1
|
Rose M, Kloten V, Noetzel E, Gola L, Ehling J, Heide T, Meurer SK, Gaiko-Shcherbak A, Sechi AS, Huth S, Weiskirchen R, Klaas O, Antonopoulos W, Lin Q, Wagner W, Veeck J, Gremse F, Steitz J, Knüchel R, Dahl E. ITIH5 mediates epigenetic reprogramming of breast cancer cells. Mol Cancer 2017; 16:44. [PMID: 28231808 PMCID: PMC5322623 DOI: 10.1186/s12943-017-0610-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular matrix (ECM) is known to maintain epithelial integrity. In carcinogenesis ECM degradation triggers metastasis by controlling migration and differentiation including cancer stem cell (CSC) characteristics. The ECM-modulator inter- α-trypsin inhibitor heavy chain family member five (ITIH5) was recently identified as tumor suppressor potentially involved in impairing breast cancer progression but molecular mechanisms underlying its function are still elusive. Methods ITIH5 expression was analyzed using the public TCGA portal. ITIH5-overexpressing single-cell clones were established based on T47D and MDA-MB-231 cell lines. Colony formation, growth, apoptosis, migration, matrix adhesion, traction force analyses and polarization of tumor cells were studied in vitro. Tumor-initiating characteristics were analyzed by generating a metastasis mouse model. To identify ITIH5-affected pathways we utilized genome wide gene expression and DNA methylation profiles. RNA-interference targeting the ITIH5-downstream regulated gene DAPK1 was used to confirm functional involvement. Results ITIH5 loss was pronounced in breast cancer subtypes with unfavorable prognosis like basal-type tumors. Functionally, cell and colony formation was impaired after ITIH5 re-expression in both cell lines. In a metastasis mouse model, ITIH5 expressing MDA-MB-231 cells almost completely failed to initiate lung metastases. In these metastatic cells ITIH5 modulated cell-matrix adhesion dynamics and altered biomechanical cues. The profile of integrin receptors was shifted towards β1-integrin accompanied by decreased Rac1 and increased RhoA activity in ITIH5-expressing clones while cell polarization and single-cell migration was impaired. Instead ITIH5 expression triggered the formation of epithelial-like cell clusters that underwent an epigenetic reprogramming. 214 promoter regions potentially marked with either H3K4 and /or H3K27 methylation showed a hyper- or hypomethylated DNA configuration due to ITIH5 expression finally leading to re-expression of the tumor suppressor DAPK1. In turn, RNAi-mediated knockdown of DAPK1 in ITIH5-expressing MDA-MB-231 single-cell clones clearly restored cell motility. Conclusions Our results provide evidence that ITIH5 triggers a reprogramming of breast cancer cells with known stem CSC properties towards an epithelial-like phenotype through global epigenetic changes effecting known tumor suppressor genes like DAPK1. Therewith, ITIH5 may represent an ECM modulator in epithelial breast tissue mediating suppression of tumor initiating cancer cell characteristics which are thought being responsible for the metastasis of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0610-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Rose
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Vera Kloten
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Erik Noetzel
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lukas Gola
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Josef Ehling
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Timon Heide
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Steffen K Meurer
- Experimental Gene Therapy and Clinical Chemistry, Institute of Molecular Pathobiochemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Aljona Gaiko-Shcherbak
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Antonio S Sechi
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Sebastian Huth
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Experimental Gene Therapy and Clinical Chemistry, Institute of Molecular Pathobiochemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Oliver Klaas
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wiebke Antonopoulos
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Qiong Lin
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering-Stem Cell Biology and Cellular Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering-Stem Cell Biology and Cellular Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Jürgen Veeck
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Division of Medical Oncology, Department of Internal Medicine, Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Felix Gremse
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Julia Steitz
- Institute for Laboratory Animal Science, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ruth Knüchel
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
2
|
Broussard JA, Diggins NL, Hummel S, Georgescu W, Quaranta V, Webb DJ. Automated analysis of cell-matrix adhesions in 2D and 3D environments. Sci Rep 2015; 5:8124. [PMID: 25630460 PMCID: PMC4309964 DOI: 10.1038/srep08124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/06/2015] [Indexed: 01/01/2023] Open
Abstract
Cell-matrix adhesions are of great interest because of their contribution to numerous biological processes, including cell migration, differentiation, proliferation, survival, tissue morphogenesis, wound healing, and tumorigenesis. Adhesions are dynamic structures that are classically defined on two-dimensional (2D) substrates, though the need to analyze adhesions in more physiologic three-dimensional (3D) environments is being increasingly recognized. However, progress has been greatly hampered by the lack of available tools to analyze adhesions in 3D environments. To address this need, we have developed a platform for the automated analysis, segmentation, and tracking of adhesions (PAASTA) based on an open source MATLAB framework, CellAnimation. PAASTA enables the rapid analysis of adhesion dynamics and many other adhesion characteristics, such as lifetime, size, and location, in 3D environments and on traditional 2D substrates. We manually validate PAASTA and utilize it to quantify rate constants for adhesion assembly and disassembly as well as adhesion lifetime and size in 3D matrices. PAASTA will be a valuable tool for characterizing adhesions and for deciphering the molecular mechanisms that regulate adhesion dynamics in 3D environments.
Collapse
Affiliation(s)
- Joshua A Broussard
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235
| | - Nicole L Diggins
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235
| | - Stephen Hummel
- Center for Cancer Systems Biology at Vanderbilt, Vanderbilt University, Nashville, Tennessee 37235
| | - Walter Georgescu
- 1] Center for Cancer Systems Biology at Vanderbilt, Vanderbilt University, Nashville, Tennessee 37235 [2] Vanderbilt Institute for Integrative Biosystems Research and Education (VIBRE), Vanderbilt University, Nashville, Tennessee 37235 [3] Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235
| | - Vito Quaranta
- 1] Center for Cancer Systems Biology at Vanderbilt, Vanderbilt University, Nashville, Tennessee 37235 [2] Vanderbilt Institute for Integrative Biosystems Research and Education (VIBRE), Vanderbilt University, Nashville, Tennessee 37235 [3] Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37235
| | - Donna J Webb
- 1] Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235 [2] Vanderbilt Institute for Integrative Biosystems Research and Education (VIBRE), Vanderbilt University, Nashville, Tennessee 37235 [3] Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
3
|
Plasticity in the macromolecular-scale causal networks of cell migration. PLoS One 2014; 9:e90593. [PMID: 24587399 PMCID: PMC3938764 DOI: 10.1371/journal.pone.0090593] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 02/03/2014] [Indexed: 11/26/2022] Open
Abstract
Heterogeneous and dynamic single cell migration behaviours arise from a complex multi-scale signalling network comprising both molecular components and macromolecular modules, among which cell-matrix adhesions and F-actin directly mediate migration. To date, the global wiring architecture characterizing this network remains poorly defined. It is also unclear whether such a wiring pattern may be stable and generalizable to different conditions, or plastic and context dependent. Here, synchronous imaging-based quantification of migration system organization, represented by 87 morphological and dynamic macromolecular module features, and migration system behaviour, i.e., migration speed, facilitated Granger causality analysis. We thereby leveraged natural cellular heterogeneity to begin mapping the directionally specific causal wiring between organizational and behavioural features of the cell migration system. This represents an important advance on commonly used correlative analyses that do not resolve causal directionality. We identified organizational features such as adhesion stability and adhesion F-actin content that, as anticipated, causally influenced cell migration speed. Strikingly, we also found that cell speed can exert causal influence over organizational features, including cell shape and adhesion complex location, thus revealing causality in directions contradictory to previous expectations. Importantly, by comparing unperturbed and signalling-modulated cells, we provide proof-of-principle that causal interaction patterns are in fact plastic and context dependent, rather than stable and generalizable.
Collapse
|
4
|
Measurement of cationic and intracellular modulation of integrin binding affinity by AFM-based nanorobot. Biophys J 2014; 105:40-7. [PMID: 23823222 DOI: 10.1016/j.bpj.2013.05.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/12/2013] [Accepted: 05/30/2013] [Indexed: 11/23/2022] Open
Abstract
Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg(2+) to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca(2+) virtually abolished the RGD-membrane specific interactions and blocked the Mg(2+) effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study.
Collapse
|
5
|
A spatial model for integrin clustering as a result of feedback between integrin activation and integrin binding. Biophys J 2013; 103:1379-89. [PMID: 22995511 DOI: 10.1016/j.bpj.2012.08.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 07/19/2012] [Accepted: 08/01/2012] [Indexed: 12/16/2022] Open
Abstract
Integrins are transmembrane adhesion receptors that bind extracellular matrix (ECM) proteins and signal bidirectionally to regulate cell adhesion and migration. In many cell types, integrins cluster at cell-ECM contacts to create the foundation for adhesion complexes that transfer force between the cell and the ECM. Even though the temporal and spatial regulation of these integrin clusters is essential for cell migration, how cells regulate their formation is currently unknown. It has been shown that integrin cluster formation is independent of actin stress fiber formation, but requires active (high-affinity) integrins, phosphoinositol-4,5-bisphosphate (PIP2), talin, and immobile ECM ligand. Based on these observations, we propose a minimal model for initial formation of integrin clusters, facilitated by localized activation and binding of integrins to ECM ligands as a result of biochemical feedback between integrin binding and integrin activation. By employing a diffusion-reaction framework for modeling these reactions, we show how spatial organization of bound integrins into clusters may be achieved by a local source of active integrins, namely protein complexes formed on the cytoplasmic tails of bound integrins. Further, we show how such a mechanism can turn small local increases in the concentration of active talin or active integrin into integrin clusters via positive feedback. Our results suggest that the formation of integrin clusters by the proposed mechanism depends on the relationships between production and diffusion of integrin-activating species, and that changes to the relative rates of these processes may affect the resulting properties of integrin clusters.
Collapse
|
6
|
Felizzi F, Iber D. Enhanced cellular sensitivity from partitioning the integrin receptors into multiple clusters. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012701. [PMID: 23410353 DOI: 10.1103/physreve.87.012701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/06/2012] [Indexed: 06/01/2023]
Abstract
Integrins are essential receptors for the development and functioning of multicellular organisms because they mediate cell adhesion and migration, and regulate cell proliferation and apoptosis. In response to cues in the extracellular matrix, they are observed to organize into many clusters. The number and size of such clusters are observed to vary according to the concentration of and affinity for the extracellular ligand. The realization of a cluster point pattern is governed by a doubly stochastic process, controlling the number of clusters and the number of points per cluster. We construct entropy measures for the separation of two doubly stochastic processes and demonstrate how the self-organization of integrins in multiple clusters contributes to the accuracy in sensing the extracellular environment.
Collapse
Affiliation(s)
- Federico Felizzi
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
7
|
Degagné E, Degrandmaison J, Grbic DM, Vinette V, Arguin G, Gendron FP. P2Y2 receptor promotes intestinal microtubule stabilization and mucosal re-epithelization in experimental colitis. J Cell Physiol 2012; 228:99-109. [PMID: 22553130 DOI: 10.1002/jcp.24109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P2Y(2) receptor expression is increased in intestinal epithelial cells (IECs) during inflammatory bowel diseases (IBDs). In this context, P2Y(2) stimulates PGE(2) release by IECs, suggesting a role in wound healing. For this study, we have used the non-cancerous IEC-6 cell line. IEC-6 cell migration was determined using Boyden chambers and the single-edged razor blade model of wounding. The receptor was activated using ATP, UTP, or 2-thioUTP. Pharmacological inhibitors, a blocking peptide, a neutralizing antibody and interfering RNAs were used to characterize the signaling events. Focal adhesions and microtubule (MT) dynamics were determined by immunofluorescence using anti-vinculin and anti-acetylated-α-tubulin antibodies, respectively. In vivo, the dextran sodium sulfate mouse model of colitis was used to characterize the effects of P2Y(2) agonist 2-thioUTP on remission. We showed that P2Y(2) increased cell migration and wound closure by recruiting Go protein with the cooperation of integrin α(v) . Following P2Y(2) activation, we demonstrated that GSK3β activity was inhibited in response to Akt activation. This leads to MT stabilization and increased number of focal adhesions. In vivo, P2Y(2) activation stimulates remission, as illustrated by a reduction in the disease activity index values and histological scores as compared to control mice. These findings highlight a novel function for this receptor in IECs. They also illustrate that P2Y receptors could be targeted for the development of innovative therapies for the treatment of IBDs.
Collapse
Affiliation(s)
- Emilie Degagné
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|