1
|
Boczar KE, Faller E, Zeng W, Wang J, Small GR, Corrales-Medina VF, deKemp RA, Ward NC, Beanlands RSB, MacPherson P, Dwivedi G. Anti-inflammatory effect of rosuvastatin in patients with HIV infection: An FDG-PET pilot study. J Nucl Cardiol 2022; 29:3057-3068. [PMID: 34820771 DOI: 10.1007/s12350-021-02830-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 01/29/2023]
Abstract
AIMS This study aimed to evaluate markers of systemic as well as imaging markers of inflammation in the ascending aorta, bone marrow, and spleen measured by 18F-FDG PET/CT, in HIV+ patients at baseline and following therapy with rosuvastatin. METHODS AND RESULTS Of the 35 HIV+ patients enrolled, 17 were randomized to treatment with 10 mg/day rosuvastatin and 18 to usual care for 6 months. An HIV- control cohort was selected for baseline comparison of serum inflammatory markers and monocyte markers of inflammation. 18F-FDG-PET/CT imaging of bone marrow, spleen, and thoracic aorta was performed in the HIV+ cohort at baseline and 6 months. While CD14++CD16- and CCR2 expressions were reduced, serum levels of IL-7, IL-8, and MCP-1 were elevated in the HIV+ population compared to the controls. There was a significant drop in FDG uptake in the bone marrow (TBRmax), spleen (SUVmax) and thoracic aortic (TBRmax) in the statin-treated group compared to the control group (bone marrow: - 10.3 ± 16.9% versus 5.0 ± 18.9%, p = .0262; spleen: - 9.8 ± 20.3% versus 11.3 ± 28.8%, p = .0497; thoracic aorta: - 19.1 ± 24.2% versus 4.3 ± 15.4%, p = .003). CONCLUSIONS HIV+ patients had significantly markers of systemic inflammation including monocyte activation. Treatment with low-dose rosuvastatin in the HIV+ cohort significantly reduced bone marrow, spleen and thoracic aortic FDG uptake.
Collapse
Affiliation(s)
- Kevin E Boczar
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Elliot Faller
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Wanzhen Zeng
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jerry Wang
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gary R Small
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Vicente F Corrales-Medina
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Robert A deKemp
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Natalie C Ward
- School of Public Health, Curtin University, Perth, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| | - Rob S B Beanlands
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Paul MacPherson
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Girish Dwivedi
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada.
- School of Medicine, University of Western Australia, Perth, Australia.
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, The University of Western Australia, Murdoch, Australia.
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, WA, 6009, Australia.
- School of Biomedical Sciences at Curtin University, Perth, WA, Australia.
| |
Collapse
|
2
|
Perdomo-Celis F, Arcia-Anaya D, Alzate JC, Velilla PA, Díaz FJ, Posada MP, Rugeles MT, Taborda NA. Identification of CD8+ T cell subsets that normalize in early-treated people living with HIV receiving antiretroviral therapy. AIDS Res Ther 2022; 19:42. [PMID: 36104716 PMCID: PMC9476577 DOI: 10.1186/s12981-022-00465-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background Although combined antiretroviral therapy (cART) has decreased the mortality associated with HIV infection, complete immune reconstitution is not achieved despite viral suppression. Alterations of CD8+ T cells and some of their subpopulations, such as interleukin (IL)-17-producing cells, are evidenced in treated individuals and are associated with systemic inflammation and adverse disease outcomes. We sought to evaluate if different CD8+ T cell subsets are differentially normalized during a clinical follow-up of people living with HIV (PLWH) receiving suppressive cART. Methods We explored the changes in the frequencies, activation/exhaustion phenotypes (HLA-DR, CD38, PD-1, and TIM-3), and function (total and HIV-specific cells expressing CD107a, perforin, granzyme B, interferon [IFN]-γ and IL-17) of CD8+ T cells from early-treated PLWH receiving cART in a 1-year follow-up, using a multidimensional flow cytometry approach. Results Despite continuous cART-induced viral suppression and recovery of CD4+ T cells, after a 1-year follow-up, the CD8+ T cell counts, CD4:CD8 ratio, PD-1 expression, and IL-17 production by CD8+ T cells exhibited incomplete normalization compared with seronegative controls. However, the proportion of CD8+ T cells with an exhausted phenotype (co-expressing PD-1 andTIM-3), and cells co-expressing cytotoxic molecules (Perforin and Granzyme B), reached normalization. Conclusions Although suppressive cART achieves normalization of CD4+ T cell counts, only particular subsets of CD8+ T cells are more rapidly normalized in PLWH receiving cART, which could be routinely used as biomarkers for therapy efficiency in these patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12981-022-00465-0.
Collapse
|
3
|
Wang J, Yang Z, Wu NP, Yang J. Increased expression of BCL11B and its recruited chromatin remodeling factors during highly active antiretroviral therapy synergistically represses the transcription of human immunodeficiency virus type 1 and is associated with residual immune activation. Arch Virol 2019; 165:321-330. [PMID: 31828511 DOI: 10.1007/s00705-019-04475-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
Abstract
Persistence of human immunodeficiency virus 1 (HIV-1) latency and residual immune activation remain major barriers to treatment in patients receiving highly active antiretroviral therapy (HAART). In the present study, we investigated the molecular mechanisms of persistent HIV infection and residual immune activation in HAART-treated patients. We showed that the expression level of B-cell CLL/lymphoma 11B (BCL11B) was significantly increased in CD4+T cells from HIV-infected patients undergoing HAART, and this was accompanied by increased expression of BCL11B-associated chromatin modifiers and inflammatory factors in comparison to healthy controls and untreated patients with HIV. In vitro assays showed that BCL11B significantly inhibited HIV-1 long terminal repeat (LTR)-mediated transcription. Knockdown of BCL11B resulted in the activation of HIV latent cells, and dissociation of BCL11B and its related chromatin remodeling factors from the HIV LTR. Our findings suggested that increased expression of BCL11B and its related chromatin modifiers contribute to HIV-1 transcriptional silencing, and alteration of BCL11B levels might lead to abnormal transcription and inflammation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Zongxing Yang
- The Second Department of Infectious Disease, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang, People's Republic of China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
| | - Jin Yang
- Center for Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Abstract
Abnormal immune activation and expansion of CD8+ T cells, especially of memory and effector phenotypes, take place during HIV-1 infection, and these abnormal features persist during administration of antiretroviral therapy (ART) to infected patients. The molecular mechanisms for CD8+ T-cell expansion remain poorly characterized. In this article, we review the literature addressing features of CD8+ T-cell immune pathology and present an integrated view on the mechanisms leading to abnormal CD8+ T-cell expansion during HIV-1 infection. The expression of molecules important for directing the homing of CD8+ T cells between the circulation and lymphoid tissues, in particular CCR5 and CXCR3, is increased in CD8+ T cells in circulation and in inflamed tissues during HIV-1 infection; these disturbances in the homing capacity of CD8+ T cells have been linked to increased CD8+ T-cell proliferation. The production of IL-15, a cytokine responsible for physiological proliferation of CD8+ T cells, is increased in lymphoid tissues during HIV-1 infection as result of microbial translocation and severe inflammation. IL-15, and additional inflammatory cytokines, may lead to deregulated proliferation of CD8+ T cells and explain the accumulation of CD8+ T cells in circulation. The decreased capacity of CD8+ T cells to localize to gut-associated lymphoid tissue also contributes to the accumulation of these cells in blood. Control of inflammation, through ART administration during primary HIV-1 infection or therapies aimed at controlling inflammation during HIV-1 infection, is pivotal to prevent abnormal expansion of CD8+ T cells during HIV-1 infection.
Collapse
Affiliation(s)
- A Nasi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - F Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Reduced IL-7R T Cell Expression and Increased Plasma sCD127 in Late Presenting HIV-Infected Individuals. J Acquir Immune Defic Syndr 2017; 74:81-90. [PMID: 27509242 DOI: 10.1097/qai.0000000000001153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Late presentation of HIV infection is associated with reduced chance of optimal immune recovery after initiating combination antiretroviral therapy (cART). Interleukin-7 (IL-7) and the corresponding receptor, IL-7 receptor (IL-7R) made up of CD127 and CD132, are crucial for T cell homeostasis. This study aimed to describe IL-7R and IL-7 before and after initiation of cART in late presenting HIV-infected individuals, and the impact on immune recovery and T cell subset distribution after initiation of cART. METHODS A total of 100 HIV-infected individuals initiating cART were included in a prospective study. Samples were collected at baseline and after 6, 12, and 24 months of cART. Proportion and expression {[median fluorescence intensity (MFI)]} of IL-7R on T cells, and plasma concentrations of soluble CD127 (sCD127) and IL-7 were determined. RESULTS The IL-7R expression was reduced in late presenters with CD4 cell count <200 cells per microliter compared with nonlate presenters and healthy controls as demonstrated by lower proportion of CD127 + CD132 + T cells and lower CD127 MFI. In contrast, plasma sCD127 was higher. These differences were partly reversed after suppressive cART. Interestingly, the CD127 MFI on CD4 T cells was found to be a predictor of increased thymic output after 24 months of suppressive cART. CONCLUSIONS Severely altered IL-7R expression was found in late presenters, and associations between IL-7R expression and thymic output after 24 months of suppressive cART indicate an impact of a IL-7 response for the long term de novo production from thymus.
Collapse
|