1
|
El-Assaad AM, Hamieh T. SARS-CoV-2: Prediction of critical ionic amino acid mutations. Comput Biol Med 2024; 178:108688. [PMID: 38870723 DOI: 10.1016/j.compbiomed.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that caused coronavirus disease 2019 (COVID-19), has been studied thoroughly, and several variants are revealed across the world with their corresponding mutations. Studies and vaccines development focus on the genetic mutations of the S protein due to its vital role in allowing the virus attach and fuse with the membrane of a host cell. In this perspective, we study the effects of all ionic amino acid mutations of the SARS-CoV-2 viral spike protein S1 when bound to Antibody CC12.1 within the SARS-CoV-2:CC12.1 complex model. Binding free energy calculations between SARS-CoV-2 and antibody CC12.1 are based on the Analysis of Electrostatic Similarities of Proteins (AESOP) framework, where the electrostatic potentials are calculated using Adaptive Poisson-Boltzmann Solver (APBS). The atomic radii and charges that feed into the APBS calculations are calculated using the PDB2PQR software. Our results are the first to propose in silico potential life-threatening mutations of SARS-CoV-2 beyond the present mutations found in the five common variants worldwide. We find each of the following mutations: K378A, R408A, K424A, R454A, R457A, K458A, and K462A, to play significant roles in the binding to Antibody CC12.1, since they are turned into strong inhibitors on both chains of the S1 protein, whereas the mutations D405A, D420A, and D427A, show to play important roles in this binding, as they are turned into mild inhibitors on both chains of the S1 protein.
Collapse
Affiliation(s)
- Atlal M El-Assaad
- Department of Electrical Engineering & Computer Science, University of Toledo (UT), Toledo OH 43606, USA; Department of Computer Science, Lebanese International University (LIU), Bekaa, Lebanon.
| | - Tayssir Hamieh
- Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, Lebanese University, Hadath, Lebanon.
| |
Collapse
|
2
|
Matveeva M, Lefebvre M, Chahinian H, Yahi N, Fantini J. Host Membranes as Drivers of Virus Evolution. Viruses 2023; 15:1854. [PMID: 37766261 PMCID: PMC10535233 DOI: 10.3390/v15091854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The molecular mechanisms controlling the adaptation of viruses to host cells are generally poorly documented. An essential issue to resolve is whether host membranes, and especially lipid rafts, which are usually considered passive gateways for many enveloped viruses, also encode informational guidelines that could determine virus evolution. Due to their enrichment in gangliosides which confer an electronegative surface potential, lipid rafts impose a first control level favoring the selection of viruses with enhanced cationic areas, as illustrated by SARS-CoV-2 variants. Ganglioside clusters attract viral particles in a dynamic electrostatic funnel, the more cationic viruses of a viral population winning the race. However, electrostatic forces account for only a small part of the energy of raft-virus interaction, which depends mainly on the ability of viruses to form a network of hydrogen bonds with raft gangliosides. This fine tuning of virus-ganglioside interactions, which is essential to stabilize the virus on the host membrane, generates a second level of selection pressure driven by a typical induced-fit mechanism. Gangliosides play an active role in this process, wrapping around the virus spikes through a dynamic quicksand-like mechanism. Viruses are thus in an endless race for access to lipid rafts, and they are bound to evolve perpetually, combining speed (electrostatic potential) and precision (fine tuning of amino acids) under the selective pressure of the immune system. Deciphering the host membrane guidelines controlling virus evolution mechanisms may open new avenues for the design of innovative antivirals.
Collapse
Affiliation(s)
| | | | | | | | - Jacques Fantini
- Department of Biology, Faculty of Medicine, University of Aix-Marseille, INSERM UMR_S 1072, 13015 Marseille, France; (M.M.); (M.L.); (H.C.); (N.Y.)
| |
Collapse
|
3
|
Fantini J, Azzaz F, Chahinian H, Yahi N. Electrostatic Surface Potential as a Key Parameter in Virus Transmission and Evolution: How to Manage Future Virus Pandemics in the Post-COVID-19 Era. Viruses 2023; 15:284. [PMID: 36851498 PMCID: PMC9964723 DOI: 10.3390/v15020284] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Virus-cell interactions involve fundamental parameters that need to be considered in strategies implemented to control viral outbreaks. Among these, the surface electrostatic potential can give valuable information to deal with new epidemics. In this article, we describe the role of this key parameter in the hemagglutination of red blood cells and in the co-evolution of synaptic receptors and neurotransmitters. We then establish the functional link between lipid rafts and the electrostatic potential of viruses, with special emphasis on gangliosides, which are sialic-acid-containing, electronegatively charged plasma membrane components. We describe the common features of ganglioside binding domains, which include a wide variety of structures with little sequence homology but that possess key amino acids controlling ganglioside recognition. We analyze the role of the electrostatic potential in the transmission and intra-individual evolution of HIV-1 infections, including gatekeeper and co-receptor switch mechanisms. We show how to organize the epidemic surveillance of influenza viruses by focusing on mutations affecting the hemagglutinin surface potential. We demonstrate that the electrostatic surface potential, by modulating spike-ganglioside interactions, controls the hemagglutination properties of coronaviruses (SARS-CoV-1, MERS-CoV, and SARS-CoV-2) as well as the structural dynamics of SARS-CoV-2 evolution. We relate the broad-spectrum antiviral activity of repositioned molecules to their ability to disrupt virus-raft interactions, challenging the old concept that an antibiotic or anti-parasitic cannot also be an antiviral. We propose a new concept based on the analysis of the electrostatic surface potential to develop, in real time, therapeutic and vaccine strategies adapted to each new viral epidemic.
Collapse
Affiliation(s)
- Jacques Fantini
- Department of Biology, Faculty of Medicine, University of Aix-Marseille, INSERM UMR_S 1072, 13015 Marseille, France
| | | | | | | |
Collapse
|
4
|
Fantini J, Chahinian H, Yahi N. Convergent Evolution Dynamics of SARS-CoV-2 and HIV Surface Envelope Glycoproteins Driven by Host Cell Surface Receptors and Lipid Rafts: Lessons for the Future. Int J Mol Sci 2023; 24:1923. [PMID: 36768244 PMCID: PMC9915253 DOI: 10.3390/ijms24031923] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Although very different, in terms of their genomic organization, their enzymatic proteins, and their structural proteins, HIV and SARS-CoV-2 have an extraordinary evolutionary potential in common. Faced with various selection pressures that may be generated by treatments or immune responses, these RNA viruses demonstrate very high adaptive capacities, which result in the continuous emergence of variants and quasi-species. In this retrospective analysis of viral proteins, ensuring the adhesion of these viruses to the plasma membrane of host cells, we highlight many common points that suggest the convergent mechanisms of evolution. HIV and SARS-CoV-2 first recognize a lipid raft microdomain that acts as a landing strip for viral particles on the host cell surface. In the case of mucosal cells, which are the primary targets of both viruses, these microdomains are enriched in anionic glycolipids (gangliosides) forming a global electronegative field. Both viruses use lipid rafts to surf on the cell surface in search of a protein receptor able to trigger the fusion process. This implies that viral envelope proteins are both geometrically and electrically compatible to the biomolecules they select to invade host cells. In the present study, we identify the surface electrostatic potential as a critical parameter controlling the convergent evolution dynamics of HIV-1 and SARS-CoV-2 surface envelope proteins, and we discuss the impact of this parameter on the phenotypic properties of both viruses. The virological data accumulated since the emergence of HIV in the early 1980s should help us to face present and future virus pandemics.
Collapse
Affiliation(s)
| | | | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| |
Collapse
|
5
|
Mutational signatures in GATA3 transcription factor and its DNA binding domain that stimulate breast cancer and HDR syndrome. Sci Rep 2021; 11:22762. [PMID: 34815386 PMCID: PMC8611019 DOI: 10.1038/s41598-021-01832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
Transcription factors (TFs) play important roles in many biochemical processes. Many human genetic disorders have been associated with mutations in the genes encoding these transcription factors, and so those mutations became targets for medications and drug design. In parallel, since many transcription factors act either as tumor suppressors or oncogenes, their mutations are mostly associated with cancer. In this perspective, we studied the GATA3 transcription factor when bound to DNA in a crystal structure and assessed the effect of different mutations encountered in patients with different diseases and phenotypes. We generated all missense mutants of GATA3 protein and DNA within the adjacent and the opposite GATA3:DNA complex models. We mutated every amino acid and studied the new binding of the complex after each mutation. Similarly, we did for every DNA base. We applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations. After analyzing our data, we identified amino acids and DNA bases keys for binding. Furthermore, we validated those findings against experimental genetic data. Our results are the first to propose in silico modeling for GATA:DNA bound complexes that could be used to score effects of missense mutations in other classes of transcription factors involved in common and genetic diseases.
Collapse
|
6
|
Sequeiros-Borja CE, Surpeta B, Brezovsky J. Recent advances in user-friendly computational tools to engineer protein function. Brief Bioinform 2021; 22:bbaa150. [PMID: 32743637 PMCID: PMC8138880 DOI: 10.1093/bib/bbaa150] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Progress in technology and algorithms throughout the past decade has transformed the field of protein design and engineering. Computational approaches have become well-engrained in the processes of tailoring proteins for various biotechnological applications. Many tools and methods are developed and upgraded each year to satisfy the increasing demands and challenges of protein engineering. To help protein engineers and bioinformaticians navigate this emerging wave of dedicated software, we have critically evaluated recent additions to the toolbox regarding their application for semi-rational and rational protein engineering. These newly developed tools identify and prioritize hotspots and analyze the effects of mutations for a variety of properties, comprising ligand binding, protein-protein and protein-nucleic acid interactions, and electrostatic potential. We also discuss notable progress to target elusive protein dynamics and associated properties like ligand-transport processes and allosteric communication. Finally, we discuss several challenges these tools face and provide our perspectives on the further development of readily applicable methods to guide protein engineering efforts.
Collapse
Affiliation(s)
- Carlos Eduardo Sequeiros-Borja
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Bartłomiej Surpeta
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw
| |
Collapse
|
7
|
Guryanov I, Real-Fernández F, Sabatino G, Prisco N, Korzhikov-Vlakh V, Biondi B, Papini AM, Korzhikova-Vlakh E, Rovero P, Tennikova T. Modeling interaction between gp120 HIV protein and CCR5 receptor. J Pept Sci 2019; 25:e3142. [PMID: 30680875 DOI: 10.1002/psc.3142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
The study of the process of HIV entry into the host cell and the creation of biomimetic nanosystems that are able to selectively bind viral particles and proteins is a high priority research area for the development of novel diagnostic tools and treatment of HIV infection. Recently, we described multilayer nanoparticles (nanotraps) with heparin surface and cationic peptides comprising the N-terminal tail (Nt) and the second extracellular loop (ECL2) of CCR5 receptor, which could bind with high affinity some inflammatory chemokines, in particular, Rantes. Because of the similarity of the binding determinants in CCR5 structure, both for chemokines and gp120 HIV protein, here we expand this approach to the study of the interactions of these biomimetic nanosystems and their components with the peptide representing the V3 loop of the activated form of gp120. According to surface plasmon resonance results, a conformational rearrangement is involved in the process of V3 and CCR5 fragments binding. As in the case of Rantes, ECL2 peptide showed much higher affinity to V3 peptide than Nt (KD = 3.72 × 10-8 and 1.10 × 10-6 M, respectively). Heparin-covered nanoparticles bearing CCR5 peptides effectively bound V3 as well. The presence of both heparin and the peptides in the structure of the nanotraps was shown to be crucial for the interaction with the V3 loop. Thus, short cationic peptides ECL2 and Nt proved to be excellent candidates for the design of CCR5 receptor mimetics.
Collapse
Affiliation(s)
- I Guryanov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| | - F Real-Fernández
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - G Sabatino
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy.,CNR Istituto di Biostrutture e Bioimmagini, 95126, Catania, Italy
| | - N Prisco
- Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, 50019, Sesto Fiorentino, Italy
| | - V Korzhikov-Vlakh
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| | - B Biondi
- CNR-ICB, Padova Unit, Department of Chemistry, University of Padova, 35131, Padova, Italy
| | - A M Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy.,PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University Paris-Seine, 95031, Cergy-Pontoise CEDEX, France
| | - E Korzhikova-Vlakh
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| | - P Rovero
- CNR Istituto di Biostrutture e Bioimmagini, 95126, Catania, Italy.,Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, 50019, Sesto Fiorentino, Italy
| | - T Tennikova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| |
Collapse
|
8
|
Giroud C, Du Y, Marin M, Min Q, Jui NT, Fu H, Melikyan GB. Screening and Functional Profiling of Small-Molecule HIV-1 Entry and Fusion Inhibitors. Assay Drug Dev Technol 2017; 15:53-63. [PMID: 28322598 DOI: 10.1089/adt.2017.777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HIV-1 entry and fusion with target cells is an important target for antiviral therapy. However, a few currently approved treatments are not effective as monotherapy due to the emergence of drug resistance. This consideration has fueled efforts to develop new bioavailable inhibitors targeting different steps of the HIV-1 entry process. Here, a high-throughput screen was performed of a large library of 100,000 small molecules for HIV-1 entry/fusion inhibitors, using a direct virus-cell fusion assay in a 384 half-well format. Positive hits were validated using a panel of functional assays, including HIV-1 specificity, cytotoxicity, and single-cycle infectivity assays. One compound-4-(2,5-dimethyl-pyrrol-1-yl)-2-hydroxy-benzoic acid (DPHB)-that selectively inhibited HIV-1 fusion was further characterized. Functional experiments revealed that DPHB caused irreversible inactivation of HIV-1 Env on cell-free virions and that this effect was related to binding to the third variable loop (V3) of the gp120 subunit of HIV-1 Env. Moreover, DPHB selectively inhibited HIV-1 strains that use CXCR4 or both CXCR4 and CCR5 co-receptors for entry, but not strains exclusively using CCR5. This selectivity was mapped to the gp120 V3 loop using chimeric Env glycoproteins. However, it was found that pure DPHB was not active against HIV-1 and that its degradation products (most likely polyanions) were responsible for inhibition of viral fusion. These findings highlight the importance of post-screening validation of positive hits and are in line with previous reports of the broad antiviral activity of polyanions.
Collapse
Affiliation(s)
- Charline Giroud
- 1 Department of Pediatrics Infectious Diseases, Emory University School of Medicine , Atlanta, Georgia
| | - Yuhong Du
- 2 Department of Pharmacology, Emory University School of Medicine , Atlanta, Georgia .,3 Emory Chemical Biology Discovery Center, Emory University School of Medicine , Atlanta, Georgia
| | - Mariana Marin
- 1 Department of Pediatrics Infectious Diseases, Emory University School of Medicine , Atlanta, Georgia
| | - Qui Min
- 2 Department of Pharmacology, Emory University School of Medicine , Atlanta, Georgia .,3 Emory Chemical Biology Discovery Center, Emory University School of Medicine , Atlanta, Georgia
| | - Nathan T Jui
- 4 Department of Chemistry, Emory University , Atlanta, Georgia
| | - Haian Fu
- 2 Department of Pharmacology, Emory University School of Medicine , Atlanta, Georgia .,3 Emory Chemical Biology Discovery Center, Emory University School of Medicine , Atlanta, Georgia .,5 Department of Hematology and Medical Oncology, Winship Cancer Institute , Atlanta, Georgia
| | - Gregory B Melikyan
- 1 Department of Pediatrics Infectious Diseases, Emory University School of Medicine , Atlanta, Georgia .,6 Children's Healthcare of Atlanta , Atlanta, Georgia
| |
Collapse
|
9
|
AESOP: A Python Library for Investigating Electrostatics in Protein Interactions. Biophys J 2017; 112:1761-1766. [PMID: 28494947 DOI: 10.1016/j.bpj.2017.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022] Open
Abstract
Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association.
Collapse
|
10
|
Sepúlveda-Crespo D, Ceña-Díez R, Jiménez JL, Ángeles Muñoz-Fernández M. Mechanistic Studies of Viral Entry: An Overview of Dendrimer-Based Microbicides As Entry Inhibitors Against Both HIV and HSV-2 Overlapped Infections. Med Res Rev 2016; 37:149-179. [PMID: 27518199 DOI: 10.1002/med.21405] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022]
Abstract
This review provides an overview of the development of different dendrimers, mainly polyanionic, against human immunodeficiency virus (HIV) and genital herpes (HSV-2) as topical microbicides targeting the viral entry process. Vaginal topical microbicides to prevent sexually transmitted infections such as HIV and HSV-2 are urgently needed. To inhibit HIV/HSV-2 entry processes, new preventive targets have been established to maximize the current therapies against wild-type and drug-resistant viruses. The entry of HIV/HSV-2 into target cells is a multistep process that triggers a cascade of molecular interactions between viral envelope proteins and cell surface receptors. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV/HSV-2. Inhibitors of each entry step have been identified with regard to generations and surface groups, and possible roles for these agents in anti-HIV/HSV-2 therapies have also been discussed. Four potential binding sites for impeding HIV infection (HSPG, DC-SIGN, GSL, and CD4/gp120 inhibitors) and HSV-2 infection (HS, gB, gD, and gH/gL inhibitors) exist according to their mechanisms of action and structures. This review clarifies that inhibition of HIV/HSV-2 entry continues to be a promising target for drug development because nanotechnology can transform the field of HIV/HSV-2 prevention by improving the efficacy of the currently available antiviral treatments.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Ceña-Díez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Luis Jiménez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
11
|
Pandey SS, Cherian S, Thakar M, Paranjape RS. Short Communication: Phylogenetic and Molecular Characterization of Six Full-Length HIV-1 Genomes from India Reveals a Monophyletic Lineage of Indian Sub-Subtype A1. AIDS Res Hum Retroviruses 2016; 32:489-502. [PMID: 26756665 DOI: 10.1089/aid.2015.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although HIV-1 epidemic in India is mainly driven by subtype C, subtype A has been reported for over two decades. This is the first comprehensive analysis of sequences of HIV-1 subtype A from India, based on the near full-length genome sequences of six different HIV-1 subtype A Indian isolates along with available partial gene sequences from India and global sequences. The phylogenetic analyses revealed the convergence of all Indian whole-genome sequences and majority of the partial gene sequences to a single node with the sequences most closely related to African sub-subtype A1. The presence of the signature motifs consistent with those observed in subtype A and CTL epitopes characterized specifically for subtype A1 were observed among the study sequences. Deletion of LY amino acid of LYPXnL motif of p6gag and one amino acid in V3 loop have been observed among the study isolates, which have also been observed in a few sequences from East Africa. Overall, the results are indicative of a monophyletic lineage or founder effect of the Indian epidemic due to sub-subtype A1 and supportive of a possible migration of subtype A1 into India from East Africa.
Collapse
Affiliation(s)
| | - Sarah Cherian
- Bioinformatics Group, National Institute of Virology (ICMR), Pune, India
| | - Madhuri Thakar
- Department of Immunology, National AIDS Research Institute (ICMR), Pune, India
| | - Ramesh S. Paranjape
- Department of Immunology, National AIDS Research Institute (ICMR), Pune, India
| |
Collapse
|
12
|
Comparative structural analysis of haemagglutinin proteins from type A influenza viruses: conserved and variable features. BMC Bioinformatics 2014; 15:363. [PMID: 25492298 PMCID: PMC4265342 DOI: 10.1186/s12859-014-0363-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023] Open
Abstract
Background Genome variation is very high in influenza A viruses. However, viral evolution and spreading is strongly influenced by immunogenic features and capacity to bind host cells, depending in turn on the two major capsidic proteins. Therefore, such viruses are classified based on haemagglutinin and neuraminidase types, e.g. H5N1. Current analyses of viral evolution are based on serological and primary sequence comparison; however, comparative structural analysis of capsidic proteins can provide functional insights on surface regions possibly crucial to antigenicity and cell binding. Results We performed extensive structural comparison of influenza virus haemagglutinins and of their domains and subregions to investigate type- and/or domain-specific variation. We found that structural closeness and primary sequence similarity are not always tightly related; moreover, type-specific features could be inferred when comparing surface properties of haemagglutinin subregions, monomers and trimers, in terms of electrostatics and hydropathy. Focusing on H5N1, we found that variation at the receptor binding domain surface intriguingly relates to branching of still circulating clades from those ones that are no longer circulating. Conclusions Evidence from this work suggests that integrating phylogenetic and serological analyses by extensive structural comparison can help in understanding the ‘functional evolution’ of viral surface determinants. In particular, variation in electrostatic and hydropathy patches can provide molecular evolution markers: intriguing surface charge redistribution characterizing the haemagglutinin receptor binding domains from circulating H5N1 clades 2 and 7 might have contributed to antigenic escape hence to their evolutionary success and spreading. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0363-5) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Molecular recognition of CXCR4 by a dual tropic HIV-1 gp120 V3 loop. Biophys J 2014; 105:1502-14. [PMID: 24048002 DOI: 10.1016/j.bpj.2013.07.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 01/01/2023] Open
Abstract
HIV-1 cell entry is initiated by the interaction of the viral envelope glycoprotein gp120 with CD4, and chemokine coreceptors CXCR4 and CCR5. The molecular recognition of CXCR4 or CCR5 by the HIV-1 gp120 is mediated through the V3 loop, a fragment of gp120. The binding of the V3 loop to CXCR4 or CCR5 determines the cell tropism of HIV-1 and constitutes a key step before HIV-1 cell entry. Thus, elucidating the molecular recognition of CXCR4 by the V3 loop is important for understanding HIV-1 viral infectivity and tropism, and for the design of HIV-1 inhibitors. We employed a comprehensive set of computational tools, predominantly based on free energy calculations and molecular-dynamics simulations, to investigate the molecular recognition of CXCR4 by a dual tropic V3 loop. We report what is, to our knowledge, the first HIV-1 gp120 V3 loop:CXCR4 complex structure. The computationally derived structure reveals an abundance of polar and nonpolar intermolecular interactions contributing to the HIV-1 gp120:CXCR4 binding. Our results are in remarkable agreement with previous experimental findings. Therefore, this work sheds light on the functional role of HIV-1 gp120 V3 loop and CXCR4 residues associated with HIV-1 coreceptor activity.
Collapse
|
14
|
Chandramouli B, Chillemi G, Desideri A. Structural dynamics of V3 loop in a trimeric ambiance, a molecular dynamics study on gp120–CD4 trimeric mimic. J Struct Biol 2014; 186:132-40. [DOI: 10.1016/j.jsb.2014.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/03/2014] [Accepted: 02/20/2014] [Indexed: 11/24/2022]
|
15
|
Tenascin-C is an innate broad-spectrum, HIV-1-neutralizing protein in breast milk. Proc Natl Acad Sci U S A 2013; 110:18220-5. [PMID: 24145401 DOI: 10.1073/pnas.1307336110] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Achieving an AIDS-free generation will require elimination of postnatal transmission of HIV-1 while maintaining the nutritional and immunologic benefits of breastfeeding for infants in developing regions. Maternal/infant antiretroviral prophylaxis can reduce postnatal HIV-1 transmission, yet toxicities and the development of drug-resistant viral strains may limit the effectiveness of this strategy. Interestingly, in the absence of antiretroviral prophylaxis, greater than 90% of infants exposed to HIV-1 via breastfeeding remain uninfected, despite daily mucosal exposure to the virus for up to 2 y. Moreover, milk of uninfected women inherently neutralizes HIV-1 and prevents virus transmission in animal models, yet the factor(s) responsible for this anti-HIV activity is not well-defined. In this report, we identify a primary HIV-1-neutralizing protein in breast milk, Tenascin-C (TNC). TNC is an extracellular matrix protein important in fetal development and wound healing, yet its antimicrobial properties have not previously been established. Purified TNC captured and neutralized multiclade chronic and transmitted/founder HIV-1 variants, and depletion of TNC abolished the HIV-1-neutralizing activity of milk. TNC bound the HIV-1 Envelope protein at a site that is induced upon engagement of its primary receptor, CD4, and is blocked by V3 loop- (19B and F39F) and chemokine coreceptor binding site-directed (17B) monoclonal antibodies. Our results demonstrate the ability of an innate mucosal host protein found in milk to neutralize HIV-1 via binding to the chemokine coreceptor site, potentially explaining why the majority of HIV-1-exposed breastfed infants are protected against mucosal HIV-1 transmission.
Collapse
|
16
|
Kieslich CA, Shin D, de Victoria AL, González-Rivera G, Morikis D. A predictive model for HIV type 1 coreceptor selectivity. AIDS Res Hum Retroviruses 2013; 29:1386-94. [PMID: 23808984 DOI: 10.1089/aid.2012.0173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite its sequence variability and structural flexibility, the V3 loop of the HIV-1 envelope glycoprotein gp120 is capable of recognizing cell-bound coreceptors CCR5 and CXCR4 and infecting cells. Viral selection of CCR5 is associated with the early stages of infection, and transition to selection of CXCR4 indicates disease progression. We have developed a predictive statistical model for coreceptor selectivity that uses the discrete property of net charge and the binary coreceptor preference markers of the N(6)X(7)[T/S](8)X(9) glycosylation motif and 11/24/25 positive amino acid rule. The model is based on analysis of 2,054 V3 loop sequences from patient data and allows us to infer the most likely state of the disease from physicochemical characteristics of the sequences. The performance of the model is comparable to established sequence-based predictive methods, and may be used in combination with other methods as a supportive diagnostic for coreceptor selection. This model may be used for personalized medical decisions in administering coreceptor-specific therapies.
Collapse
Affiliation(s)
- Chris A. Kieslich
- Department of Bioengineering, University of California, Riverside, California
| | - David Shin
- Department of Bioengineering, University of California, Riverside, California
| | | | | | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, California
| |
Collapse
|
17
|
Asaftei S, Huskens D, Schols D. HIV-1 X4 activities of polycationic "viologen" based dendrimers by interaction with the chemokine receptor CXCR4: study of structure-activity relationship. J Med Chem 2012; 55:10405-13. [PMID: 23157587 DOI: 10.1021/jm301337y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of "viologen" based dendrimers with polycationic scaffold carrying 10, 18, 26, 42, and 90 charges per molecule were used to determine the structure-activity relationship (SAR) with regard to HIV-1 inhibitory activity. The studies involved five compounds with a high activity against HIV-1 already utilized in our previous study (1) and five new dendrimers. Such dendrimers block HIV-1 entry into the cell, indicating that they bind to HIV-1 surface proteins and/or on the host cell receptors required for entry. The increasing positive character of dendrimers leads to more cytotoxicity. The 10 charges dendrimers (1, 6) have less influence on the cell viability but low inhibition of the binding of the CXCR4 mAb clone 1D9. Thus, dendrimers with 18 charges (2, 7) are the most promising CXCR4 imaging probes. We report the design, synthesis, and biological activity of new HIV-1 inhibitors that are conceptually distinct from those of the existing HIV-1 inhibitors.
Collapse
Affiliation(s)
- Simona Asaftei
- Institute of Chemistry, University of Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany.
| | | | | |
Collapse
|
18
|
López de Victoria A, Tamamis P, Kieslich CA, Morikis D. Insights into the structure, correlated motions, and electrostatic properties of two HIV-1 gp120 V3 loops. PLoS One 2012; 7:e49925. [PMID: 23185486 PMCID: PMC3501474 DOI: 10.1371/journal.pone.0049925] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022] Open
Abstract
The V3 loop of the glycoprotein 120 (gp120) is a contact point for cell entry of HIV-1 leading to infection. Despite sequence variability and lack of specific structure, the highly flexible V3 loop possesses a well-defined role in recognizing and selecting cell-bound coreceptors CCR5 and CXCR4 through a mechanism of charge complementarity. We have performed two independent molecular dynamics (MD) simulations to gain insights into the dynamic character of two V3 loops with slightly different sequences, but significantly different starting crystallographic structures. We have identified highly populated trajectory-specific salt bridges between oppositely charged stem residues Arg9 and Glu25 or Asp29. The two trajectories share nearly identical correlated motions within the simulations, despite their different overall structures. High occupancy salt bridges play a key role in the major cross-correlated motions in both trajectories, and may be responsible for transient structural stability in preparation for coreceptor binding. In addition, the two V3 loops visit conformations with similarities in spatial distributions of electrostatic potentials, despite their inherent flexibility, which may play a role in coreceptor recognition. It is plausible that cooperativity between overall electrostatic potential, charged residue interactions, and correlated motions could be associated with a coreceptor selection and binding.
Collapse
Affiliation(s)
- Aliana López de Victoria
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| | - Phanourios Tamamis
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| | - Chris A. Kieslich
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| | - Dimitrios Morikis
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
19
|
Szpakowska M, Fievez V, Arumugan K, van Nuland N, Schmit JC, Chevigné A. Function, diversity and therapeutic potential of the N-terminal domain of human chemokine receptors. Biochem Pharmacol 2012; 84:1366-80. [PMID: 22935450 DOI: 10.1016/j.bcp.2012.08.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 11/16/2022]
Abstract
Chemokines and their receptors play fundamental roles in many physiological and pathological processes such as leukocyte trafficking, inflammation, cancer and HIV-1 infection. Chemokine-receptor interactions are particularly intricate and therefore require precise orchestration. The flexible N-terminal domain of human chemokine receptors has regularly been demonstrated to hold a crucial role in the initial recognition and selective binding of the receptor ligands. The length and the amino acid sequences of the N-termini vary considerably among different receptors but they all show a high content of negatively charged residues and are subject to post-translational modifications such as O-sulfation and N- or O-glycosylation. In addition, a conserved cysteine that is most likely engaged in a receptor-stabilizing disulfide bond delimits two functionally distinct parts in the N-terminus, characterized by specific molecular signatures. Structural analyses have shown that the N-terminus of chemokine receptors recognizes a groove on the chemokine surface and that this interaction is stabilized by high-affinity binding to a conserved sulfotyrosine-binding pocket. Altogether, these data provide new insights on the chemokine-receptor molecular interplay and identify the receptor N-terminus-binding site as a new target for the development of therapeutic molecules. This review presents and discusses the diversity and function of human chemokine receptor N-terminal domains and provides a comprehensive annotated inventory of their sequences, laying special emphasis on the presence of post-translational modifications and functional features. Finally, it identifies new molecular signatures and proposes a computational model for the positioning and the conformation of the CXCR4 N-terminus grafted on the first chemokine receptor X-ray structure.
Collapse
Affiliation(s)
- Martyna Szpakowska
- Laboratory of Retrovirology, Public Research Center for Health, Luxembourg, Luxembourg.
| | | | | | | | | | | |
Collapse
|