential information on the regulation of hTERT, there has been ambiguity of the role of methylation within the core promoter region and the subsequent binding of various activating and repressive agents. As a result, we found it necessary to consolidate and summarize these recent developments and elucidate these discrepancies. In this review, we focus on the co-regulation of hTERT via transcriptional regulation, the presence or absence of various activators and repressors, as well as the epigenetic pathways of DNA methylation and histone modifications.
Collapse
|
15
|
Qi DL, Ohhira T, Oshimura M, Kugoh H. Human chromosome 5 carries a transcriptional regulator of human telomerase reverse transcriptase (hTERT). Biochem Biophys Res Commun 2010; 398:695-701. [PMID: 20621064 DOI: 10.1016/j.bbrc.2010.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/02/2010] [Indexed: 12/11/2022]
Abstract
Telomerase activation is crucial for cells that tend to be immortalized. Increased telomerase activity is correlated with upregulation of telomerase reverse transcriptase (TERT) expression. In most human somatic cells, hTERT expression is suppressed by multiple factors. We have previously shown that human chromosome 5 carries a possible suppressor of mouse tert mtert expression in a mouse melanoma cell line, B16-F10 cells. However, the function of the transcriptional regulator of TERT on this chromosome remains unclear. To examine the functional role of a putative hTERT regulator(s) on this chromosome, we transferred human chromosome 5 in a human melanoma cell line, A2058 cells by microcell-mediated chromosome transfer (MMCT). Microcell hybrid clones with an introduced chromosome 5, but not chromosome 10, showed a remarkable decrease in the growth rate with an obvious cellular morphological alteration and eventually cellular senescence. Moreover, this phenomenon was accompanied by a reduction of hTERT expression and telomerase activity. Most importantly, we found that transcriptional suppression of hTERT by the introduction of chromosome 5 is largely mediated by regulating hTERT promoter activity. Furthermore, the hTERT promoter region between -1623 and -1047 was responsible for this function. These results provide evidence that transcriptional regulator(s) of the hTERT is carried on human chromosome 5 as an endogenous mechanism of hTERT suppression.
Collapse
Affiliation(s)
- Dong-Lai Qi
- Department of Biomedical Science, Graduate School of Medical Science, and Chromosome Engineering Research Center, Tottori University, 86 Nishicho, Yonago 683-8503, Japan
| | | | | | | |
Collapse
|