1
|
Eranki A, Mikhail AS, Negussie AH, Katti PS, Wood BJ, Partanen A. Tissue-mimicking thermochromic phantom for characterization of HIFU devices and applications. Int J Hyperthermia 2019; 36:518-529. [PMID: 31046513 DOI: 10.1080/02656736.2019.1605458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Tissue-mimicking phantoms (TMPs) are synthetic materials designed to replicate properties of biological tissues. There is a need to quantify temperature changes following ultrasound or magnetic resonance imaging-guided high intensity focused ultrasound (MR-HIFU). This work describes development, characterization and evaluation of tissue-mimicking thermochromic phantom (TMTCP) for direct visualization and quantification of HIFU heating. The objectives were to (1) develop an MR-imageable, HIFU-compatible TMTCP that reports absolute temperatures, (2) characterize TMTCP physical properties and (3) examine TMTCP color change after HIFU. METHODS AND MATERIALS A TMTCP was prepared to contain thermochromic ink, silicon dioxide and bovine serum albumin (BSA) and its properties were quantified. A clinical MRI-guided and a preclinical US-guided HIFU system were used to perform sonications in TMTCP. MRI thermometry was performed during HIFU, followed by T2-weighted MRI post-HIFU. Locations of color and signal intensity change were compared to the sonication plan and to MRI temperature maps. RESULTS TMTCP properties were comparable to those in human soft tissues. Upon heating, the TMTCP exhibited an incremental but permanent color change for temperatures between 45 and 70 °C. For HIFU sonications the TMTCP revealed spatially sharp regions of color change at the target locations, correlating with MRI thermometry and hypointense regions on T2-weighted MRI. TMTCP-based assessment of various HIFU applications was also demonstrated. CONCLUSIONS We developed a novel MR-imageable and HIFU-compatible TMTCP to characterize HIFU heating without MRI or thermocouples. The HIFU-optimized TMTCP reports absolute temperatures and ablation zone geometry with high spatial resolution. Consequently, the TMTCP can be used to evaluate HIFU heating and may provide an in vitro tool for peak temperature assessment, and reduce preclinical in vivo requirements for clinical translation.
Collapse
Affiliation(s)
- Avinash Eranki
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center and National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,b Sheikh Zayed Institute for Pediatric Surgical Innovation , Children's National Medical Center , Washington , DC , USA
| | - Andrew S Mikhail
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center and National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Ayele H Negussie
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center and National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Prateek S Katti
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center and National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,c Institute of Biomedical Engineering , University of Oxford , Oxford , UK
| | - Bradford J Wood
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center and National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Ari Partanen
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center and National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
2
|
Kim YT, Ma D, Sim JK, Kim SH. Simultaneous Evaluation of Thermal and Non-Thermal Effects of High-Intensity Focused Ultrasound on a Tissue-Mimicking Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1799-1809. [PMID: 29759425 DOI: 10.1016/j.ultrasmedbio.2018.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/07/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Physiologically relevant phantoms with high reliability are essential for extending the therapeutic applications of high-intensity therapeutic ultrasound. Here we describe a tissue-mimicking phantom capable of quantifying temperature changes and observing non-thermal phenomena by high-intensity therapeutic ultrasound. Using polydiacetylene liposomes, we fabricated agar-based polydiacetylene hydrogel phantoms (PHPs) that not only respond to temperature, but also have acoustic properties similar to those of human liver tissue. The color of PHPs changed from blue to red depending on the temperature in the range 40°C-70°C, where the red/blue ratio of PHP had a good linearity of 99.06% for the temperature changes. Furthermore, repeated high-intensity focused ultrasound led to histotripsy on the PHP with liquefied and damaged areas measuring 0.7 and 4.0 cm2, respectively, at the signal generator amplitude setting voltage of 80 mV. Our results indicate not only the usability of the thermochromic phantom, but also its potential for evaluating non-thermal phenomena in various high-intensity focused ultrasound therapies.
Collapse
Affiliation(s)
- Yong Tae Kim
- Center for Medical Convergence Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea; Department of Medical Physics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Donghee Ma
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Jai Kyoung Sim
- Center for Medical Convergence Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Se-Hwa Kim
- Department of Medical Physics, Korea University of Science and Technology, Daejeon, Republic of Korea; Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Kothapalli SVVN, Altman MB, Partanen A, Wan L, Gach HM, Straube W, Hallahan DE, Chen H. Acoustic field characterization of a clinical magnetic resonance-guided high-intensity focused ultrasound system inside the magnet bore. Med Phys 2017. [PMID: 28626862 DOI: 10.1002/mp.12412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE With the expanding clinical application of magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU), acoustic field characterization of MR-HIFU systems is needed for facilitating regulatory approval and ensuring consistent and safe power output of HIFU transducers. However, the established acoustic field measurement techniques typically use equipment that cannot be used in a magnetic resonance imaging (MRI) suite, thus posing a challenge to the development and execution of HIFU acoustic field characterization techniques. In this study, we developed and characterized a technique for HIFU acoustic field calibration within the MRI magnet bore, and validated the technique with standard hydrophone measurements outside of the MRI suite. METHODS A clinical Philips MR-HIFU system (Sonalleve V2, Philips, Vantaa, Finland) was used to assess the proposed technique. A fiber-optic hydrophone with a long fiber was inserted through a 24-gauge angiocatheter and fixed inside a water tank that was placed on the HIFU patient table above the acoustic window. The long fiber allowed the hydrophone control unit to be placed outside of the magnet room. The location of the fiber tip was traced on MR images, and the HIFU focal point was positioned at the fiber tip using the MR-HIFU therapy planning software. To perform acoustic field mapping inside the magnet, the HIFU focus was positioned relative to the fiber tip using an MRI-compatible 5-axis robotic transducer positioning system embedded in the HIFU patient table. To perform validation measurements of the acoustic fields, the HIFU table was moved out of the MRI suite, and a standard laboratory hydrophone measurement setup was used to perform acoustic field measurements outside the magnetic field. RESULTS The pressure field scans along and across the acoustic beam path obtained inside the MRI bore were in good agreement with those obtained outside of the MRI suite. At the HIFU focus with varying nominal acoustic powers of 10-500 W, the peak positive pressure and peak negative pressure measured inside the magnet bore were 3.87-68.67 MPa and 3.56-12.06 MPa, respectively, while outside the MRI suite the corresponding pressures were 3.27-67.32 MPa and 3.06-12.39 MPa, respectively. There was no statistically significant difference (P > 0.05) between measurements inside the magnet bore and outside the MRI suite for the p+ and p- at any acoustic power level. The spatial-peak pulse-average intensities (ISPPA ) for these powers were 312-17816 W/cm2 and 220-15698 W/cm2 for measurements inside and outside the magnet room, respectively. In addition, when the scanning step size of the HIFU focus was increased from 100 μm to 500 μm, the execution time for scanning a 4 × 4 mm2 area decreased from 210 min to 10 min, the peak positive pressure decreased by 14%, the peak negative pressure decreased by 5%, and the lateral full width at half maximum dimension of pressure profiles increased from 1.15 mm to 1.55 mm. CONCLUSIONS The proposed hydrophone measurement technique offers a convenient and reliable method for characterizing the acoustic fields of clinical MR-HIFU systems inside the magnet bore. The technique was validated for use by measurements outside the MRI suite using a standard hydrophone calibration technique. This technique can be a useful tool in MR-HIFU quality assurance and acoustic field assessment.
Collapse
Affiliation(s)
- Satya V V N Kothapalli
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Michael B Altman
- Department of Radiation Oncology, Washington University in St. Louis, Saint Louis, MO, 63108, USA
| | - Ari Partanen
- Clinical Science MR Therapy, Philips, Andover, MA, 01810, USA
| | - Leighton Wan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - H Michael Gach
- Departments of Radiation Oncology and Radiology, Washington University in St. Louis, Saint Louis, MO, 63108, USA
| | - William Straube
- Department of Radiation Oncology, Washington University in St. Louis, Saint Louis, MO, 63108, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University in St. Louis, Saint Louis, MO, 63108, USA
| | - Hong Chen
- Departments of Biomedical Engineering and Radiation Oncology, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| |
Collapse
|
4
|
Mikhail AS, Negussie AH, Graham C, Mathew M, Wood BJ, Partanen A. Evaluation of a tissue-mimicking thermochromic phantom for radiofrequency ablation. Med Phys 2017; 43:4304. [PMID: 27370145 DOI: 10.1118/1.4953394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This work describes the characterization and evaluation of a tissue-mimicking thermochromic phantom (TMTCP) for direct visualization and quantitative determination of temperatures during radiofrequency ablation (RFA). METHODS TMTCP material was prepared using polyacrylamide gel and thermochromic ink that permanently changes color from white to magenta when heated. Color vs temperature calibration was generated in matlab by extracting RGB color values from digital photographs of phantom standards heated in a water bath at 25-75 °C. RGB and temperature values were plotted prior to curve fitting in mathematica using logistic functions of form f(t) = a + b/(1 + e((c(t-d)))), where a, b, c, and d are coefficients and t denotes temperature. To quantify temperatures based on TMTCP color, phantom samples were heated to temperatures blinded to the investigators, and two methods were evaluated: (1) visual comparison of sample color to the calibration series and (2) in silico analysis using the inverse of the logistic functions to convert sample photograph RGB values to absolute temperatures. For evaluation of TMTCP performance with RFA, temperatures in phantom samples and in a bovine liver were measured radially from an RF electrode during heating using fiber-optic temperature probes. Heating and cooling rates as well as the area under the temperature vs time curves were compared. Finally, temperature isotherms were generated computationally based on color change in bisected phantoms following RFA and compared to temperature probe measurements. RESULTS TMTCP heating resulted in incremental, permanent color changes between 40 and 64 °C. Visual and computational temperature estimation methods were accurate to within 1.4 and 1.9 °C between 48 and 67 °C, respectively. Temperature estimates were most accurate between 52 and 62 °C, resulting in differences from actual temperatures of 0.6 and 1.6 °C for visual and computational methods, respectively. Temperature measurements during RFA using fiber-optic probes matched closely with maximum temperatures predicted by color changes in the TMTCP. Heating rate and cooling rate, as well as the area under the temperature vs time curve were similar for TMTCP and ex vivo liver. CONCLUSIONS The TMTCP formulated for use with RFA can be used to provide quantitative temperature information in mild hyperthermic (40-45 °C), subablative (45-50 °C), and ablative (>50 °C) temperature ranges. Accurate visual or computational estimates of absolute temperatures and ablation zone geometry can be made with high spatial resolution based on TMTCP color. As such, the TMTCP can be used to assess RFA heating characteristics in a controlled, predictable environment.
Collapse
Affiliation(s)
- Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Ayele H Negussie
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Cole Graham
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Manoj Mathew
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Ari Partanen
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 and Clinical Science MR Therapy, Philips, Andover, Massachusetts 01810
| |
Collapse
|
5
|
Negussie AH, Partanen A, Mikhail AS, Xu S, Abi-Jaoudeh N, Maruvada S, Wood BJ. Thermochromic tissue-mimicking phantom for optimisation of thermal tumour ablation. Int J Hyperthermia 2016; 32:239-43. [PMID: 27099078 DOI: 10.3109/02656736.2016.1145745] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose The purpose of this study was to (1) develop a novel tissue-mimicking thermochromic (TMTC) phantom that permanently changes colour from white to magenta upon heating above ablative temperatures, and (2) assess its utility for specific applications in evaluating thermal therapy devices. Materials and methods Polyacrylamide gel mixed with thermochromic ink was custom made to produce a TMTC phantom that changes its colour upon heating above biological ablative temperatures (> 60 °C). The thermal properties of the phantom were characterised, and compared to those of human tissue. In addition, utility of this phantom as a tool for the assessment of laser and microwave thermal ablation was examined. Results The mass density, thermal conductivity, and thermal diffusivity of the TMTC phantom were measured as 1033 ± 1.0 kg/m(3), 0.590 ± 0.015 W/m.K, and 0.145 ± 0.002 mm(2)/s, respectively, and found to be in agreement with reported values for human soft tissues. Heating the phantom with laser and microwave ablation devices produced clearly demarcated regions of permanent colour change geographically corresponding to regions with temperature elevations above 60 °C. Conclusion The TMTC phantom provides direct visualisation of ablation dynamics, including ablation volume and geometry as well as peak absolute temperatures within the treated region post-ablation. This phantom can be specifically tailored for different thermal therapy modalities, such as radiofrequency, laser, microwave, or therapeutic ultrasound ablation. Such modality-specific phantoms may enable better quality assurance, device characterisation, and ablation parameter optimisation, or optimise the study of dynamic heating parameters integral to drug device combination therapies relying upon heat.
Collapse
Affiliation(s)
- Ayele H Negussie
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD
| | - Ari Partanen
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD ;,b Clinical Science MR Therapy, Philips , Andover , MA
| | - Andrew S Mikhail
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD
| | - Sheng Xu
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD
| | - Nadine Abi-Jaoudeh
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD
| | - Subha Maruvada
- c US Food and Drug Administration , Silver Spring , MD , USA
| | - Bradford J Wood
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD
| |
Collapse
|