1
|
Inthanon S, Dejkriengkraikul P, Yodkeeree S. Notopterol Suppresses IL-17-Induced Proliferation and Invasion of A549 Lung Adenocarcinoma Cells via Modulation of STAT3, NF-κB, and AP-1 Activation. Int J Mol Sci 2023; 24:15057. [PMID: 37894738 PMCID: PMC10606807 DOI: 10.3390/ijms242015057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Interleukine-17 is a proinflammatory cytokine that promotes lung cancer growth and progression though the activation of the STAT3, NF-κB, and AP-1 signaling pathways. Therefore, blocking the IL-17-induced oncogenic pathway is a new strategy for the treatment of lung cancer. Notopterol, a furanocoumarin, has demonstrated anti-tumor effects in several types of tumors. However, its molecular function in relation to the IL-17-induced proliferation and invasion of A549 lung adenocarcinoma cells remains unknown. Here, notopterol exhibited an inhibitory effect on IL-17-promoted A549 cell proliferation and induced G0/G1 cell cycle arrest. Western blot analysis revealed that notopterol inhibited the expression of cell-cycle-regulatory proteins, including cyclin D1, cyclin E, CDK4, and E2F. Moreover, notopterol blocked IL-17-induced A549 cell migration and invasion by regulating the epithelial-mesenchymal transition (EMT) and reducing the expression of extracellular degradation enzymes. At the molecular level, notopterol treatment significantly down-regulated the IL-17-activated phosphorylation of Akt, JNK, ERK1/2, and STAT3, leading to a reduced level of transcriptional activity of NF-κB and AP-1. Collectively, our results suggest that notopterol blocks IL-17-induced A549 cell proliferation and invasion through the suppression of the MAPK, Akt, STAT3, AP-1, and NF-κB signaling pathways, as well as modulating EMT.
Collapse
Affiliation(s)
- Sirinada Inthanon
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.I.); (P.D.)
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.I.); (P.D.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.I.); (P.D.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
3
|
Liu L, Liu R, Wei C, Li D, Gao X. The role of IL-17 in lung cancer growth. Cytokine 2023; 169:156265. [PMID: 37348188 DOI: 10.1016/j.cyto.2023.156265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Interleukin 17 (IL-17) is an inflammatory cytokine with multiple roles in immune protection, immunopathology, and inflammation-related tumors. Lung cancer is inflammation-related cancer, and a large number of studies have shown that IL-17 contributes to the metastasis and progression of lung cancer. However, some studies have shown that IL17 inhibits the occurrence of lung cancer. At present, there is still some controversy about the role of IL17 in the occurrence and development of lung cancer. This review introduces the basic characteristics of IL-17 and focuses on its role in lung cancer, in order to provide a certain theoretical basis for the prevention, diagnosis, and treatment of lung cancer.
Collapse
Affiliation(s)
- Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Renli Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chaojie Wei
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Xiuzhu Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Chen S, Huang K, Zou L, Chen L, Hu P. Diagnostic value of SHOX2, RASSF1A gene methylation combined with CEA level detection in malignant pleural effusion. BMC Pulm Med 2023; 23:160. [PMID: 37158875 PMCID: PMC10169317 DOI: 10.1186/s12890-023-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/29/2023] [Indexed: 05/10/2023] Open
Abstract
AIM To investigate the diagnostic value of combined detection of SHOX2 and RASSF1A gene methylation with carcinoembryonic antigen (CEA) level in diagnosing malignant pleural effusion. METHODS Between March 2020 and December 2021, we enrolled 68 patients with pleural effusion admitted to the Department of Respiratory and critical care medicine of Foshan Second People's Hospital. The study group included 35 cases of malignant pleural effusion and 33 cases of benign pleural effusion. Methylation of the short homeobox 2 genes (SHOX2) and RAS-related region family 1A gene (RASSF1A) in pleural effusion samples were detected by real-time fluorescence quantitative PCR, and the level of carcinoembryonic antigen (CEA) in pleural effusion samples was detected by immune flow cytometry fluorescence quantitative chemiluminescence. RESULTS SHOX2 or RASSF1A gene methylation was detected in 5 cases in the benign pleural effusion group and 25 patients in the malignant pleural effusion group. The positive rate of SHOX2 or RASSF1A gene methylation in the malignant pleural effusion group was significantly higher than in the benign pleural effusion group (71.4% vs. 15.2%, P < 0.01). Positive CEA (CEA > 5 ng/m) was detected in 1 case in the benign pleural effusion group and 26 patients in the malignant pleural effusion group. The CEA-positive rate in the malignant pleural effusion group was significantly higher than in the benign pleural effusion group (74.3% vs. 3%, P < 0.01). When SHOX2 and RASSF1A gene methylation was combined with CEA detection, 6 cases were positive in the benign pleural effusion group, and 31 patients were positive in the malignant pleural effusion group. The positive rate of combined detection in the malignant pleural effusion group was significantly higher than in the benign pleural effusion group (88.6% vs. 18.2%, P < 0.01). The sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and Youden's index of SHOX2, RASSF1A gene methylation combined with CEA in diagnosing malignant pleural effusion were 88.6%, 81.8%, 85.3%, 83.8%, 87.1% and 0.7 respectively. CONCLUSION The combined detection of SHOX2 and RASSF1A gene methylation with CEA level in pleural effusion has a high diagnostic value for malignant pleural effusion.
Collapse
Affiliation(s)
- Shaosen Chen
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Foshan, Foshan, 528000, China
| | - Kunlun Huang
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Foshan, Foshan, 528000, China
| | - Lin Zou
- Clinical Laboratory, The Second People's Hospital of Foshan, Foshan, 528000, China
| | - Lu Chen
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Foshan, Foshan, 528000, China
| | - Peicun Hu
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Foshan, Foshan, 528000, China.
| |
Collapse
|
5
|
Zhang T, Liu W, Li L, Jue Z, Xu C. Evaluation of serum and pleural levels tumor M2-pyruvate kinase in lung cancer patients with pleural effusion. BMC Pulm Med 2022; 22:307. [PMID: 35948914 PMCID: PMC9364574 DOI: 10.1186/s12890-022-02103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/04/2022] [Indexed: 11/14/2022] Open
Abstract
Objective To evaluate the diagnostic value of tumor M2-pyruvate kinase (TuM2-PK) and carcinoembryonic antigen (CEA) levels in both pleural effusion and serum in the differential diagnosis of benign and malignant pleural effusion. Methods This prospective study was conducted among 80 patients with benign pleural effusion (BPE group) and 125 patients with malignant pleural effusion associated with lung cancer (MPE group). The levels of TuM2-PK and CEA were measured by using sandwich enzyme-linked immunosorbent assay and electrochemiluminescence. The receiver-operating characteristic curve (ROC) analysis was used to confirm the cutoff value to evaluate the diagnostic efficiency of TuM2-PK and CEA. Results The TuM2-PK and CEA levels in pleural effusion and serum, and their ratio (P/S) were higher in MPE group than that in BPE group (P < 0.05). In pleural effusion and serum, the diagnostic efficiency of combined TuM2-PK and CEA for MPE was superior to either single detection. Conclusions The combined detection of TuM2-PK and CEA has a high sensitivity for diagnosis of MPE and might provide method for rapid and accurate diagnosis of patients.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Respiratory Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 215 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Clinical Center of Nanjing Respiratory Diseases and Imaging, Nanjing, 210029, Jiangsu, China
| | - Wei Liu
- Department of Respiratory Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 215 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Clinical Center of Nanjing Respiratory Diseases and Imaging, Nanjing, 210029, Jiangsu, China
| | - Li Li
- Department of Respiratory Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 215 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Clinical Center of Nanjing Respiratory Diseases and Imaging, Nanjing, 210029, Jiangsu, China
| | - Zou Jue
- Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 215 Guangzhou Road, Nanjing, 210029, China.
| | - Chunhua Xu
- Department of Respiratory Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 215 Guangzhou Road, Nanjing, 210029, Jiangsu, China. .,Clinical Center of Nanjing Respiratory Diseases and Imaging, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
6
|
Niu Y, Zhou Q. Th17 cells and their related cytokines: vital players in progression of malignant pleural effusion. Cell Mol Life Sci 2022; 79:194. [PMID: 35298721 PMCID: PMC11072909 DOI: 10.1007/s00018-022-04227-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
Abstract
Malignant pleural effusion (MPE) is an exudative effusion caused by primary or metastatic pleural carcinosis. Th17 cells and their cytokines are critical components in various disease including MPE. In this review, we summarize current published articles regarding the multifunctional roles of Th17 cells and their related cytokines in MPE. Th17 cells are accumulated in MPE compared with paired serum via certain manners. The upregulation of Th17 cells and the interactions between Th17 cells and other immune cells, such as Th1 cells, Th9 cells, regulatory T cells and B cells, are reported to be involved in the formation and development of MPE. In addition, cytokines, which are elaborated by Th17 cells, including IL-17A, IL-17F, IL-21, IL-22, IL-26, GM-CSF, or associated with Th17 cells differentiation, including IL-1β, IL-6, IL-23, TGF-β, are linked to the pathogenesis of MPE through exerting pro- or anti-tumorigenic functions on their own as well as regulating the generation and differentiation of Th17 cells in MPE. Based on these findings, we proposed that Th17 cells and their cytokines might be diagnostic or prognostic tools and potential therapeutic targets for MPE.
Collapse
Affiliation(s)
- Yiran Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Wang H, Zhang J. Identification of DTL as Related Biomarker and Immune Infiltration Characteristics of Nasopharyngeal Carcinoma via Comprehensive Strategies. Int J Gen Med 2022; 15:2329-2345. [PMID: 35264872 PMCID: PMC8901051 DOI: 10.2147/ijgm.s352330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Although considerable progress has been made in basic and clinical research on nasopharyngeal carcinoma (NPC), the biomarkers of the progression of NPC have not been fully studied and described. This study was designed to identify potential novel biomarkers for NPC using integrated analyses and explore the immune cell infiltration in this pathological process. Methods Five GEO data sets were downloaded from gene expression omnibus database (GEO) and analysed to identify differentially expressed genes (DEGs), followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The four algorithms were adopted for screening of novel and key biomarkers for NPC, including random forest (RF) machine learning algorithm, least absolute shrinkage and selection operator (LASSO) logistic regression, support vector machine-recursive feature elimination (SVM-RFE), and weighted gene co-expression network analysis (WGCNA). Lastly, CIBERSORT was used to assess the infiltration of immune cells in NPC, and the correlation between diagnostic markers and infiltrating immune cells was analyzed. Results Herein, we identified 46 DEGs, and enrichment analysis results showed that DEGs and several kinds of signaling pathways might be closely associated with the occurrence and progression of NPC. DTL was recognized as NPC-related biomarker. DTL, also known as retinoic acid-regulated nuclear matrix-associated protein (RAMP), or DNA replication factor 2 (CDT2), is reported to be correlated with the cell proliferation, cell cycle arrest and cell invasion in hepatocellular carcinoma, breast cancer and gastric cancer. Immune infiltration analysis demonstrated that macrophages M0, macrophages M1 and T cells CD4 memory activated were linked to pathogenesis of NPC. Conclusion In summary, we adopted a comprehensive strategy to screen DTL as biomarkers related to NPC and explore the critical role of immune cell infiltration in NPC.
Collapse
Affiliation(s)
- Hehe Wang
- Department of Otolaryngology, Head and Neck Surgery, Ningbo First Hospital, Ningbo, Zhejiang, People’s Republic of China
- Correspondence: Hehe Wang, Department of Otolaryngology Head and Neck Surgery, Ningbo First Hospital, Ningbo, Zhejiang, 315010, People’s Republic of China, Email
| | - Junge Zhang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, Zhejiang, People’s Republic of China
| |
Collapse
|
8
|
Kuen DS, Kim BS, Chung Y. IL-17-Producing Cells in Tumor Immunity: Friends or Foes? Immune Netw 2020; 20:e6. [PMID: 32158594 PMCID: PMC7049578 DOI: 10.4110/in.2020.20.e6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
IL-17 is produced by RAR-related orphan receptor gamma t (RORγt)-expressing cells including Th17 cells, subsets of γδT cells and innate lymphoid cells (ILCs). The biological significance of IL-17-producing cells is well-studied in contexts of inflammation, autoimmunity and host defense against infection. While most of available studies in tumor immunity mainly focused on the role of T-bet-expressing cells, including cytotoxic CD8+ T cells and NK cells, and their exhaustion status, the role of IL-17-producing cells remains poorly understood. While IL-17-producing T-cells were shown to be anti-tumorigenic in adoptive T-cell therapy settings, mice deficient in type 17 genes suggest a protumorigenic potential of IL-17-producing cells. This review discusses the features of IL-17-producing cells, of both lymphocytic and myeloid origins, as well as their suggested pro- and/or anti-tumorigenic functions in an organ-dependent context. Potential therapeutic approaches targeting these cells in the tumor microenvironment will also be discussed.
Collapse
Affiliation(s)
- Da-Sol Kuen
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.,BK21 Plus Program, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.,BK21 Plus Program, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
9
|
Moon EK. γδT Cells in Lung Cancer Malignant Pleural Effusion: Friend? Foe? Am J Respir Cell Mol Biol 2019; 61:130-131. [PMID: 30958972 PMCID: PMC6670027 DOI: 10.1165/rcmb.2019-0080ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Edmund K Moon
- 1Division of Pulmonary, Allergy, and Critical CarePerelman School of Medicine of the University of PennsylvaniaPhiladelphia, Pennsylvania
| |
Collapse
|
10
|
Song L, Ma S, Chen L, Miao L, Tao M, Liu H. Long-term prognostic significance of interleukin-17-producing T cells in patients with non-small cell lung cancer. Cancer Sci 2019; 110:2100-2109. [PMID: 31100180 PMCID: PMC6609818 DOI: 10.1111/cas.14068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022] Open
Abstract
The presence of interleukin (IL)‐17‐producing T cells has recently been reported in non‐small cell lung cancer (NSCLC) patients. However, the long‐term prognostic significance of these populations in NSCLC patients remains unknown. In the present study, we collected peripheral blood from 82 NSCLC patients and 22 normal healthy donors (NC). Percentages of IL‐17‐producing CD4+T (Th17), CD8+T (Tc17) and γδT cells (γδT17) were measured to determine their association with clinical outcomes and overall survival (OS) in NSCLC. All NSCLC patients were followed up until July 2018. Median follow‐up time was 13.5 months (range 1‐87 months). The 3‐ and 5‐year survival rate was 27% and 19.6%, respectively. We found that Th17 cells and γδT17 cells were significantly increased, whereas Tc17 cells were markedly decreased in patients with NSCLC compared with those in NC. In addition, Th17 cells were significantly positively associated with T helper type 1 cells (Th1), whereas γδT17 cells were significantly negatively associated with γδT + interferon (IFN)‐γ+ cells. High percentages of peripheral Tc17 cells were significantly associated with favorable 5‐year OS (P = .025), especially in patients with early TNM stage (P = .016). Furthermore, high percentages of peripheral Th17 cells were positively associated with favorable 5‐year OS in patients with late TNM stage (P = .002). However, no significant association was observed between γδT17 cells and OS, regardless of the TNM stage. In conclusion, our findings suggest that enhanced Th17 and reduced Tc17 cells in the peripheral blood could be a significant predictor of a favorable prognosis for NSCLC patients.
Collapse
Affiliation(s)
- Li Song
- Department of Oncology, Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China.,College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shoubao Ma
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Longpei Chen
- Department of Oncology, Shanghai Changhai Hospital, Shanghai, China
| | - Liyan Miao
- Department of Oncology, Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore
| |
Collapse
|
11
|
Migrated T lymphocytes into malignant pleural effusions: an indicator of good prognosis in lung adenocarcinoma patients. Sci Rep 2019; 9:2996. [PMID: 30816121 PMCID: PMC6395746 DOI: 10.1038/s41598-018-35840-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/09/2018] [Indexed: 01/16/2023] Open
Abstract
The presence of leukocyte subpopulations in malignant pleural effusions (MPEs) can have a different impact on tumor cell proliferation and vascular leakiness, their analysis can help to understand the metastatic microenvironment. We analyzed the relationship between the leukocyte subpopulation counts per ml of pleural fluid and the tumor cell count, molecular phenotype of lung adenocarcinoma (LAC), time from cancer diagnosis and previous oncologic therapy. We also evaluated the leukocyte composition of MPEs as a biomarker of prognosis. We determined CD4+ T, CD8+ T and CD20+ B cells, monocytes and neutrophils per ml in pleural effusions of 22 LAC and 10 heart failure (HF) patients by flow cytometry. Tumor cells were identified by morphology and CD326 expression. IFNγ, IL-10 and IL-17, and chemokines were determined by ELISAs and migratory response to pleural fluids by transwell assays. MPEs from LAC patients had more CD8+ T lymphocytes and a tendency to more CD4+ T and CD20+ B lymphocytes than HF-related fluids. However, no correlation was found between lymphocytes and tumor cells. In those MPEs which were detected >1 month from LAC diagnosis, there was a negative correlation between pleural tumor cells and CD8+ T lymphocytes. CXCL10 was responsible for the attraction of CD20+ B, CD4+ T and CD8+ T lymphocytes in malignant fluids. Concentrations of IL-17 were higher in MPEs than in HF-related effusions. Survival after MPE diagnosis correlated positively with CD4+ T and CD8+ T lymphocytes, but negatively with neutrophils and IL-17 levels. In conclusion, lymphocyte enrichment in MPEs from LAC patients is mostly due to local migration and increases patient survival.
Collapse
|
12
|
Shen J, Sun X, Pan B, Cao S, Cao J, Che D, Liu F, Zhang S, Yu Y. IL-17 induces macrophages to M2-like phenotype via NF-κB. Cancer Manag Res 2018; 10:4217-4228. [PMID: 30323677 PMCID: PMC6177522 DOI: 10.2147/cmar.s174899] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Tumor-associated macrophage (TAM) is emerging as one of the important complications in cancer promotion. Interleukin-17 (IL-17), a potent pro-inflammatory cytokine, plays an active role in promoting M2 macrophage differentiation (TAMs are M2-like phenotypes). In this study, we aimed to evaluate that IL-17 stimulates key phenotypic and functional signatures of M2 macrophages associated with cancer progression in non-small-cell lung cancer (NSCLC) patients. Patients and methods The markers and cytokines of M2 macrophages were detected in THP-1-derived macrophages and mouse peritoneal macrophages treated with IL-17. The activation of nuclear factor kappa B (NF-κB) and nuclear localization of p65 in IL-17-treated cells were investigated. The BAY11-7082 inhibitor and the siRNA of p65 were used to block the NF-κB activation. A total of 85 patients who underwent surgery for histologically verified NSCLC were enrolled in this study. The expression of IL-17 and M2 macrophage markers were assessed by immunostaining. Survivals were estimated using the Kaplan–Meier method. Results The CD163 and CD206 cell surface markers and transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF) and IL-10 of M2 macrophages were significantly increased in IL-17-treated THP-1-derived macrophages in a dose-dependent manner. IL-17 increased the mRNA levels of Arginase I and Fizz1, the phosphorylation of IkBα and nuclear localization of p65 (a subunit of NF-κB). The BAY11-7082 abrogated IL-17-induced CD206 and CD163 expression, TGF-β, VEGF, IL-10, Arginase I and Fizz1 expression and p65 nuclear translocation. Further experiments showed that IL-17 induced the expression of CD206, CD163, Arginase I, Fizz1 and Ym1 in mouse peritoneal macrophages that were inhibited by siRNA of p65. The immunostaining experiments on human NSCLC tissues indicated that high IL-17 expression was significantly correlated with CD163 and c-Maf. The intratumoral IL-17+ CD163+ c-Maf+ cells were associated with NSCLC progression. Conclusion IL-17 stimulated macrophages to M2-like phenotypes via NF-κB activation. IL-17 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jing Shen
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| | - Xin Sun
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China
| | - Bo Pan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| | - Shoubo Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| | - Jingyan Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| | - Dehai Che
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| | - Shuai Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| |
Collapse
|
13
|
Vlahopoulos S, Adamaki M, Khoury N, Zoumpourlis V, Boldogh I. Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer. Pharmacol Ther 2018; 194:59-72. [PMID: 30240635 DOI: 10.1016/j.pharmthera.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are pivotal mediators of the immune response, and their coordinated expression protects host tissue from excessive damage and oxidant stress. Nevertheless, the development of lung pathology, including asthma, chronic obstructive pulmonary disease, and ozone-induced lung injury, is associated with oxidant stress; as evidence, there is a significant increase in levels of the modified guanine base 7,8-dihydro-8-oxoguanine (8-oxoG) in the genome. 8-OxoG is primarily recognized by 8-oxoguanine glycosylase 1 (OGG1), which catalyzes the first step in the DNA base excision repair pathway. However, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, including NF-κB, to their cognate sites to enable expression of cytokines and chemokines, with ensuing recruitments of inflammatory cells. Hence, defective OGG1 will modulate the coordination between innate and adaptive immunity through excessive oxidant stress and cytokine dysregulation. Both oxidant stress and cytokine dysregulation constitute key elements of oncogenesis by KRAS, which is mechanistically coupled to OGG1. Thus, analysis of the mechanism by which OGG1 modulates gene expression helps discern between beneficial and detrimental effects of oxidant stress, exposes a missing functional link as a marker, and yields a novel target for lung cancer.
Collapse
Affiliation(s)
- Spiros Vlahopoulos
- Ηoremeio Research Laboratory, First Department of Paediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Nikolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Istvan Boldogh
- Departments of Microbiology and Immunology and the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
14
|
Ji M, Zhu X, Dong J, Qian S, Meng F, Gu W, Qiu W. Combination of procalcitonin, C-reaction protein and carcinoembryonic antigens for discriminating between benign and malignant pleural effusions. Oncol Lett 2018; 16:1727-1735. [PMID: 30008860 PMCID: PMC6036474 DOI: 10.3892/ol.2018.8871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/22/2018] [Indexed: 12/27/2022] Open
Abstract
Pleural effusion (PE) is a common manifestation associated with certain chest diseases. However, there is no effective diagnostic marker with high sensitivity and specificity. The aim of the present study was to evaluate the diagnostic performance of several biomarkers in the use of detecting malignant pleural disorder. One hundred and fifty patients with a specific diagnosis of exudative PE were enrolled in this study and were divided into the benign PE group (n=93) and the malignant PE group (n=57). Thoracoscopy was conducted to identify the reasons for the PE. Biomarkers in pleural fluid and in sera were determined either by microparticle enzyme immunoassay [carcinoembryonic antigen (CEA)], fluorescence immunoassay [procalcitonin (PCT)] or light-scattering turbidimetric immunoassay [C-reaction protein (CRP)]. Then, correlation analysis and receiver-operating characteristic (ROC) curve analysis individually or in combination were performed. The CRP and PCT levels were higher in benign PE than they were in malignant PE (PCT: P=0.017, P=0.032; CRP: P=0.001, P<0.001, respectively), while CEA levels were lower in benign PE than in malignant PE (CEA: P=0.001, P=0.001, respectively). During the ROC curve analysis, an optimal discrimination was identified by combining pleural CRP, pleural CEA and serum (s)PCT with an area under the curve of 0.973 (sensitivity, 98.9%; specificity, 89.5%). In the diagnosis of PE, there was no single biomarker that appeared to be adequately accurate. The combination of pleural CRP, pleural CEA and sPCT may represent an efficient diagnostic procedure for guiding the patient towards follow-up clinical treatment.
Collapse
Affiliation(s)
- Mingde Ji
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaofei Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jie Dong
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Shining Qian
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Fei Meng
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Wanjian Gu
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
15
|
Zhang Y, Li J, Hua P, Liu N, Li Q, Zhu X, Jiang L, Zheng K, Su X. Targeted next-generation sequencing in cytology specimens for molecular profiling of lung adenocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3647-3655. [PMID: 31949745 PMCID: PMC6962840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/27/2018] [Indexed: 06/10/2023]
Abstract
AIMS Molecular profiling is important for cancer diagnosis and treatment. For many advanced stage lung cancer patients, cytology specimens may be the only materials available for molecular testing. The aim of this study is to evaluate the utility of Next-Generation Sequencing (NGS) of cytology specimens for the molecular profiling of lung adenocarcinoma. METHODS NGS was performed on cell blocks of pleural effusions and fine-needle aspiration (FNA) samples of lung adenocarcinoma to determine the mutation status of EGFR, KRAS, PIK3CA, BRAF, ALK, PDGFRA, and DDR2. Then, quantitative Real-Time PCR (qPCR) was performed and the results were compared to those of NGS. Next, NGS was performed on available histological specimens from the same patients. Last, DNA Quality Index analysis was performed to further explore the applicability of using cytology samples as the source for NGS. RESULTS NGS detected mutations in EGFR, PIK3CA, and KRAS. NGS and qPCR results showed high concordance. NGS exhibited advantages over qPCR in detecting non-hotspot mutations and providing accurate information for allele sequence and mutation frequency. NGS of cytological and histological samples from the same patients showed high concordance. DNA Quality Index analysis showed that DNA extracted from cell blocks of pleural fluid was of similar quality compared to FFPE tissue blocks. CONCLUSIONS NGS can be successfully performed on both FNA and pleural fluid samples from lung adenocarcinomas. The high quality DNA of FFPE cell block of pleural effusion makes it the first choice for molecular profiling, especially when cytology specimens are the only available samples for molecular profiling.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pathology, West China Hospital of Sichuan UniversityChengdu, China
- Chengdu Women and Children’s Central HospitalChengdu, China
| | - Jinnan Li
- Department of Pathology, West China Hospital of Sichuan UniversityChengdu, China
| | - Ping Hua
- Chengdu Women and Children’s Central HospitalChengdu, China
| | - Nian Liu
- Department of Pathology, West China Hospital of Sichuan UniversityChengdu, China
| | - Qiyuan Li
- Department of Pathology, West China Hospital of Sichuan UniversityChengdu, China
| | - Xianglan Zhu
- Department of Pathology, West China Hospital of Sichuan UniversityChengdu, China
| | - Lili Jiang
- Department of Pathology, West China Hospital of Sichuan UniversityChengdu, China
| | - Ke Zheng
- Department of Pathology, West China Hospital of Sichuan UniversityChengdu, China
| | - Xueying Su
- Department of Pathology, West China Hospital of Sichuan UniversityChengdu, China
| |
Collapse
|
16
|
Wang XF, Zhu YT, Wang JJ, Zeng DX, Mu CY, Chen YB, Lei W, Zhu YH, Huang JA. The prognostic value of interleukin-17 in lung cancer: A systematic review with meta-analysis based on Chinese patients. PLoS One 2017; 12:e0185168. [PMID: 28934305 PMCID: PMC5608354 DOI: 10.1371/journal.pone.0185168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Background Interleukin-17 (IL-17) plays an important role in cancer progression. Previous studies remained controversial regarding the correlation between IL-17 expression and lung cancer (LC) prognosis. To comprehensively and quantitatively summarize the prognostic value of IL-17 expression in LC patients, a systematic review and meta-analysis were performed. Methods We identified the relevant literatures by searching the PubMed, EMBASE, Cochrane Library, SinoMed, China National Knowledge Infrastructure (CNKI) and Wanfang Data databases, up until April 1, 2017. Overall survival (OS), disease free survival (DFS) and clinicopathological characteristics were collected from relevant studies. Pooled hazard ratios (HR) and corresponding 95% confidence intervals (CI) were calculated to estimate the effective value of IL-17 expression on clinical outcomes. Results Six studies containing 479 Chinese LC patients were involved in this meta-analysis. The results indicated high IL-17 expression was independently correlated with poorer OS (HR = 1.82, 95% CI 1.44–2.29, P < 0.00001) and shorter DFS (HR = 2.41, 95% CI 1.42–4.08, P = 0.001) in LC patients. Further, when stratified by LC histological type (non-small cell lung cancer and small cell lung cancer), tumor stage (Ⅰ-Ⅲ,Ⅰ-Ⅳ and Ⅳ), detection specimen (serum, intratumoral tissue and pleural effusion), test method (immunological histological chemistry and enzyme linked immunosorbent assay), and HR estimated method (reported and estimated), all of the results were statistically significant. These data indicated that elevated IL-17 expression is correlated with poor clinical outcomes in LC. The meta-analysis did not show heterogeneity or publication bias. Conclusions The present meta-analysis revealed that high IL-17 expression was an indicator of poor prognosis for Chinese patients with LC. It could potentially help to assess patients’ prognosis and estimate treatment efficacy in therapeutic interventions.
Collapse
Affiliation(s)
- Xiao-fei Wang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yi-tong Zhu
- Department of Boxi Medical Center, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia-jia Wang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Da-xiong Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chuan-yong Mu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan-bin Chen
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Lei
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- * E-mail: (YHZ); (WL)
| | - Ye-han Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- * E-mail: (YHZ); (WL)
| | - Jian-an Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
17
|
Song Y, Yang JM. Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer. Biochem Biophys Res Commun 2017; 493:1-8. [PMID: 28859982 DOI: 10.1016/j.bbrc.2017.08.109] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022]
Abstract
Interleukin-17 (IL-17), a pleiotropic proinflammatory cytokine, is reported to be significantly generated by a distinct subset of CD4+ T-cells, upgrading cancer-elicited inflammation and preventing cancer cells from immune surveillance. T-helper (Th)17 cells produced from naive CD4+ T cells have recently been renowned and generally accepted, gaining eminence in cancer studies and playing the effective role in context of cancer. Th17 cells are the main source of IL-17-secreting cells, It was found that other cell types produced this cytokine as well, including Group 3 innate lymphoid cells (ILC3), δγT cells, invariant natural killer T (iNKT) cells, lymphoid-tissue inducer (LTi)-like cells and Natural killer (NK) cells. Th17-associated cytokines give impetus to tumor progression, or inducing angiogenesis and metastasis. This review demonstrates an understanding on how the pro- or antitumor function of Th17 cells and IL-17 may change cancer progression, leading to the appearance of complex and pivotal biologic activities in tumor.
Collapse
Affiliation(s)
- Yang Song
- Department of Otorhinolaryngology, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China.
| | - Jian Ming Yang
- Department of Otorhinolaryngology, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China
| |
Collapse
|
18
|
Gavriatopoulou M, Dimopoulos MA, Kastritis E, Terpos E. Emerging treatment approaches for myeloma-related bone disease. Expert Rev Hematol 2017; 10:217-228. [PMID: 28092987 DOI: 10.1080/17474086.2017.1283213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Multiple myeloma is characterized by the presence of osteolytic lesions that leads to devastating skeletal-related events in the majority of patients. Myeloma bone disease is attributed to increased osteoclastic and suppressed osteoblastic activity. Areas covered: Bisphosphonates remain the main treatment option, however they have limitations on their own. Understanding the pathogenesis of myeloma bone disease may provide a roadmap for new therapeutic approaches. The pathway of RANKRANKLOPG pathway has revealed denosumab, a monoclonal antibody targeting RANKL as a novel emerging therapy for myeloma-related bone disease. Furthermore, the Wnt signaling inhibitors dicckopf-1 and sclerostin that are implicated in the pathogenesis of bone destruction of myeloma are now targeted by novel monoclonal antibodies. Activin-A is a TGF-beta superfamily member which increases osteoclast activity and inhibits osteoblast function in myeloma; sotatercept and other molecules targeting activin-A have entered into clinical development. Several other molecules and pathways that play an important role in the pathogenesis of bone destruction in myeloma, such as periostin, adiponectin, Notch and BTK signaling are also targeted in an attempt to develop novel therapies for myeloma-related bone disease. Expert commentary: We summarize the current advances in the biology of myeloma bone disease and the potential therapeutic targets.
Collapse
Affiliation(s)
- Maria Gavriatopoulou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens School of Medicine , Athens , Greece
| | - Meletios A Dimopoulos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens School of Medicine , Athens , Greece
| | - Efstathios Kastritis
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens School of Medicine , Athens , Greece
| | - Evangelos Terpos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens School of Medicine , Athens , Greece
| |
Collapse
|
19
|
Saba MA, Valeh T, Ehteram H, Haddad Kashani H, Ghazi Zahedi M. Diagnostic Value of Neuron-Specific Enolase (NSE) and Cancer Antigen 15-3 (CA 15-3) in the Diagnosis of Pleural Effusions. Asian Pac J Cancer Prev 2017; 18:257-261. [PMID: 28240844 PMCID: PMC5563110 DOI: 10.22034/apjcp.2017.18.1.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction: Pleural effusion diagnosis plays an important role in determining treatment strategies. The aim
of this study was to determine the diagnostic capacity of tumor markers CA 15-3 and NSE solely or in combination
in differentiating the nature of pleural fluid. Methods and Materials: In this cross-sectional study we evaluated 93
patients with pleural effusions (44 malignant and 49 benign). NSE and CA 15-3 serum and pleural levels were measured
simultaneously using immunoenzyme assay kits. Diagnosis was established on the basis of cytological study. Results:
Sensitivity and specificity of CA 15-3 serum and pleural level measurement were 70.4%, 49.0%, and 79.5% and 49.0%,
respectively. Serum NSE levels had 75.0% sensitivity and 69.4% specificity while the respective pleural figures were
75.0% and 73.5%. The combination of NSE and CA 15-3 serum and pleural levels had the highest sensitivity (93.2%),
although combined serum levels had the lowest sensitivity (47.7%). With an accuracy of 74.2%, pleural levels of NSE
had the highest diagnostic potential. Conclusion: Measuring NSE and CA 15-3 tumor markers is a suitable approach
to distinguish the nature of pleural effusions, with NSE pleural levels demonstrating the highest diagnostic accuracy.
Collapse
Affiliation(s)
- Mohammad Ali Saba
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | | | | | | | | |
Collapse
|
20
|
The Role of Interleukin-17 in Lung Cancer. Mediators Inflamm 2016; 2016:8494079. [PMID: 27872514 PMCID: PMC5107223 DOI: 10.1155/2016/8494079] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023] Open
Abstract
Tumour-associated inflammation is a hallmark of malignant carcinomas, and lung cancer is a typical inflammation-associated carcinoma. Interleukin-17 (IL-17) is an important inflammatory cytokine that plays an important role in chronic inflammatory and autoimmune diseases and in inflammation-associated tumours. Numerous studies have shown that IL-17 directly or indirectly promotes tumour angiogenesis and cell proliferation and that it inhibits apoptosis via the activation of inflammatory signalling pathways. Therefore, IL-17 contributes to the metastasis and progression of lung cancer. Research advances with respect to the role of IL-17 in lung cancer will be presented as a review in this paper.
Collapse
|
21
|
Mei J, Liu L. [Role of Interleukin 17 in Lung Carcinogenesis and Lung Cancer Progression]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:46-51. [PMID: 26805737 PMCID: PMC5999800 DOI: 10.3779/j.issn.1009-3419.2016.01.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
白介素-17(interleukin 17, IL-17)是一个重要的炎症因子,参与介导了机体的抗感染免疫及自身免疫性疾病相关的病理性炎症;此外,IL-17还与多种炎症相关的肿瘤有着密切联系。吸烟是导致肺癌的重要危险因素之一,而吸烟等因素所致的肺部慢性炎症反应伴有IL-17过表达,提示IL-17可能与肺癌的发生存在潜在联系;同时,IL-17还通过多种机制影响肺癌进展,本文对这一领域的相关研究进展进行了综述。
Collapse
Affiliation(s)
- Jiandong Mei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| |
Collapse
|
22
|
Xu C, Qian L, Yu L, Zhang X, Wang Q. Evaluation of serum and pleural levels of soluble B7-H4 in lung cancer patients with pleural effusion. Biomarkers 2016; 20:271-4. [PMID: 26301886 DOI: 10.3109/1354750x.2015.1068858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To evaluate the diagnostic value of sB7-H4 and CEA in both serum and pleural effusion of lung cancer patients. METHODS Levels of sB7-H4 and CEA in 90 patients with malignant pleural effusion due to lung cancer and 58 patients with benign pleural effusion were measured by ELISA. RESULTS The sB7-H4 and CEA levels in pleural effusion, serum and their ratio (F/S) were higher in lung cancer group than that in benign group (p < 0.01). The diagnostic efficiency of sB7-H4 combined CEA was superior to either sB7-H4 or CEA. CONCLUSIONS Measurement of sB7-H4 and CEA might be useful diagnostic value for malignant effusion.
Collapse
Affiliation(s)
- Chunhua Xu
- a Department of Respiratory Medicine , Nanjing Chest Hospital , Nanjing , Jiangsu , P.R. China
| | | | | | | | | |
Collapse
|
23
|
Karabulut S, Afsar ÇU, Karabulut M, Alış H, Kılıc L, Çikot M, Yasasever CT, Aykan NF. Evaluation of Serum Interleukin-17 (IL-17) Levels as a Diagnostic Marker in Pancreatic Adenocarcinoma. J Gastrointest Cancer 2016; 47:47-54. [PMID: 26637231 DOI: 10.1007/s12029-015-9787-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Inflammatory cytokines modulate immune responses in the tumor microenvironment during progression. The role of interleukin (IL-17) in cancer is currently under debate. This study was conducted to investigate the serum levels of IL-17 in patients with pancreatic adenocarcinoma (PA) and the relationship with tumor progression and known prognostic parameters. MATERIAL AND METHODS Thirty-five patients with PA were investigated. Serum samples were obtained on first admission before treatment and follow-up. Both serum IL-17 levels were determined using enzyme-linked immunosorbent assay (ELISA). Age- and sex-matched 35 healthy controls were included in the analysis. RESULTS The median age at diagnosis was 61 years, range 38-84 years; 21 (60%) patients were men. The tumor was located in the head of pancreas in 24 (69%) patients. The most common metastatic site was liver in 20 patients with metastasis (n = 18, 90%). The median follow-up time was 24.0 weeks (range 1.0-191.0 weeks). At the end of the observation period, 12 (34%) patients experienced disease progression and 23 patients (66%) were dead. Forty-four percent of 18 metastatic patients who received palliative chemotherapy (CTx) were CTx-responsive. Median progression-free survival and overall survival of the whole group were 13.7 ± 2.3 weeks [95% confidence interval (CI) = 9-18 weeks] and 48.0 ± 12.8 weeks (95% CI = 23-73 weeks), respectively. The baseline serum IL-17 levels were significantly higher in patients with PA than in the control group (p = 0.001). Moreover, serum IL-17 levels were significantly higher in the patients with large pathologic tumor status and low albumin levels (p = 0.04 and p = 0.03, respectively). However, serum IL-17 assays had no prognostic roles on outcome. CONCLUSION Although serum levels of IL-17 assays were found to be diagnostic value, no predictive and prognostic value was determined in PA patients.
Collapse
Affiliation(s)
- Senem Karabulut
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Çiğdem Usul Afsar
- Department of Medical Oncology, Istanbul Education and Research Hospital, Istanbul, Turkey.
| | - Mehmet Karabulut
- Clinic of General Surgery, Istanbul Bakırköy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - Halil Alış
- Clinic of General Surgery, Istanbul Bakırköy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - Leyla Kılıc
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Murat Çikot
- Clinic of General Surgery, Istanbul Bakırköy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - Ceren Tilgen Yasasever
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Nuri Faruk Aykan
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
24
|
Tsai MF, Chang TH, Wu SG, Yang HY, Hsu YC, Yang PC, Shih JY. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway. Sci Rep 2015; 5:13574. [PMID: 26338423 PMCID: PMC4559673 DOI: 10.1038/srep13574] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural effusion (MPE) is a common clinical problem in non-small cell lung carcinoma (NSCLC) patients; however, the underlying mechanisms are still largely unknown. Recent studies indicate that the frequency of the L858R mutant form of the epidermal growth factor receptor (EGFR-L858R) is higher in lung adenocarcinoma with MPE than in surgically resected specimens, suggesting that lung adenocarcinoma cells harboring this mutation tend to invade the adjacent pleural cavity. The purpose of this study was to clarify the relationship between the EGFR-L858R mutation and cancer cell invasion ability and to investigate the molecular mechanisms involved in the formation of MPE. We found that expression of EGFR-L858R in lung cancer cells resulted in up-regulation of the CXCR4 in association with increased cancer cell invasive ability and MPE formation. Ectopic expression of EGFR-L858R in lung cancer cells acted through activation of ERK signaling pathways to induce the expression of CXCR4. We also indicated that Inhibition of CXCR4 with small interfering RNA, neutralizing antibody, or receptor antagonist significantly suppressed the EGFR-L858R–dependent cell invasion. These results suggest that targeting the production of CXCR4 and blocking the CXCL12-CXCR4 pathway might be effective strategies for treating NSCLCs harboring a specific type of EGFR mutation.
Collapse
Affiliation(s)
- Meng-Feng Tsai
- Department of Molecular Biotechnology, College of Biotechnology and Bioresources, Dayeh University, Changhua 51591, Taiwan
| | - Tzu-Hua Chang
- Department of Internal Medicine, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yunlin 64041, Taiwan
| | - Hsiao-Yin Yang
- Department of Internal Medicine, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yi-Chiung Hsu
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
25
|
Prabhala RH, Fulciniti M, Pelluru D, Rashid N, Nigroiu A, Nanjappa P, Pai C, Lee S, Prabhala NS, Bandi RL, Smith R, Lazo-Kallanian SB, Valet S, Raje N, Gold JS, Richardson PG, Daley JF, Anderson KC, Ettenberg SA, Di Padova F, Munshi NC. Targeting IL-17A in multiple myeloma: a potential novel therapeutic approach in myeloma. Leukemia 2015; 30:379-89. [PMID: 26293646 PMCID: PMC4740263 DOI: 10.1038/leu.2015.228] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that interleukin-17A (IL-17) producing Th17 cells are significantly elevated in blood and bone marrow (BM) in multiple myeloma (MM) and IL-17A promotes MM cell growth via the expression of IL-17 receptor. In this study, we evaluated anti-human IL-17A human monoclonal antibody (mAb), AIN457 in MM. We observe significant inhibition of MM cell growth by AIN457 both in the presence and absence of BM stromal cells (BMSC). While IL-17A induces IL-6 production, AIN457 significantly down-regulated IL-6 production and MM cell-adhesion in MM-BMSC co-culture. AIN-457 also significantly inhibited osteoclast cell–differentiation. More importantly, in the SCIDhu model of human myeloma administration of AIN-457 weekly for 4 weeks after the first detection of tumor in mice led to a significant inhibition of tumor growth and reduced bone damage compared to isotype control mice. To understand the mechanism of action of anti-IL-17A mAb, we report here, that MM cells express IL-17A. We also observed that IL-17A knock-down inhibited MM cell growth and their ability to induce IL-6 production in co-cultures with BMSC. These pre-clinical observations suggest efficacy of AIN 457 in myeloma and provide the rationale for its clinical evaluation for anti-myeloma effects and for improvement of bone disease.
Collapse
Affiliation(s)
- R H Prabhala
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Fulciniti
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Pelluru
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - N Rashid
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Nigroiu
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - P Nanjappa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C Pai
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - S Lee
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - N S Prabhala
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - R L Bandi
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Smith
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S B Lazo-Kallanian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Valet
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - N Raje
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - J S Gold
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - P G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - J F Daley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - K C Anderson
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S A Ettenberg
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - F Di Padova
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - N C Munshi
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Wang F, Yang L, Gao Q, Huang L, Wang L, Wang J, Wang S, Zhang B, Zhang Y. CD163+CD14+ macrophages, a potential immune biomarker for malignant pleural effusion. Cancer Immunol Immunother 2015; 64:965-76. [PMID: 25944005 PMCID: PMC11028729 DOI: 10.1007/s00262-015-1701-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 04/15/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Malignant pleural effusion (MPE) is a common complication caused by malignant diseases. However, subjectivity, poor sensitivity, and substantial false-negative rates of cytology assay hamper accurate MPE diagnosis. The aim of this study was to assess whether CD163+CD14+ tumor-associated macrophages (TAMs) could be used as a biomarker for enabling sensitive and specific MPE diagnosis. METHODS Pleural effusion samples and peripheral blood samples were collected from 50 MPE patients and 50 non-malignant pleural effusion (NMPE) patients, respectively. Flow cytometry was performed to analyze cell phenotypes, and RT-qPCR was used to detect cytokine expression in these monocytes and macrophages. A blinded validation study (n = 40) was subsequently performed to confirm the significance of CD163+CD14+ TAMs in MPE diagnosis. Student's t test, rank sum test, and receiver operating characteristic curve analysis were used for statistical analysis. RESULTS Notably, CD163+CD14+ cell frequency in MPE was remarkably higher than that in NMPE (P < 0.001). In a blinded validation study, a sensitivity of 78.9 % and a specificity of 100 % were obtained with CD163+CD14+ TAMs as a MPE biomarker. In total (n = 140), by using a cutoff level of 3.65 %, CD163+CD14+ cells had a sensitivity of 81.2 % and a specificity of 100 % for MPE diagnosis. Notably, MPE diagnosis by estimating CD163+CD14+ cells in pleural effusion could be obtained one week earlier than that obtained by cytological examination. CONCLUSIONS CD163+CD14+ macrophages could be potentially used as an immune diagnostic marker for MPE and has better assay sensitivity than that of cytological analysis.
Collapse
MESH Headings
- Antigens, CD/analysis
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/analysis
- Antigens, Differentiation, Myelomonocytic/immunology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/immunology
- Cell Separation
- Cytokines/metabolism
- Diagnosis, Differential
- False Positive Reactions
- Female
- Flow Cytometry
- Humans
- Immunophenotyping
- Lipopolysaccharide Receptors/analysis
- Lipopolysaccharide Receptors/immunology
- Macrophages/immunology
- Male
- Middle Aged
- Monocytes/immunology
- Pleural Effusion, Malignant/diagnosis
- Pleural Effusion, Malignant/immunology
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/immunology
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Fei Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan Province China
- School of Life Sciences, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001 Henan Province China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan Province China
| | - Qun Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan Province China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan Province China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan Province China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan Province China
| | - Jing Wang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan Province China
| | - Shengdian Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan Province China
- School of Life Sciences, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001 Henan Province China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052 Henan Province China
| |
Collapse
|
27
|
Punt S, Langenhoff JM, Putter H, Fleuren GJ, Gorter A, Jordanova ES. The correlations between IL-17 vs. Th17 cells and cancer patient survival: a systematic review. Oncoimmunology 2015; 4:e984547. [PMID: 25949881 DOI: 10.4161/2162402x.2014.984547] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/31/2014] [Indexed: 12/22/2022] Open
Abstract
Both IL-17 and Th17 cells have been ascribed tumor promoting as well as tumor suppressing functions. We reviewed the literature on correlations between IL-17 versus Th17 cells and survival in human cancer, following the PRISMA guidelines. Serum, formalin-fixed, paraffin-embedded (FFPE) tissue and peripheral blood samples were most frequently studied. High IL-17 quantities were correlated with poor prognosis, whereas high Th17 cell frequencies were correlated with improved prognosis. Since Th17 cells are a subpopulation of IL-17+ cells and had a different correlation with prognosis than total IL-17, we substantiate that a distinction should be made between Th17 and other IL-17+ cells.
Collapse
Affiliation(s)
- Simone Punt
- Department of Pathology; Leiden University Medical Center ; Leiden, The Netherlands
| | | | - H Putter
- Department of Medical Statistics and Bioinformatics; Leiden University Medical Center ; Leiden, The Netherlands
| | - Gert Jan Fleuren
- Department of Pathology; Leiden University Medical Center ; Leiden, The Netherlands
| | - Arko Gorter
- Department of Pathology; Leiden University Medical Center ; Leiden, The Netherlands
| | | |
Collapse
|