1
|
Siontas O, Ahn S. Challenges in AAV-Based Retinal Gene Therapies and the Role of Magnetic Nanoparticle Platforms. J Clin Med 2024; 13:7385. [PMID: 39685843 DOI: 10.3390/jcm13237385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Retinal diseases, leading to various visual impairments and blindness, are on the rise. However, the advancement of retinal gene therapies offers new hope for treatment of such diseases. Among different vector systems for conferring therapeutic genetic load to retinal cells, adeno-associated viruses (AAVs) have been most intensively explored and have already successfully gained multiple clinical approvals. AAV-based retinal gene therapies have shown great promise in treating retinal disorders, but usually rely on the heavily disruptive administration methods such as subretinal injection. This is because the clinically well-established, minimally invasive alternative of intravitreal injection (IVI) necessitates AAVs to traverse the retinal inner limiting membrane (ILM), which is hard to penetrate in higher eye models, like human or porcine eyes. Additionally, AAVs' natural transduction preference, known as tropism, is commonly not specific to cells of only one target retinal layer, which is another ongoing challenge in retinal gene therapy. This review examines strategies to overcome these obstacles with a focus on the potential of magnetic nanoparticles (MNPs) for improved retinal AAV delivery.
Collapse
Affiliation(s)
- Oliver Siontas
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, 4056 Basel, Switzerland
| | - Seungkuk Ahn
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, 4056 Basel, Switzerland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
2
|
Ren D, Fisson S, Dalkara D, Ail D. Immune Responses to Gene Editing by Viral and Non-Viral Delivery Vectors Used in Retinal Gene Therapy. Pharmaceutics 2022; 14:1973. [PMID: 36145721 PMCID: PMC9502120 DOI: 10.3390/pharmaceutics14091973] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a leading cause of blindness in industrialized countries, and gene therapy is quickly becoming a viable option to treat this group of diseases. Gene replacement using a viral vector has been successfully applied and advanced to commercial use for a rare group of diseases. This, and the advances in gene editing, are paving the way for the emergence of a new generation of therapies that use CRISPR-Cas9 to edit mutated genes in situ. These CRISPR-based agents can be delivered to the retina as transgenes in a viral vector, unpackaged transgenes or as proteins or messenger RNA using non-viral vectors. Although the eye is considered to be an immune-privileged organ, studies in animals, as well as evidence from clinics, have concluded that ocular gene therapies elicit an immune response that can under certain circumstances result in inflammation. In this review, we evaluate studies that have reported on pre-existing immunity, and discuss both innate and adaptive immune responses with a specific focus on immune responses to gene editing, both with non-viral and viral delivery in the ocular space. Lastly, we discuss approaches to prevent and manage the immune responses to ensure safe and efficient gene editing in the retina.
Collapse
Affiliation(s)
- Duohao Ren
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Sylvain Fisson
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
| | - Divya Ail
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
- Institut de la Vision, INSERM UMR S968, 17 rue Moreau, 75012 Paris, France
| |
Collapse
|
3
|
Huang P, Narendran S, Pereira F, Fukuda S, Nagasaka Y, Apicella I, Yerramothu P, Marion KM, Cai X, Sadda SR, Gelfand BD, Ambati J. Subretinal injection in mice to study retinal physiology and disease. Nat Protoc 2022; 17:1468-1485. [PMID: 35418688 PMCID: PMC11146522 DOI: 10.1038/s41596-022-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Subretinal injection (SRI) is a widely used technique in retinal research and can be used to deliver nucleic acids, small molecules, macromolecules, viruses, cells or biomaterials such as nanobeads. Here we describe how to undertake SRI of mice. This protocol was adapted from a technique initially described for larger animals. Although SRI is a common procedure in eye research laboratories, there is no published guidance on the best practices for determining what constitutes a 'successful' SRI. Optimal injections are required for reproducibility of the procedure and, when carried out suboptimally, can lead to erroneous conclusions. To address this issue, we propose a standardized protocol for SRI with 'procedure success' defined by follow-up examination of the retina and the retinal pigmented epithelium rather than solely via intraoperative endpoints. This protocol takes 7-14 d to complete, depending on the reagent delivered. We have found, by instituting a standardized training program, that trained ophthalmologists achieve reliable proficiency in this technique after ~350 practice injections. This technique can be used to gain insights into retinal physiology and disease pathogenesis and to test the efficacy of experimental compounds in the retina or retinal pigmented epithelium.
Collapse
Affiliation(s)
- Peirong Huang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Aravind Eye Care System, Madurai, India
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Tsukuba, Tsukuba, Japan
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Xiaoyu Cai
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies. Prog Retin Eye Res 2014; 43:108-28. [PMID: 25124745 PMCID: PMC4241499 DOI: 10.1016/j.preteyeres.2014.08.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/26/2014] [Accepted: 08/02/2014] [Indexed: 12/20/2022]
Abstract
Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina's compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible. The ongoing identification of novel viruses as well as modifications of existing ones based either on rational design or directed evolution have generated vector variants with improved transduction properties. Dozens of promising proofs of concept have been obtained in IR animal models with both viral and non-viral vectors, and some of them have been relayed to clinical trials. To date, recombinant vectors based on the adeno-associated virus (AAV) represent the most promising tool for retinal gene therapy, given their ability to efficiently deliver therapeutic genes to both PR and RPE and their excellent safety and efficacy profiles in humans. However, AAVs' limited cargo capacity has prevented application of the viral vector to treatments requiring transfer of genes with a coding sequence larger than 5 kb. Vectors with larger capacity, i.e. nanoparticles, adenoviral and lentiviral vectors are being exploited for gene transfer to the retina in animal models and, more recently, in humans. This review focuses on the available platforms for retinal gene therapy to fight inherited blindness, highlights their main strengths and examines the efforts to overcome some of their limitations.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Agostina Puppo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy.
| |
Collapse
|
5
|
Abstract
Gene therapy has been considered as the most ideal medical intervention for genetic diseases because it is intended to target the cause of diseases instead of disease symptoms. Availability of techniques for identification of genetic mutations and for in vitro manipulation of genes makes it practical and attractive. After the initial hype in 1990s and later disappointments in clinical trials for more than a decade, light has finally come into the tunnel in recent years, especially in the field of eye gene therapy where it has taken big strides. Clinical trials in gene therapy for retinal degenerative diseases such as Leber's congenital amaurosis (LCA) and choroideremia demonstrated clear therapeutic efficacies without apparent side effects. Although these successful examples are still rare and sporadic in the field, they provide the proof of concept for harnessing the power of gene therapy to treat genetic diseases and to modernize our medication. In addition, those success stories illuminate the path for the development of gene therapy treating other genetic diseases. Because of the differences in target organs and cells, distinct barriers to gene delivery exist in gene therapy for each genetic disease. It is not feasible for authors to review the current development in the entire field. Thus, in this article, we will focus on what we can learn from the current success in gene therapy for retinal degenerative diseases to speed up the gene therapy development for lung diseases, such as cystic fibrosis.
Collapse
|
7
|
Thakur A, Fitzpatrick S, Zaman A, Kugathasan K, Muirhead B, Hortelano G, Sheardown H. Strategies for ocular siRNA delivery: Potential and limitations of non-viral nanocarriers. J Biol Eng 2012; 6:7. [PMID: 22686441 PMCID: PMC3533807 DOI: 10.1186/1754-1611-6-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/26/2012] [Indexed: 02/07/2023] Open
Abstract
Controlling gene expression via small interfering RNA (siRNA) has opened the doors to a plethora of therapeutic possibilities, with many currently in the pipelines of drug development for various ocular diseases. Despite the potential of siRNA technologies, barriers to intracellular delivery significantly limit their clinical efficacy. However, recent progress in the field of drug delivery strongly suggests that targeted manipulation of gene expression via siRNA delivered through nanocarriers can have an enormous impact on improving therapeutic outcomes for ophthalmic applications. Particularly, synthetic nanocarriers have demonstrated their suitability as a customizable multifunctional platform for the targeted intracellular delivery of siRNA and other hydrophilic and hydrophobic drugs in ocular applications. We predict that synthetic nanocarriers will simultaneously increase drug bioavailability, while reducing side effects and the need for repeated intraocular injections. This review will discuss the recent advances in ocular siRNA delivery via non-viral nanocarriers and the potential and limitations of various strategies for the development of a ‘universal’ siRNA delivery system for clinical applications.
Collapse
Affiliation(s)
- Ajit Thakur
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|