1
|
Bergmann C, Poli A, Agache I, Bianchini R, Bax HJ, Castells M, Crescioli S, Dombrowicz D, Ferastraoaru D, Fiebiger E, Gould HJ, Hartmann K, Izquierdo E, Jordakieva G, Josephs DH, Jutel M, Levi‐Schaffer F, de las Vecillas L, Lotze MT, Osborn G, Pascal M, Redegeld F, Rosenstreich D, Roth‐Walter F, Schmidt‐Weber C, Shamji M, Steveling EH, Turner MC, Untersmayr E, Jensen‐Jarolim E, Karagiannis SN. AllergoOncology: Danger signals in allergology and oncology: A European Academy of Allergy and Clinical Immunology (EAACI) Position Paper. Allergy 2022; 77:2594-2617. [PMID: 35152450 PMCID: PMC9545837 DOI: 10.1111/all.15255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023]
Abstract
The immune system interacts with many nominal 'danger' signals, endogenous danger-associated (DAMP), exogenous pathogen (PAMP) and allergen (AAMP)-associated molecular patterns. The immune context under which these are received can promote or prevent immune activating or inflammatory mechanisms and may orchestrate diverse immune responses in allergy and cancer. Each can act either by favouring a respective pathology or by supporting the immune response to confer protective effects, depending on acuity or chronicity. In this Position Paper under the collective term danger signals or DAMPs, PAMPs and AAMPs, we consider their diverse roles in allergy and cancer and the connection between these in AllergoOncology. We focus on their interactions with different immune cells of the innate and adaptive immune system and how these promote immune responses with juxtaposing clinical outcomes in allergy and cancer. While danger signals present potential targets to overcome inflammatory responses in allergy, these may be reconsidered in relation to a history of allergy, chronic inflammation and autoimmunity linked to the risk of developing cancer, and with regard to clinical responses to anti-cancer immune and targeted therapies. Cross-disciplinary insights in AllergoOncology derived from dissecting clinical phenotypes of common danger signal pathways may improve allergy and cancer clinical outcomes.
Collapse
Affiliation(s)
- Christoph Bergmann
- Department of OtorhinolaryngologyRKM740 Interdisciplinary ClinicsDüsseldorfGermany
| | - Aurélie Poli
- Neuro‐Immunology GroupDepartment of OncologyLuxembourg Institute of HealthLuxembourgLuxembourg
| | - Ioana Agache
- Faculty of MedicineTransylania University BrasovBrasovRomania
| | - Rodolfo Bianchini
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of ViennaViennaAustria
| | - Heather J. Bax
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom,School of Cancer and Pharmaceutical SciencesGuy's Hospital, King's College LondonLondonUnited Kingdom
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Silvia Crescioli
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom
| | - David Dombrowicz
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1011‐EGIDLilleFrance
| | - Denisa Ferastraoaru
- Department of Internal Medicine/Allergy and Immunology, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Edda Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition Research, Department of Medicine ResearchChildren's University Hospital BostonBostonMassachusettsUSA
| | - Hannah J. Gould
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical BiosciencesKing's College London, New Hunt's HouseLondonUnited Kingdom,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUnited Kingdom
| | - Karin Hartmann
- Department of DermatologyUniversity of BaselBaselSwitzerland
| | - Elena Izquierdo
- IMMA, School of Medicine, Institute of Applied Molecular MedicineCEU San Pablo UniversityMadridSpain
| | - Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational MedicineMedical University of ViennaViennaAustria
| | - Debra H. Josephs
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom,School of Cancer and Pharmaceutical SciencesGuy's Hospital, King's College LondonLondonUnited Kingdom
| | - Marek Jutel
- Department of Clinical ImmunologyWroclaw Medical UniversityWroclawPoland,ALL‐MED Medical Research InstituteWroclawPoland
| | - Francesca Levi‐Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Faculty of MedicineThe Institute for Drug Research, The Hebrew University of JerusalemJerusalemIsrael
| | | | - Michael T. Lotze
- G.27A Hillman Cancer CenterUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Gabriel Osborn
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom
| | - Mariona Pascal
- Department of Immunology, CDB, Hospital Clinic de BarcelonaInstitut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de BarcelonaBarcelonaSpain
| | - Frank Redegeld
- Division of Pharmacology, Faculty of ScienceUtrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrechtThe Netherlands
| | - David Rosenstreich
- Department of Internal Medicine/Allergy and Immunology, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Franziska Roth‐Walter
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of ViennaViennaAustria,Center of Pathophysiology, Infectiology and ImmunologyInstitute of Pathophysiology and Allergy Research, Medical University ViennaViennaAustria
| | - Carsten Schmidt‐Weber
- Center of Allergy & Environment (ZAUM)Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental HealthMunichGermany,German Center for Lung Research (DZL)MunichGermany
| | - Mohamed Shamji
- Immunomodulation and Tolerance Group, Imperial College London, and Allergy and Clinical ImmunologyImperial College LondonLondonUnited Kingdom
| | | | | | - Eva Untersmayr
- Center of Pathophysiology, Infectiology and ImmunologyInstitute of Pathophysiology and Allergy Research, Medical University ViennaViennaAustria
| | - Erika Jensen‐Jarolim
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of ViennaViennaAustria,Center of Pathophysiology, Infectiology and ImmunologyInstitute of Pathophysiology and Allergy Research, Medical University ViennaViennaAustria
| | - Sophia N. Karagiannis
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom,Breast Cancer Now Research UnitSchool of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital,LondonSE1 9RTUnited Kindgom
| |
Collapse
|
2
|
Childhood Allergy Disease, Early Diagnosis, and the Potential of Salivary Protein Biomarkers. Mediators Inflamm 2021; 2021:9198249. [PMID: 34658668 PMCID: PMC8519724 DOI: 10.1155/2021/9198249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/11/2021] [Indexed: 12/17/2022] Open
Abstract
Allergic disease has risen to epidemic proportions since the last decade and is among the most common noncommunicable, chronic diseases in children and adolescents worldwide. Allergic disease usually occurs in early life; thus, early biomarkers of allergic susceptibility are required for preventive measures to high-risk infants which enable early interventions to decrease allergic severity. However, to date, there is no reliable general or specific allergy phenotype detection method that is easy and noninvasive for children. Most reported allergic phenotype detection methods are invasive, such as the skin prick test (SPT), oral food challenge (OFC), and blood test, and many involve not readily accessible biological samples, such as cord blood (CB), maternal blood, or newborn vernix. Saliva is a biological sample that has great potential as a biomarker measurement as it consists of an abundance of biomarkers, such as genetic material and proteins. It is easily accessible, noninvasive, collected via a painless procedure, and an easy bedside screening for real-time measurement of the ongoing human physiological system. All these advantages emphasise saliva as a very promising diagnostic candidate for the detection and monitoring of disease biomarkers, especially in children. Furthermore, protein biomarkers have the advantages as modifiable influencing factors rather than genetic and epigenetic factors that are mostly nonmodifiable factors for allergic disease susceptibility in childhood. Saliva has great potential to replace serum as a biological fluid biomarker in diagnosing clinical allergy. However, to date, saliva is not considered as an established medically acceptable biomarker. This review considers whether the saliva could be suitable biological samples for early detection of allergic risk. Such tools may be used as justification for targeted interventions in early childhood for disease prevention and assisting in reducing morbidity and mortality caused by childhood allergy.
Collapse
|
3
|
Scheiblhofer S, Machado Y, Feinle A, Thalhamer J, Hüsing N, Weiss R. Potential of nanoparticles for allergen-specific immunotherapy - use of silica nanoparticles as vaccination platform. Expert Opin Drug Deliv 2016; 13:1777-1788. [PMID: 27321476 DOI: 10.1080/17425247.2016.1203898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Allergen-specific immunotherapy is the only curative approach for the treatment of allergies. There is an urgent need for improved therapies, which increase both, efficacy and patient compliance. Novel routes of immunization and the use of more advanced vaccine platforms have gained heightened interest in this field. Areas covered: The current status of allergen-specific immunotherapy is summarized and novel routes of immunization and their challenges in the clinics are critically discussed. The use of nanoparticles as novel delivery system for allergy vaccines is comprehensively reviewed. Specifically, the advantages of silica nanoparticles as vaccine carriers and adjuvants are summarized. Expert opinion: Future allergen-specific immunotherapy will combine engineered hypoallergenic vaccines with novel routes of administration, such as the skin. Due to their biodegradability, and the easiness to introduce surface modifications, silica nanoparticles are promising candidates for tailor-made vaccines. By covalently linking allergens and polysaccharides to silica nanoparticles, a versatile vaccination platform can be designed to specifically target antigen-presenting cells, render the formulation hypoallergenic, and introduce immunomodulatory functions. Combining potent skin vaccination methods, such as fractional laser ablation, with nanoparticle-based vaccines addresses all the requirements for safe and efficient therapy of allergic diseases.
Collapse
Affiliation(s)
- Sandra Scheiblhofer
- a Department of Molecular Biology, Division of Allergy and Immunology , University of Salzburg , Salzburg , Austria
| | - Yoan Machado
- a Department of Molecular Biology, Division of Allergy and Immunology , University of Salzburg , Salzburg , Austria
| | - Andrea Feinle
- b Department of Chemistry and Physics of Materials, Materials Chemistry Division , University of Salzburg , Salzburg , Austria
| | - Josef Thalhamer
- a Department of Molecular Biology, Division of Allergy and Immunology , University of Salzburg , Salzburg , Austria
| | - Nicola Hüsing
- b Department of Chemistry and Physics of Materials, Materials Chemistry Division , University of Salzburg , Salzburg , Austria
| | - Richard Weiss
- a Department of Molecular Biology, Division of Allergy and Immunology , University of Salzburg , Salzburg , Austria
| |
Collapse
|
4
|
Lee MF, Chang CW, Song PP, Hwang GY, Lin SJ, Chen YH. IgE-Binding Epitope Mapping and Tissue Localization of the Major American Cockroach Allergen Per a 2. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:376-83. [PMID: 25749772 PMCID: PMC4446636 DOI: 10.4168/aair.2015.7.4.376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/10/2014] [Accepted: 10/21/2014] [Indexed: 11/20/2022]
Abstract
Purpose Cockroaches are the second leading allergen in Taiwan. Sensitization to Per a 2, the major American cockroach allergen, correlates with clinical severity among patients with airway allergy, but there is limited information on IgE epitopes and tissue localization of Per a 2. This study aimed to identify Per a 2 linear IgE-binding epitopes and its distribution in the body of a cockroach. Methods The cDNA of Per a 2 was used as a template and combined with oligonucleotide primers specific to the target areas with appropriate restriction enzyme sites. Eleven overlapping fragments of Per a 2 covering the whole allergen molecule, except 20 residues of signal peptide, were generated by PCR. Mature Per a 2 and overlapping deletion mutants were affinity-purified and assayed for IgE reactivity by immunoblotting. Three synthetic peptides comprising the B cell epitopes were evaluated by direct binding ELISA. Rabbit anti-Per a 2 antibody was used for immunohistochemistry. Results Human linear IgE-binding epitopes of Per a 2 were located at the amino acid sequences 57-86, 200-211, and 299-309. There was positive IgE binding to 10 tested Per a 2-allergic sera in 3 synthetic peptides, but none in the controls. Immunostaining revealed that Per a 2 was localized partly in the mouth and midgut of the cockroach, with the most intense staining observed in the hindgut, suggesting that the Per a 2 allergen might be excreted through the feces. Conclusions Information on the IgE-binding epitope of Per a 2 may be used for designing more specific diagnostic and therapeutic approaches to cockroach allergy.
Collapse
Affiliation(s)
- Mey Fann Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.; General Education Center, Tunghai University, Taichung, Taiwan
| | - Chia Wei Chang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Pei Pong Song
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Guang Yuh Hwang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Shyh Jye Lin
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi Hsing Chen
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.; Department of Life Science, Tunghai University, Taichung, Taiwan.; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
5
|
Ravkov EV, Pavlov IY, Martins TB, Gleich GJ, Wagner LA, Hill HR, Delgado JC. Identification and validation of shrimp-tropomyosin specific CD4 T cell epitopes. Hum Immunol 2013; 74:1542-9. [PMID: 23993987 PMCID: PMC3870591 DOI: 10.1016/j.humimm.2013.08.276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/26/2013] [Accepted: 08/10/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Shellfish allergy is an immune-mediated adverse reaction to allergenic shellfish and is responsible for significant morbidity and mortality. CD4 T cell responses play an important role in the pathophysiological mechanisms of sensitization and in production of IgE. OBJECTIVE We sought to identify and validate CD4 T cell shrimp tropomyosin-derived epitopes and characterize CD4 T cell responses in subjects with a clinical history of shellfish allergy. METHOD Using an in vitro MHC-peptide binding assay, we screened 91 overlapping peptides and identified 28 epitopes with moderate and strong binding capacities; 3 additional peptides were included based on MHC binding prediction score. These peptides were then examined in proliferation and cytokine release assays with T cells from allergic subjects. RESULT 17 epitopes restricted to DRB(∗)01:01, DRB1(∗)03:01, DRB1(∗)04:01, DRB1(∗)09:01, DQB1(∗)02:01, DQB1(∗)03:02 and DQB1(∗)05:01 alleles were identified and validated by both the MHC binding and the functional assays. Two peptides showed specificities to more than one MHC class II allele. We demonstrated that these peptides exert functional responses in an epitope specific manner, eliciting predominantly IL-6 and IL-13. CONCLUSION The identified epitopes are specific to common MHC class II alleles in the general population. Our study provides important data for the design of peptide-based immunotherapy of shrimp-allergic patients.
Collapse
Affiliation(s)
- Eugene V. Ravkov
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Igor Y. Pavlov
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Thomas B. Martins
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Gerald J. Gleich
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Lori A. Wagner
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Harry R. Hill
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Julio C. Delgado
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| |
Collapse
|