1
|
Lin TC, Yang YR, Nguyen QK, Chiu MC, Yen HM, Chen KH, Chuang SH. The significance of slowly biodegradable COD on denitrification in the OAO process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124805. [PMID: 40043569 DOI: 10.1016/j.jenvman.2025.124805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/04/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
The capacity of particulate organic matter to act as a carbon source for denitrification is a significant concern in wastewater treatment facilities. The biodegradability of particulate matter is essential to its applicability. This research aims to ascertain the role of particulate organic matter in denitrification by classifying COD, conducting pre and post denitrification tests, and analyzing the oxygen utilization rate (OUR) profile of respiration. A pilot plant was established and operated utilizing an Oxic-Anoxic-Oxic (OAO) system throughout four different loading stages, with unsettled raw wastewater as the influent. Following prolonged operation, the best removal efficiencies of OAO process for TCOD, BOD, TN, and NH4+-N were 87.7 ± 5.3%, 90.1 ± 7.2%, 61.5 ± 7.3%, and 99.5 ± 0.2%, respectively. The COD classification of raw wastewater showed that readily biodegradable COD (RBCOD) makes up about 12.6% ± 3.8% of total COD (TCOD), while slowly biodegradable COD (SBCOD) makes up 45.6 ± 11.2% of TCOD. This could contribute to the explanation of the system's denitrification effectiveness. The post-specific denitrification rate was in the range of 0.32-0.70 mg NO3--N/gMLVSS.hr, which was higher than the endogenous denitrification. Furthermore, the observed re-increase in OUR tests explained the hydrolysis phenomena of SBCOD and demonstrated the viability of using adsorbed SBCOD as a carbon source for denitrification in the OAO process.
Collapse
Affiliation(s)
- Tzu-Chuan Lin
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - You-Ren Yang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Quoc Khanh Nguyen
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Ming-Chi Chiu
- National Land Management Agency, Ministry of the Interior, Taipei City, 105404, Taiwan
| | - Hui-Min Yen
- Sewer Engineering Branch, National Land Management Agency, Ministry of the Interior, New Taipei, 24249, Taiwan
| | - Kao-Hsiao Chen
- Sewer Engineering Branch, National Land Management Agency, Ministry of the Interior, New Taipei, 24249, Taiwan
| | - Shun-Hsing Chuang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan.
| |
Collapse
|
2
|
Ahmer MF, Uddin MK. Structure properties and industrial applications of anion exchange resins for the removal of electroactive nitrate ions from contaminated water. RSC Adv 2024; 14:33629-33648. [PMID: 39444944 PMCID: PMC11497218 DOI: 10.1039/d4ra03871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
The presence of nitrates in lakes, rivers, and groundwater is common. Anion exchange resins (AER) are polymeric structures that contain functional groups as well as a variety of particle sizes that are used for removing nitrate ions from solutions. This article provides a concise review of the types and properties of AER, synthesis methods, characterization, and environmental applications of AER. It discusses how different factors affect the adsorption process, isotherm and kinetic parameters, the adsorption mechanism, and the maximum adsorption capacities. Additionally, the present review addresses AER's regeneration and practical stability. It emphasizes the progress and proposes future strategies for addressing nitrate pollution using AER to overcome the challenges. This review aims to act as a reference for researchers working in the advancement of ion exchange resins and presents a clear and concise scientific analysis of the use of AER in nitrate adsorption. It is evident from the literature survey that AER is highly effective at removing nitrate ions from wastewater effluents.
Collapse
Affiliation(s)
- Mohammad Faraz Ahmer
- Department of Electrical and Electronics Engineering, Mewat Engineering College, Gurugram University Nuh 122107 Haryana India
| | - Mohammad Kashif Uddin
- Department of Chemistry, College of Science, Majmaah University Al-Zulfi Campus Al-Majmaah 11952 Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Zhang L, Liu H, Wang Y, Wang Q, Pan W, Tang Z, Chen Y. Transition from sulfur autotrophic to mixotrophic denitrification: Performance with different carbon sources, microbial community and artificial neural network modeling. CHEMOSPHERE 2024; 366:143432. [PMID: 39357655 DOI: 10.1016/j.chemosphere.2024.143432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
To address the limitations inherent in both sulfur autotrophic denitrification (SAD) and heterotrophic denitrification (HD) processes, this study introduces a novel approach. Three carbon sources (glucose, methanol, and sodium acetate) were fed into the SAD system to facilitate the transition towards mixotrophic denitrification. Batch experiments were conducted to explore the effects of influencing factors (pH, HRT) on the denitrification performance of the mixotrophic system. Carbon source dosages were varied at 12.5%, 25%, and 50% of the theoretical amounts required for HD (18, 36, and 72 mg/L, respectively). The results showed distinct optimal dosages for each of the three organic carbon sources. The mixotrophic system, initiated with sodium acetate at 25% of the theoretical value, demonstrated the highest denitrification performance, achieving NO3--N removal efficiency of 99.8% and the NRR of 6.25 mg/(L·h). In contrast, the corresponding systems utilizing glucose (at 25% of the theoretical value) and methanol (at 50% of the theoretical value) achieved lower removal efficiency of 77.0% and 88.4%, respectively. The corresponding NRRs were 4.85 mg/(L·h) and 5.65 mg/(L·h). Following the transition from SAD to a mixotrophic system, the abundance of Thiobacillus decreased from 78.5% to 34.4% at the genus level, and the mixotrophic system cultivated a variety of other denitrifying bacteria (Thauera, Aquimonas, Azoarcus, and Pseudomonas), indicating an enhanced microbial community structure diversity. The established artificial neural network (ANN) model accurately predicted the effluent quality of mixotrophic denitrification, which predicted values closely aligning with experimental results (R2 > 0.9). Furthermore, initial pH exerted greater relative importance for COD removal and sulfur conversion, while the relative importance of HRT was more pronounced for NO3--N removal.
Collapse
Affiliation(s)
- Li Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yunxia Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Qi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Wentao Pan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Zhiqiang Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Xiong Y, Wang Y, Tsang CC, Zhou J, Hao F, Liu F, Wang J, Xi S, Zhao J, Fan Z. Metal Doped Unconventional Phase IrNi Nanobranches: Tunable Electrochemical Nitrate Reduction Performance and Pollutants Upcycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10863-10873. [PMID: 38842426 DOI: 10.1021/acs.est.4c04014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Electrochemical nitrate reduction (NO3RR) provides a new option to abate nitrate contamination with a low carbon footprint. Restricted by competitive hydrogen evolution, achieving satisfied nitrate reduction performance in neutral media is still a challenge, especially for the regulation of this multielectron multiproton reaction. Herein, facile element doping is adopted to tune the catalytic behavior of IrNi alloy nanobranches with an unconventional hexagonal close-packed (hcp) phase toward NO3RR. In particular, the obtained hcp IrNiCu nanobranches favor the ammonia production and suppress byproduct formation in a neutral electrolyte indicated by in situ differential electrochemical mass spectrometry, with a high Faradaic efficiency (FE) of 85.6% and a large yield rate of 1253 μg cm-2 h-1 at -0.4 and -0.6 V (vs reversible hydrogen electrode (RHE)), respectively. In contrast, the resultant hcp IrNiCo nanobranches promote the formation of nitrite, with a peak FE of 33.1% at -0.1 V (vs RHE). Furthermore, a hybrid electrolysis cell consisting of NO3RR and formaldehyde oxidation is constructed, which are both catalyzed by hcp IrNiCu nanobranches. This electrolyzer exhibits lower overpotential and holds the potential to treat polluted air and wastewater simultaneously, shedding light on green chemical production based on contaminate degradation.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Chi Ching Tsang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833, Singapore
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
5
|
Askari MJ, Kallick JD, McCrory CCL. Selective Reduction of Aqueous Nitrate to Ammonium with an Electropolymerized Chromium Molecular Catalyst. J Am Chem Soc 2024; 146:7439-7455. [PMID: 38465608 DOI: 10.1021/jacs.3c12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Nitrate (NO3-) is a common nitrogen-containing contaminant in agricultural, industrial, and low-level nuclear wastewater that causes significant environmental damage. In this work, we report a bioinspired Cr-based molecular catalyst incorporated into a redox polymer that selectively and efficiently reduces aqueous NO3- to ammonium (NH4+), a desirable value-added fertilizer component and industrial precursor, at rates of ∼0.36 mmol NH4+ mgcat-1 h-1 with >90% Faradaic efficiency for NH4+. The NO3- reduction reaction occurs through a cascade catalysis mechanism involving the stepwise reduction of NO3- to NH4+ via observed NO2- and NH2OH intermediates. To our knowledge, this is one of the first examples of a molecular catalyst, homogeneous or heterogenized, that is reported to reduce aqueous NO3- to NH4+ with rates and Faradaic efficiencies comparable to those of state-of-the-art solid-state electrocatalysts. This work highlights a promising and previously unexplored area of electrocatalyst research using polymer-catalyst composites containing complexes with oxophilic transition metal active sites for electrochemical nitrate remediation with nutrient recovery.
Collapse
Affiliation(s)
- Maiko J Askari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeremy D Kallick
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles C L McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Zhang J, Xia Z, Wei Q, Luo F, Jiang Z, Ao Z, Chen H, Niu X, Liu GH, Qi L, Wang H. Exploratory study on the metabolic similarity of denitrifying carbon sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19961-19973. [PMID: 38368299 DOI: 10.1007/s11356-024-32487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Mixed carbon sources have been developed for denitrification to eliminate the "carbon dependency" problem of single carbon. The metabolic correlation between different carbon sources is significant as guidance for the development of novel mixed carbon sources. In this study, to explore the metabolic similarity of denitrifying carbon sources, we selected alcohols (methanol, ethanol, and glycerol) and saccharide carbon sources (glucose, sucrose, and starch). Batch denitrification experiments revealed that methanol-acclimated sludge improved the denitrification rate of both methanol (14.42 mg-N/gMLVSS*h) and ethanol (9.65 mg-N/gMLVSS*h), whereas ethanol-acclimated sludge improved the denitrification rate of both methanol (7.80 mg-N/gMLVSS*h) and ethanol (22.23 mg-N/gMLVSS*h). In addition, the glucose-acclimated sludge and sucrose-acclimated sludge possibly improved the denitrification rate of glucose and sucrose, and the glycerol-acclimated sludge improved the denitrification rate of volatile fatty acids (VFAs), alcohols, and saccharide carbon sources. Functional gene analysis revealed that methanol, ethanol, and glycerol exhibited active alcohol oxidation and glyoxylate metabolism, and glycerol, glucose, and sucrose exhibited active glycolysis metabolism. This indicated that the similarity in the denitrification metabolism of these carbon sources was based on functional gene similarity, and glycerol-acclimated sludge exhibited the most diverse metabolism, which ensured its good denitrification effect with other carbon sources.
Collapse
Affiliation(s)
- Jinsen Zhang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Zhiheng Xia
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Qi Wei
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Fangzhou Luo
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Zhao Jiang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Ziding Ao
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Huiling Chen
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Xiaoxu Niu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Guo-Hua Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Lu Qi
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Hongchen Wang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
7
|
Cruces M, Suárez J, Nancucheo I, Schwarz A. Optimization of the chemolithotrophic denitrification of ion exchange concentrate using hydrogen-based membrane biofilm reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119283. [PMID: 37839208 DOI: 10.1016/j.jenvman.2023.119283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A H2-based membrane biofilm reactor (MBfR) was used to remove nitrate from a synthetic ion-exchange brine made up of 23.8 g L-1 NaCl. To aid the selection of the best nitrate management strategy, our research was based on the integrated analysis of ionic exchange and MBfR processes, including a detailed cost analysis. The nitrate removal flux was not affected if key nutrients were present in the feed solution including potassium and sodium bicarbonate. Operating pH was maintained between 7 and 8. By using a H2 pressure of 15 psi, a hydraulic retention time (HRT) of 4 h, and a surface loading rate of 13.6 ± 0.2 g N m-2 d-1, the average nitrate removal flux was 3.3 ± 0.6 g N m-2 d-1. At HRTs of up to 24 h, the system was able to maintain a removal flux of 1.6 ± 0.2 g N m-2 d-1. Microbial diversity analysis showed that the consortium was dominated by the genera Sulfurimonas and Marinobacter. The estimated cost for a 200 m3/h capacity, coupled ion exchange (IX) + MBfR treatment plant is 0.43 USD/m3. This is a sustainable and competitive alternative to an IX-only plant for the same flowrate. The proposed treatment option allows for brine recycling and reduces costs by 55% by avoiding brine disposal expenses.
Collapse
Affiliation(s)
- Matias Cruces
- Departamento de Ingeniería Civil, Universidad de Concepción, P.O. Box 160-C, Concepción, 4070386, Chile
| | - José Suárez
- Departamento de Ingeniería Civil, Universidad de Concepción, P.O. Box 160-C, Concepción, 4070386, Chile
| | - Iván Nancucheo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile
| | - Alex Schwarz
- Departamento de Ingeniería Civil, Universidad de Concepción, P.O. Box 160-C, Concepción, 4070386, Chile.
| |
Collapse
|
8
|
Shao L, Wang D, Chen G, Zhao X, Fan L. Advance in the sulfur-based electron donor autotrophic denitrification for nitrate nitrogen removal from wastewater. World J Microbiol Biotechnol 2023; 40:7. [PMID: 37938419 DOI: 10.1007/s11274-023-03802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
In the field of wastewater treatment, nitrate nitrogen (NO3--N) is one of the significant contaminants of concern. Sulfur autotrophic denitrification technology, which uses a variety of sulfur-based electron donors to reduce NO3--N to nitrogen (N2) through sulfur autotrophic denitrification bacteria, has emerged as a novel nitrogen removal technology to replace heterotrophic denitrification in the field of wastewater treatment due to its low cost, environmental friendliness, and high nitrogen removal efficiency. This paper reviews the advance of reduced sulfur compounds (such as elemental sulfur, sulfide, and thiosulfate) and iron sulfides (such as ferrous sulfide, pyrrhotite, and pyrite) electron donors for treating NO3--N in wastewater by sulfur autotrophic denitrification technology, including the dominant bacteria types and the sulfur autotrophic denitrification process based on various electron donors are introduced in detail, and their operating costs, nitrogen removal performance and impacts on the ecological environment are analyzed and compared. Moreover, the engineering applications of sulfur-based electron donor autotrophic denitrification technology were comprehensively summarized. According to the literature review, the focus of future industry research were discussed from several aspects as well, which would provide ideas for the application and optimization of the sulfur autotrophic denitrification process for deep and efficient removal of NO3--N in wastewater.
Collapse
Affiliation(s)
- Lixin Shao
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Dexi Wang
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Gong Chen
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, 111000, China
| | - Xibo Zhao
- Weihai Baike Environmental Protection Engineering Co., Ltd., Weihai, 264200, China
| | - Lihua Fan
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, 111000, China.
| |
Collapse
|
9
|
Keithley AE, Woodruff P, Williams DJ, Dugan NR, Lytle DA. Nitrogen-sparging assisted anoxic biological drinking water treatment system. AWWA WATER SCIENCE 2023; 5:1-14. [PMID: 38268712 PMCID: PMC10805249 DOI: 10.1002/aws2.1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/25/2023] [Indexed: 01/26/2024]
Abstract
Existing heterotrophic denitrification reactors rely on microorganisms to consume dissolved oxygen (DO) and create conditions suitable for denitrification, but this practice leads to excessive microbial growth and increased organic carbon doses. An innovative reactor that uses nitrogen gas sparging through a contactor to strip DO was developed and tested in the lab. It reduced influent nitrate from 15 to <1 mg/L as N with nitrite accumulation <1 mg/L as N. It maintained a consistent flow rate and developed minimal headloss, making it easier to operate than the denitrifying dual-media filter that was operated in parallel. Gravel, polyvinyl chloride pieces, and no packing media were assessed as options for the nitrogen-sparged contactor, and gravel was found to support denitrification at the highest loading rate and was resilient to nitrogen-sparging shutoffs and intermittent operation. This innovative reactor appears promising for small drinking water systems.
Collapse
Affiliation(s)
- Asher E. Keithley
- U.S. Environmental Protection Agency, Office of Research & Development, Cincinnati, Ohio, USA
| | - Peyton Woodruff
- Oak Ridge Institute for Science and Education (ORISE) intern at U.S. Environmental Protection Agency, Office of Research & Development, Cincinnati, Ohio, USA
| | - Daniel J. Williams
- U.S. Environmental Protection Agency, Office of Research & Development, Cincinnati, Ohio, USA
| | - Nicholas R. Dugan
- U.S. Environmental Protection Agency, Office of Research & Development, Cincinnati, Ohio, USA
| | - Darren A. Lytle
- U.S. Environmental Protection Agency, Office of Research & Development, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Saedi Y, Batista JR, Britto R, Grady D. Impacts of co-contaminants and dilution on perchlorate biodegradation using various carbon sources. Biodegradation 2023; 34:301-323. [PMID: 36598629 DOI: 10.1007/s10532-022-10013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
This research investigates the biodegradation of perchlorate in the presence of the co-contaminants nitrate and chlorate using soluble and slow-release carbon sources. In addition, the impact of bio-augmentation and dilution, which results in lower total dissolved salts (TDS) and contaminant levels, is examined. Laboratory microcosms were conducted using actual groundwater and soils from a contaminated aquifer. The results revealed that both soluble and slow-release carbon sources support biodegradation of contaminants in the sequence nitrate > chlorate > perchlorate. Degradation rates, including and excluding lag times, revealed that the overall impact of the presence of co-contaminants depends on degradation kinetics and the relative concentrations of the contaminants. When the lag time caused by the presence of the co-contaminants is considered, the degradation rates for chlorate and perchlorate were two to three times slower. The results also show that dilution causes lower initial contaminant concentrations, and consequently, slower degradation rates, which is not desirable. On the other hand, the dilution resulting from the injection of amendments to support remediation promotes desirably lower salinity levels. However, the salinity associated with the presence of sulfate does not inhibit biodegradation. The naturally occurring bacteria were able to support the degradation of all contaminants. Bio-augmentation was effective only in diluted microcosms. Proteobacteria and Firmicutes were the dominant phyla identified in the microcosms.
Collapse
Affiliation(s)
- Yasaman Saedi
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV, 89154-4015, USA
| | - Jacimaria R Batista
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV, 89154-4015, USA.
| | - Ronnie Britto
- Tetra Tech Inc, 720 Coleherne Road, Collierville, TN, 38017, USA
| | - Dana Grady
- Tetra Tech Inc, 720 Coleherne Road, Collierville, TN, 38017, USA
| |
Collapse
|
11
|
Benekos AK, Vasiliadou IA, Tekerlekopoulou AG, Alexandropoulou M, Pavlou S, Katsaounis A, Vayenas DV. Groundwater denitrification using a continuous flow mode hybrid system combining a hydrogenotrophic biofilter and an electrooxidation cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117914. [PMID: 37086640 DOI: 10.1016/j.jenvman.2023.117914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
An attached-growth continuous flow hydrogenotrophic denitrification system was investigated for groundwater treatment. Two bench-scale packed-bed reactors were used in series, without external pH adjustment or carbon source addition, while inorganic carbonate salts already contained in the groundwater were the sole carbon source used by the denitrifying bacteria. The hydrogen was produced by water electrolysis using renewable energy sources thus minimizing resource-draining factors of the treatment process. The biofilter was subjected to a combination of three groundwater retention times (13.5, 27 and 54 min, corresponding to 20, 10 and 5 mL min-1 inlet water flow rates) and two hydrogen flow values (10 and 20 mL min-1) to evaluate its efficiency under different operating parameters. In all cases, significant nitrate percentage removals were achieved, ranged between 64.1% and 100%. The treatment process appears to slow down with lower retention times and H2 flow rate values, although residual nitrate concentrations were always in the range of 0-5.1 mg L-1, values below the maximum permitted limit of 11.3 mg L-1. In cases where nitrite accumulation was detected, a continuous flow electrochemical oxidation process with three different current density values (5.0, 7.5 and 10.0 mA cm-2) was examined as a post-treatment step aiming to completely remove the toxic nitrite anions. Finally, an advanced mathematical model of the attached growth hydrogenotrophic denitrification process was developed to predict concentrations of all the substrates examined in the bio-filter (nitrate, nitrite, inorganic carbon and hydrogen).
Collapse
Affiliation(s)
- Andreas K Benekos
- Department of Chemical Engineering, University of Patras, Rio, GR-26504, Patras, Greece
| | - Ioanna A Vasiliadou
- Department of Civil Engineering, Democritus University of Thrace, GR-67100, Xanthi, Greece.
| | | | - Maria Alexandropoulou
- Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, GR-26504 Patras, Greece
| | - Stavros Pavlou
- Department of Chemical Engineering, University of Patras, Rio, GR-26504, Patras, Greece; Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, GR-26504 Patras, Greece
| | - Alexandros Katsaounis
- Department of Chemical Engineering, University of Patras, Rio, GR-26504, Patras, Greece
| | - Dimitris V Vayenas
- Department of Chemical Engineering, University of Patras, Rio, GR-26504, Patras, Greece; Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, GR-26504 Patras, Greece
| |
Collapse
|
12
|
Zhang M, Li K, Wang P, Gu W, Huang H, Xie B. Comparative insight into the effects of different carbon source supplement on antibiotic resistance genes during whole-run and short-cut nitrification-denitrification processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27412-4. [PMID: 37249772 DOI: 10.1007/s11356-023-27412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/30/2023] [Indexed: 05/31/2023]
Abstract
Mature landfill leachate is known for nitrogen-removal challenging and meantime was considered as an important sink of antibiotic resistance genes (ARGs). The added external carbon sources, enabling the short-cut nitrification and denitrification, may facilitate the proliferation of bacteria that possibly carry ARGs. However, this speculation has yet to be studied. Here, we explored the effects of glucose, sodium acetate, and methanol supplements on ARGs during whole-run and short-cut treatment processes. The results showed that sodium acetate supplement during short-cut process efficiently reduced the abundances of total ARGs (0.84-1.99 copies/16S rRNA) and integrons (0.59-1.20 copies/16S rRNA), which were highly enhanced by methanol addition during whole-run treatment process (total ARGs: 3.60-11.01 copies/16S rRNA, integrons: 1.20-4.69 copies/16S rRNA). Indirect gradient analysis showed that the variation of ARGs was not correlated with the supplement of different external carbon source. Correlation analysis indicated that dominant intl1 (55.99 ± 17.61% of integrons) showed positively significant correlations with all detected ARGs expect for sul2 and ermB (p < 0.05), suggesting the significant role on ARGs dissemination. Redundancy analysis illustrated that the potential hosts of intl1, intl2, sul1, tetQ, tetM, mefA, and mexF were dominant Bacteroidetes and Actinobacteria. Interestingly, the numbers and significant extent of correlations under the supplement of sodium acetate during short-cut denitrification process were obviously declined, and it was in accordance with ARGs reduced by sodium acetate supplement, suggesting sodium acetate displayed the efficient ARGs reduction during short-cut process. In summary, this study provides a comparative understanding of the effects on ARGs by different carbon source supplements during nitrification-denitrification processes of leachate; sodium acetate is the optimal carbon source.
Collapse
Affiliation(s)
- Meilan Zhang
- The State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Laogang Waste Disposal Co., Shanghai, 201302, People's Republic of China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Wenchao Gu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Huang Huang
- Shanghai Laogang Waste Disposal Co., Shanghai, 201302, People's Republic of China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
13
|
Chen KL, Ahmad MS, Chen CL. Enhanced nitrate reduction over functionalized Pd/Cu electrode with tunable conversion to nitrogen and sodium hydroxide recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161849. [PMID: 36716879 DOI: 10.1016/j.scitotenv.2023.161849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Development of heteroatomic electrocatalysts with a particular geometric structure for wastewater denitrification remains a formidable challenge. Herein, we reported the fabrication of a series of PdCu electrodes with Pd electrodeposition times varying from 60 s to 360 s. Physiochemical and electrochemical techniques were used to analyze the structure, morphology and activity of as prepared catalytic electrodes. XRD data revealed the formation of a PdCu alloy, while a reduced particle sizes (ca. 5.3 nm) and a uniform distribution of Pd over Cu was demonstrated by TEM. The XPS measurement indicated the presence of redox (Pd0 and Cu+2) states hence demonstrating the formation of a PdCu alloy. A nitrate removal efficiency of ~98 %, N2 selectivity ~86 % with an alkali recovery of 335 mM was obtained over Pd/Cu 180 s at 0.68 mA cm-2. Enhanced nitrate reducibility and extended durability reveal the viability of a novel electrocatalytic and electrodialysis system for degrading NO3- in water, as well as a system for efficiently recovering liquid alkali.
Collapse
Affiliation(s)
- Kuan-Ling Chen
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Muhammad Sheraz Ahmad
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Ching-Lung Chen
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
14
|
Kong Z, Wang H, Yan G, Yan Q, Kim JR. Limited dissolved oxygen facilitated nitrogen removal at biocathode during the hydrogenotrophic denitrification process using bioelectrochemical system. BIORESOURCE TECHNOLOGY 2023; 372:128662. [PMID: 36693505 DOI: 10.1016/j.biortech.2023.128662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Effects of limited dissolved oxygen (DO) on hydrogenotrophic denitrification at biocathode was investigated using bioelectrochemical system. It was found that total nitrogen removal increased by 5.9%, as DO reached about 0.24 mg/L with the cathodic chamber unplugged (group R_Exposure). With the presence of limited DO, not only the nitrogen metabolic pathway was influenced, but the composition of microbial communities of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were enriched accordingly. After metagenomic analysis, enriched genes in R_Exposure were found to be associated with nearly each of nitrogen removal steps as denitrification, nitrification, DNRA, nitrate assimilation and even nitrogen fixation. Moreover, genes encoding both Complexes III and IV constituted the electron transfer chain were significantly enriched, indicating that more electrons would be orientated to the reduction of NO2--N, NO-N and oxygen. Therefore, enhanced nitrogen removal could be attained through the co-respiration of nitrate and oxygen by means of NH4+-N oxidation.
Collapse
Affiliation(s)
- Ziang Kong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Guoliang Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing 100083, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| |
Collapse
|
15
|
Nitrates Removal from Simulated Groundwater Using Nano Zerovalent Iron Supported by Polystyrenic Gel. Polymers (Basel) 2022; 15:polym15010061. [PMID: 36616410 PMCID: PMC9823507 DOI: 10.3390/polym15010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The main objectives of this present paper were to indicate the immobilization of nano zerovalent iron (nZVI) onto a polymeric material (Purolite A400) and the synthesis of the polymeric material (A400-nZVI) through sodium borohydride (NaBH4) reduction. The obtained polymeric material (A400-nZVI) was used for the nitrate ions removal from a simulated groundwater at different conditions. The polymeric materials, without and with nano zerovalent iron (A400 and A400-nZVI), were characterized trough the FTIR, SEM-EDAX, XRD, and TGA analysis. The analysis confirmed the presence of nano zerovalent iron (nZVI) onto the polymeric material (A400). The adsorption capacity of A400-nZVI, used as polymeric adsorbent, was evaluated by kinetic and thermodynamic studies. The obtained experimental results indicated that the nitrate ions reduction was fitted well by models: pseudo-second-order kinetic and Freundlich isotherm. According to the kinetic model results, a reaction mechanism could exist in the stage of reactions. The higher value of removal nitrate (>80%) was obtained under acidic condition. The results indicated that the obtained polymeric material (A400-nZVI) can be considered as a potential polymeric adsorbent for different pollutants from groundwater and wastewater.
Collapse
|
16
|
Gevod V, Chernova A, Kovalenko I. Use of Auto-Induced Surfactants for Clarification of Biodenitrified Water by Bubble-Film Extraction Method. CHEMISTRY & CHEMICAL TECHNOLOGY 2022. [DOI: 10.23939/chcht16.04.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The process of getting clarified denitrified water in a biofilter used combined methods of displacement (piston) biofiltration and bubble-film extraction is studied. It is shown the products of bacterial metabolism released into the water at biofiltration have surfactant properties. They can serve as collectors of the dispersed phase to achieve the desired degree of clarification of water when using bubble-film extraction. The turbidity of the resulting denitrified water does not exceed sanitary and hygienic limits. The concentration of biosurfactants is also significantly reduced.
Collapse
|
17
|
Sun J, Garg S, Xie J, Zhang C, Waite TD. Electrochemical Reduction of Nitrate with Simultaneous Ammonia Recovery Using a Flow Cathode Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17298-17309. [PMID: 36394539 DOI: 10.1021/acs.est.2c06033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The presence of excessive concentrations of nitrate in industrial wastewaters, agricultural runoff, and some groundwaters constitutes a serious issue for both environmental and human health. As a result, there is considerable interest in the possibility of converting nitrate to the valuable product ammonia by electrochemical means. In this work, we demonstrate the efficacy of a novel flow cathode system coupled with ammonia stripping for effective nitrate removal and ammonia generation and recovery. A copper-loaded activated carbon slurry (Cu@AC), made by a simple, low-cost wet impregnation method, is used as the flow cathode in this novel electrochemical reactor. Use of a 3 wt % Cu@AC suspension at an applied current density of 20 mA cm-2 resulted in almost complete nitrate removal, with 97% of the nitrate reduced to ammonia and 70% of the ammonia recovered in the acid-receiving chamber. A mathematical kinetic model was developed that satisfactorily describes the kinetics and mechanism of the overall nitrate electroreduction process. Minimal loss of Cu to solution and maintenance of nitrate removal performance over extended use of Cu@AC flow electrode augers well for long-term use of this technology. Overall, this study sheds light on an efficient, low-cost water treatment technology for simultaneous nitrate removal and ammonia generation and recovery.
Collapse
Affiliation(s)
- Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Jiangzhou Xie
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province214206, P. R. China
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province214206, P. R. China
| |
Collapse
|
18
|
Zhang N, Sun YL, Yao BM, Zhang B, Cheng HY. Insight into the shaping of microbial communities in element sulfur-based denitrification at different temperatures. ENVIRONMENTAL RESEARCH 2022; 215:114348. [PMID: 36155154 DOI: 10.1016/j.envres.2022.114348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Nitrate pollution is an important cause of eutrophication and ecological disruption. Recently, element sulfur-based denitrification (ESDeN) has attracted increasing attention because of its non-carbon source dependence, low sludge yield, and cost-effectiveness. Although the denitrification performance of sulfur autotrophic denitrifying bacteria at different temperatures has been widely studied, there are still many unknown factors about the adaptability and the shaping of microbial community. In this study, we comprehensively understood the shaping of ESDeN microbial communities under different temperature conditions. Results revealed that microbial communities cultivated at temperatures ranging from 10 °C to 35 °C could be classified as high-temperature (35 °C), middle-temperature (30, 25 and 20 °C), and low-temperature (15 and 10 °C) communities. Dissolved oxygen in water was an important factor that, in combination with temperature, shaped microbial community structure. According to network analysis, the composition of keystone taxa was different for the three groups of communities. Some bacteria that did not have sulfur compound oxidation function were identified as the "keystone species". The abundances of carbon, nitrogen, and sulfur metabolism of the three microbial communities were significantly changed, which was reflected in that the high-temperature and middle-temperature communities were dominated by dark oxidation of sulfur compounds and dark sulfide oxidation, while the low-temperature community was dominated by chemoheterotrophy and aerobic chemoheterotrophy. The fact that the number of microorganisms with dark oxidation of sulfur compounds capacity was quite higher than that of microorganisms with dark sulfur oxidation capacity suggested that the sulfur bioavailability at different temperatures, especially low temperature, was the main challenge for the development of efficient ESDeN process. This study provided a biological basis for developing a high-efficiency ESDeN process to cope with temperature changes in different seasons or regions.
Collapse
Affiliation(s)
- Na Zhang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yi-Lu Sun
- Cas Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bao-Min Yao
- Cas Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Zhang
- Cas Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao-Yi Cheng
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Computational hints for the simultaneous spectroscopic detection of common contaminants in water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Cui X, Zhang M, Ding Y, Sun S, He S, Yan P. Enhanced nitrogen removal via iron‑carbon micro-electrolysis in surface flow constructed wetlands: Selecting activated carbon or biochar? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152800. [PMID: 34982986 DOI: 10.1016/j.scitotenv.2021.152800] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The iron-assisted autotrophic denitrification was plagued by passivation when introduced in surface flow constructed wetlands (SFCWs). Iron‑carbon micro-electrolysis (Fe/C-M/E) could facilitate the transfer of electrons during the utilization of iron. In this study, iron scraps coupling with activated carbon and biochar were applied to explore the effects of carbon materials on autotrophic denitrification. The results showed that TN removal rate in the SFCW with iron scraps and activated carbon (SFCW-IAC) and the SFCW with iron scraps and biochar (SFCW-IBC) were improved by 31.61% ± 8.18% and 14.09% ± 7.15%, and N2O fluxes were reduced to 2.73 and 3.12 mg m-2 d-1, respectively. The greater iron mass loss rate (0.91%) was confirmed in SFCW-IAC. Microbial community analysis reported that autotrophic denitrification and iron related genera were increased. This study proved that activated carbon was more suitable than biochar to Fe/C-M/E for denitrification enhancement and N2O emission reduction.
Collapse
Affiliation(s)
- Xijun Cui
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - YiJing Ding
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
21
|
Nitrate Water Contamination from Industrial Activities and Complete Denitrification as a Remediation Option. WATER 2022. [DOI: 10.3390/w14050799] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Freshwater is a scarce resource that continues to be at high risk of pollution from anthropogenic activities, requiring remediation in such cases for its continuous use. The agricultural and mining industries extensively use water and nitrogen (N)-dependent products, mainly in fertilizers and explosives, respectively, with their excess accumulating in different water bodies. Although removal of NO3 from water and soil through the application of chemical, physical, and biological methods has been studied globally, these methods seldom yield N2 gas as a desired byproduct for nitrogen cycling. These methods predominantly cause secondary contamination with deposits of chemical waste such as slurry brine, nitrite (NO2), ammonia (NH3), and nitrous oxide (N2O), which are also harmful and fastidious to remove. This review focuses on complete denitrification facilitated by bacteria as a remedial option aimed at producing nitrogen gas as a terminal byproduct. Synergistic interaction of different nitrogen metabolisms from different bacteria is highlighted, with detailed attention to the optimization of their enzymatic activities. A biotechnological approach to mitigating industrial NO3 contamination using indigenous bacteria from wastewater is proposed, holding the prospect of optimizing to the point of complete denitrification. The approach was reviewed and found to be durable, sustainable, cost effective, and environmentally friendly, as opposed to current chemical and physical water remediation technologies.
Collapse
|
22
|
Han F, Li X, Zhang M, Liu Z, Han Y, Li Q, Zhou W. Solid-phase denitrification in high salinity and low-temperature wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 341:125801. [PMID: 34438282 DOI: 10.1016/j.biortech.2021.125801] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen removal from wastewater is often deteriorated under high salinity and low temperature. Solid-phase denitrification (SPD) might improve total nitrogen removal efficiency (TNRE) by stably supplying carbon resources under adverse conditions. In this study, an SPD biofilm reactor was successfully established by inoculating halophilic sludge and filling poly (butanediol succinate) (PBS) granules, and achieved over 96% TNRE at low temperature. More extracellular polysaccharides were produced at low temperature. Microbial network analysis evidenced dominant heterotrophic denitrifiers (Marinicella, Fusibacter, Saccharicrinis and Vitellibacter) at 25 °C were replaced by genera Melioribacter, Marinobacter, Desulfatitalea and Thiomicrospira at 15 °C. At low temperature, genes nirS and narG might be mainly responsible for denitrification. Fluorescence spectrum coupled with fluorescence regional integration and parallel factor analysis revealed low temperature increased the proportion of proteins of soluble microbial products. This study provides guidance for the practical application of SPD in the treatment of high salinity and low-temperature wastewater.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Xuan Li
- Shandong Academy for Environmental Planning, Jinan, Shandong 250002, China
| | - Mengru Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Zhe Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Yufei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China.
| |
Collapse
|
23
|
Zhang Q, Deng S, Li J, Yao H, Li D. Cultivation of aerobic granular sludge coupled with built-in biochemical cycle galvanic-cells driven by dual selective pressure and its denitrification characteristics. BIORESOURCE TECHNOLOGY 2021; 337:125454. [PMID: 34198243 DOI: 10.1016/j.biortech.2021.125454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Dual selective pressure was applied as the driving condition to cultivate an enhanced aerobic granular sludge (AGS) with Fe(0)-based biochemical cycle galvanic-cells (BCGC) as the core. The BCGC-AGS coupled micro-electrolysis with synergistic autotrophic-heterotrophic denitrification to enhance nitrogen removal. COD and total nitrogen removal of 91.8% and 95.9% were achieved, respectively. The formation of circulation channel between Fe3+ and Fe2+ provided a solid foundation for the biochemical cycle of galvanic-cells with low consumption. The existence of micro-electrolysis selective pressure in BCGC-AGS was also confirmed. Facultative aerobic bacteria Methylocystis and Azospirillum were the most abundant genera. Facultative iron redox bacteria and autotrophic denitrifying bacteria Geobacter, Thiobacillus, Aquabacterium, Thauera and Azospirillum showed high abundance, affirming the success culture of EAGS system. Load shock test verified BCGC-AGS possessed excellent load shock resistance. Obtaining the advantages of fast-cultivation, high-efficiency and low galvanic-cells consumption, BCGC-AGS showed significant potential for practical application.
Collapse
Affiliation(s)
- Qi Zhang
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China.
| | - Shihai Deng
- Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jinlong Li
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing 100044, PR China
| | - Desheng Li
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing 100044, PR China
| |
Collapse
|
24
|
Biochar and Zeolite as Alternative Biofilter Media for Denitrification of Aquaculture Effluents. WATER 2021. [DOI: 10.3390/w13192703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Denitrification processes are crucial in aquaculture as they convert the undesirable nitrate to safer forms of nitrogen. Conventionally, plastic media are used for the biofiltration of wastewater. However, alternative media may be as effective/better than plastic and enhance the sustainability of the system. This study evaluated biochar and zeolite as alternatives for the denitrification of aquaculture effluents. Triplicates of laboratory-scale bioreactors were fabricated to compare the denitrification efficiencies of biochar and zeolite to that of plastic. The bioreactors were fed synthetic aquaculture wastewater having nitrate loading rates of 50, 125, and 150 mg/L. Zeolite exhibited highest values of surface roughness in terms of arithmetic mean height (0.89 µm), maximum height (6.52 µm), and root-mean-square height (1.17 µm), as corroborated by surface profilometry and scanning electron microscopy. The results revealed that under pseudo-steady-state conditions, zeolite displayed the highest nitrate removal efficiency (maximum 95.02 ± 0.01%), which was followed by biochar and plastic (maximum 92.91 ± 0.01% and 92.57 ± 0.02%, respectively) due to its extraordinary surface roughness that provided better adhesion to the bacteria. However, by the end of the study, all the media exhibited comparable rates. Thus, both zeolite and biochar are sustainable alternatives of biomedia for nitrate removal. However, time and labor constraints must be accounted for to scale-up such bioreactors.
Collapse
|
25
|
Rani V, Maróti G. Assessment of Nitrate Removal Capacity of Two Selected Eukaryotic Green Microalgae. Cells 2021; 10:cells10092490. [PMID: 34572139 PMCID: PMC8469671 DOI: 10.3390/cells10092490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Eutrophication is a leading problem in water bodies all around the world in which nitrate is one of the major contributors. The present study was conducted to study the effects of various concentrations of nitrate on two eukaryotic green microalgae, Chlamydomonas sp. MACC-216 and Chlorella sp. MACC-360. For this purpose, both microalgae were grown in a modified tris-acetate-phosphate medium (TAP-M) with three different concentrations of sodium nitrate, i.e., 5 mM (TAP-M5), 10 mM (TAP-M10) and 15 mM (TAP-M15), for 6 days and it was observed that both microalgae were able to remove nitrate completely from the TAP-M5 medium. Total amount of pigments decreased with the increasing concentration of nitrate, whereas protein and carbohydrate contents remained unaffected. High nitrate concentration (15 mM) led to an increase in lipids in Chlamydomonas sp. MACC-216, but not in Chlorella sp. MACC-360. Furthermore, Chlamydomonas sp. MACC-216 and Chlorella sp. MACC-360 were cultivated for 6 days in synthetic wastewater (SWW) with varying concentrations of nitrate where both microalgae grew well and showed an adequate nitrate removal capacity.
Collapse
Affiliation(s)
- Vaishali Rani
- Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary;
- Biological Research Centre, Institute of Plant Biology, 6726 Szeged, Hungary
| | - Gergely Maróti
- Biological Research Centre, Institute of Plant Biology, 6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
26
|
Tan L, Mao R, Su P, Gu J, Chen H, Jiang F, Zhao X. Efficient photochemical denitrification by UV/sulfite system: Mechanism and applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126448. [PMID: 34315633 DOI: 10.1016/j.jhazmat.2021.126448] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/05/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Denitrification is an effective strategy to control eutrophication caused by excessive nitrate in water. However, the comparatively low efficiency of nitrate removal and N2 selectivity remains a challenge in the denitrification process. Herein, this study proposed a novel photochemical denitrification process by introducing hydrated electron (eaq-) to reduce nitrate in UV/sulfite system. The results indicated that the optimized UV/sulfite system could effectively reduce nitrate to N2 with a nearly 100% denitrification efficiency in 90 min. eaq- was identified as the mainly reactive species to achieve rapid removal of nitrate and nitrite, and the result was verified by quenching and laser flash photolysis tests. Benefiting from the high dispersion of eaq- in water and the rapid reaction rate between eaq- and the target, the generated N2O is susceptible to be reduced, leading to a high selectivity of N2 that was confirmed by 15N-isotopic. Besides, thermodynamic results based on the density functional theory (DFT) calculations suggested that the photochemical denitrification process was exothermic process and tend to transform to N2. Significantly, UV/sulfite system applied in the nickel-plating wastewater showed high denitrification efficiency, demonstrating that the novel photochemical denitrification process is promising for practical wastewater treatment.
Collapse
Affiliation(s)
- Ling Tan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ran Mao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peidong Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Jia Gu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fang Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Wigley K, Egbadon E, Carere CR, Weaver L, Baronian K, Burbery L, Dupont PY, Bury SJ, Gostomski PA. RNA stable isotope probing and high-throughput sequencing to identify active microbial community members in a methane-driven denitrifying biofilm. J Appl Microbiol 2021; 132:1526-1542. [PMID: 34424588 DOI: 10.1111/jam.15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022]
Abstract
AIMS Aerobic methane oxidation coupled to denitrification (AME-D) is a promising process for removing nitrate from groundwater and yet its microbial mechanism and ecological implications are not fully understood. This study used RNA stable isotope probing (RNA-SIP) and high-throughput sequencing to identify the micro-organisms that are actively involved in aerobic methane oxidation within a denitrifying biofilm. METHODS AND RESULTS Two RNA-SIP experiments were conducted to investigate labelling of RNA and methane monooxygenase (pmoA) transcripts when exposed to 13 C-labelled methane over a 96-hour time period and to determine active bacteria involved in methane oxidation in a denitrifying biofilm. A third experiment was performed to ascertain the extent of 13 C labelling of RNA using isotope ratio mass spectrometry (IRMS). All experiments used biofilm from an established packed bed reactor. IRMS confirmed 13 C enrichment of the RNA. The RNA-SIP experiments confirmed selective enrichment by the shift of pmoA transcripts into heavier fractions over time. Finally, high-throughput sequencing identified the active micro-organisms enriched with 13 C. CONCLUSIONS Methanotrophs (Methylovulum spp. and Methylocystis spp.), methylotrophs (Methylotenera spp.) and denitrifiers (Hyphomicrobium spp.) were actively involved in AME-D. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study to use RNA-SIP and high-throughput sequencing to determine the bacteria active within an AME-D community.
Collapse
Affiliation(s)
- Kathryn Wigley
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Emmanuel Egbadon
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Carlo R Carere
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd, Christchurch, New Zealand
| | - Kim Baronian
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Lee Burbery
- Institute of Environmental Science and Research Ltd, Christchurch, New Zealand
| | - Pierre Y Dupont
- Institute of Environmental Science and Research Ltd, Christchurch, New Zealand
| | - Sarah J Bury
- National Institute of Water and Atmospheric Research Ltd, Wellington, New Zealand
| | - Peter A Gostomski
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
28
|
Photo-Oxidation of Ammonia to Molecular Nitrogen in Water under UV, Vis and Sunlight Irradiation. Catalysts 2021. [DOI: 10.3390/catal11080975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Titanium dioxide-based photocatalysts have been used to perform the photo-oxidation of ammonium/ammonia to molecular nitrogen. Different light sources were employed, i.e., UV, LED visible light and natural sunlight, and their performance was compared in order to understand which setup was the most efficient. It was found that under selected conditions, the LED lamp, in combination with silver-promoted TiO2, was able to push the conversion of ammonium toward 48% after 4 h of reaction time. On the other hand, with a more powerful UV lamp, lower conversion was achieved, ca. 40%. Natural sunlight under the same conditions attained more than 38% conversion, but the fluctuation of the reaction conditions remain a very critical issue for the real exploitation of sunlight in water treatment.
Collapse
|
29
|
Wang H, Chen N, Feng C, Deng Y. Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146521. [PMID: 34030330 DOI: 10.1016/j.scitotenv.2021.146521] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Nitrate, as the most stable form of nitrogen pollution, widely exists in aquatic environment, which has great potential threat to ecological environment and human health. Heterotrophic denitrification, as the most economical and effective method to treat nitrate wastewater, has been widely and deeply studied. From the perspective of heterotrophic denitrification, this review discusses nitrate removal in the aquatic environment, and the behaviors of different carbon source types were classified and summarized to explain the cyclical evolution of carbon and nitrogen in global biochemical processes. In addition, the denitrification process, electron transfer as well as denitrifying and hydrolyzing microorganisms among different carbon sources were analyzed and compared, and the commonness and characteristics of the denitrification process with various carbon sources were revealed. This study provides theoretical support and technical guidance for further improvement of denitrification technologies.
Collapse
Affiliation(s)
- Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
30
|
Carboni MF, Florentino AP, Costa RB, Zhan X, Lens PNL. Enrichment of Autotrophic Denitrifiers From Anaerobic Sludge Using Sulfurous Electron Donors. Front Microbiol 2021; 12:678323. [PMID: 34163455 PMCID: PMC8215349 DOI: 10.3389/fmicb.2021.678323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
This study compared the rates and microbial community development in batch bioassays on autotrophic denitrification using elemental sulfur (S0), pyrite (FeS2), thiosulfate (S2O3 2-), and sulfide (S2-) as electron donor. The performance of two inocula was compared: digested sludge (DS) from a wastewater treatment plant of a dairy industry and anaerobic granular sludge (GS) from a UASB reactor treating dairy wastewater. All electron donors supported the development of a microbial community with predominance of autotrophic denitrifiers during the enrichments, except for sulfide. For the first time, pyrite revealed to be a suitable substrate for the growth of autotrophic denitrifiers developing a microbial community with predominance of the genera Thiobacillus, Thioprofundum, and Ignavibacterium. Thiosulfate gave the highest denitrification rates removing 10.94 mM NO3 - day-1 and 8.98 mM NO3 - day-1 by DS and GS, respectively. This was 1.5 and 6 times faster than elemental sulfur and pyrite, respectively. Despite the highest denitrification rates observed in thiosulfate-fed enrichments, an evaluation of the most relevant parameters for a technological application revealed elemental sulfur as the best electron donor for autotrophic denitrification with a total cost of 0.38 € per m3 of wastewater treated.
Collapse
Affiliation(s)
- M. F. Carboni
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - A. P. Florentino
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - R. B. Costa
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, Brazil
| | - X. Zhan
- Department of Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - P. N. L. Lens
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
31
|
Selvaraj D, Velvizhi G. Sustainable ecological engineering systems for the treatment of domestic wastewater using emerging, floating and submerged macrophytes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112253. [PMID: 33711758 DOI: 10.1016/j.jenvman.2021.112253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Water scarcity is perceived as a global systemic risk since there is an inexorable rise in water demand. An ecological engineering system mimics a natural ecosystem by balancing the trophic conditions for effective treatment of wastewater in a sequential manner. The present study was designed using emergent, floating and submerged macrophytic plants in a systematic approach. The study was evaluated with several components such as plants (water hyacinth, water lettuce and water thymes), aeration (supply of oxygen), and physical adsorption (activated carbon). Domestic wastewater collected from the local effluent treatment plant was treated individually and by combining all the components. Diverse experimental setups viz., lake sediment (control reactor), aeration, activated carbon blocks, water hyacinth, water lettuce, and water thymes were individually studied. Further the above components were combined, such as lake sediment + aeration + activated carbon blocks with plants like water hyacinth, water lettuce, and water thymes. The study inferred along with phytoremediation, and the external factors enhanced the treatment performances. Water hyacinth documented enhanced chemical oxygen demand removal efficiency of 85.71%, followed by water lettuce (80%), and water thymes (77.14%) along with the plants, both aeration, and activated carbon had stimulated the wastewater treatment. The highest removal efficiency of nitrate (70.23%), phosphate (63.64%), and sulphate (61.16%) were observed in water hyacinth due to its thick roots, and fibrous tissues reported effective treatment. The study hypothesized that these processes could be an effective strategy to restore the lakes and regulate the environmental flow. The study infers that an ecological engineering system symbiotically enables to self-organize the ecosystem within the boundary.
Collapse
Affiliation(s)
- Dharanidharan Selvaraj
- School of Civil Engineering, Vellore Institute of Technology, Vellore, India; CO(2) Research & Green Technologies Centre, Vellore Institute of Technology, Vellore, India
| | - G Velvizhi
- CO(2) Research & Green Technologies Centre, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
32
|
Amoako-Nimako GK, Yang X, Chen F. Denitrification using permeable reactive barriers with organic substrate or zero-valent iron fillers: controlling mechanisms, challenges, and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21045-21064. [PMID: 33728604 DOI: 10.1007/s11356-021-13260-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Nitrate as a diffusive agricultural contaminant has been causing substantial groundwater quality deterioration worldwide. In situ groundwater remediation techniques using permeable reactive barriers (PRBs) have attracted increasing interest. Particularly, PRBs based on biological denitrification, using the organic substrate as a biostimulator, and chemical nitrate reduction, using zero-valent iron (ZVI) as a reductant, are two major PRB approaches for groundwater denitrification. This review paper analyzed the published studies over the past 10 years (2010-2020) using laboratory, modeling, and field-scale approaches to explore the performance and mechanisms of these two types of PRBs. Important factors affecting the denitrification efficiencies as well as the influential mechanisms were discussed. Several research gaps have been identified and further research needs are discussed in the end.
Collapse
Affiliation(s)
- George Kwame Amoako-Nimako
- Key Lab of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xinyao Yang
- Key Lab of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China.
| | - Fangmin Chen
- Key Lab of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
- Liaoning Provincial Key Lab of Urban Integrated Pest Management and Ecological Security, Shenyang University, Shenyang, 110044, China
| |
Collapse
|
33
|
Groundwater Nitrate Removal Performance of Selected Pseudomonas Strains Carrying nosZ Gene in Aerobic Granular Sequential Batch Reactors. WATER 2021. [DOI: 10.3390/w13081119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Four granular sequencing batch reactors (GSBRs) were inoculated with four denitrifying Pseudomonas strains carrying nosZ to study the process of granule formation, the operational conditions of the bioreactors, and the carbon concentration needed for nitrate removal. The selected Pseudomonas strains were P. stutzeri I1, P. fluorescens 376, P. denitrificans Z1, and P. fluorescens PSC26, previously reported as denitrifying microorganisms carrying the nosZ gene. Pseudomonas denitrificans Z1 produced fluffy, low-density granules, with a decantation speed below 10 m h−1. However, P. fluorescens PSC26, P. stutzeri I1, and P. fluorescens 376 formed stable granules, with mean size from 7 to 15 mm, related to the strain and carbon concentration. P. stutzeri I1 and P. fluorescens 376 removed nitrate efficiently with a ratio in the range of 96%, depending on the source and concentration of organic matter. Therefore, the findings suggest that the inoculation of GSBR systems with denitrifying strains of Pseudomonas spp. containing the nosZ gene enables the formation of stable granules, the efficient removal of nitrate, and the transformation of nitrate into nitrogen gas, a result of considerable environmental interest to avoid the generation of nitrous oxide.
Collapse
|
34
|
Philippon T, Tian J, Bureau C, Chaumont C, Midoux C, Tournebize J, Bouchez T, Barrière F. Denitrifying bio-cathodes developed from constructed wetland sediments exhibit electroactive nitrate reducing biofilms dominated by the genera Azoarcus and Pontibacter. Bioelectrochemistry 2021; 140:107819. [PMID: 33894567 DOI: 10.1016/j.bioelechem.2021.107819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
To limit the nitrate contamination of ground and surface water, stimulation of denitrification by electrochemical approach is an innovative way to be explored. Two nitrate reducing bio-cathodes were developed under constant polarization (-0.5 V vs SCE) using sediments and water from a constructed wetland (Rampillon, Seine-et-Marne, France). The bio-cathodes responded to nitrate addition on chronoamperometry through an increase of the reductive current. The denitrification efficiency of the pilots increased by 47% compared to the negative controls without electrodes after polarization. 16S rRNA gene sequencing of the biofilms and sediments evidenced the significant and discriminating presence of the Azoarcus and Pontibacter genera in the biofilms from biocathodes active for nitrate reduction. Our study shows the possibility to promote the development of efficient Azoarcus-dominated biocathodes from freshwater sediment to enhance nitrate removal from surface waters.
Collapse
Affiliation(s)
- Timothé Philippon
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, 35042 Rennes, France.
| | - Jianghao Tian
- Université Paris-Saclay, INRAE, UR PROSE, 92160 Antony, France
| | | | - Cédric Chaumont
- Université Paris-Saclay, INRAE, UR HYCAR, 92160 Anthony, France
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, UR PROSE, 92160 Antony, France
| | | | | | - Frédéric Barrière
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, 35042 Rennes, France.
| |
Collapse
|
35
|
Factors Affecting the Simultaneous Removal of Nitrate and Reactive Black 5 Dye via Hydrogen-Based Denitrification. WATER 2021. [DOI: 10.3390/w13070922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Textile wastewater (TW) contains toxic pollutants that pose both environmental and human health risks. Reportedly, some of these pollutants, including NO3−, NO2− and reactive black 5 (RB-5) dye, can be removed via hydrogen-based denitrification (HD); however, it is still unclear how different factors affect their simultaneous removal. This study aimed to investigate the effect of H2 flow rate, the sparging cycle of air and H2, and initial dye concentration on the TW treatment process. Thus, two reactors, an anaerobic HD reactor and a combined aerobic/anaerobic HD reactor, were used to investigate the treatment performance. The results obtained that increasing the H2 flow rate in the anaerobic HD reactor increased nitrogen removal and decolorization removal rates. Further, increasing the time for anaerobic treatment significantly enhanced the pollutant removal rate in the combined reactor. Furthermore, an increase in initial dye concentration resulted in lower nitrogen removal rates. Additionally, some of the dye was decolorized during the HD process via bacterial degradation, and increasing the initial dye concentration resulted in a decrease in the decolorization rate. Bacterial communities, including Xanthomonadaceae, Rhodocyclaceae, and Thauera spp., are presented as the microbial species that play a key role in the mechanisms related to nitrogen removal and RB-5 decolorization under both HD conditions. However, both reactors showed similar treatment efficiencies; hence, based on these results, the use of a combined aerobic/anaerobic HD system should be used to reduce organic/inorganic pollutant contents in real textile wastewater before discharging is recommended.
Collapse
|
36
|
Mohajeri P, Smith CMS, Chau HW, Lehto N. ALLODUST augmented activated sludge single batch anaerobic reactor (AS-SBAnR) for high concentration nitrate removal from agricultural wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141905. [PMID: 32892048 DOI: 10.1016/j.scitotenv.2020.141905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Nitrate is among the most widespread contaminants that threaten water bodies and waterways. Under favourable environmental conditions, high nitrate concentrations in water can contribute to eutrophication, thus presenting a high potential for risk to ecosystems and human health. Low-cost allophanic soil material and carbon-based bio-wastes have great potential to reduce nutrient concentrations from contaminated waters. This study investigated the mechanisms that underpin the reduction of nitrate concentrations and nitrous oxide (N2O) emission in the presence of novel developed media in an activated sludge process. A new operating approach, employing a newly developed media (ALLODUST), was evaluated for enhanced NO-3-N removal from agricultural wastewater. Two anaerobic-aerobic batch reactors were developed, where the coupled bottom aeration method was used for efficient agitation and aeration in the aerobic reactor. The reactor was run at high NO-3-N concentrations (110 mg L-1), under anoxic conditions at low- to long-term contact times (2, 12, and 22 h), while the aerobic period (clarification) was constant for all the experimental designs (2 h). ALLODUST retained its integrity and stability over the long-term operation. Low ALLODUST concentrations (5.95 g L-1) removed 87% of the NO-3-N from the wastewater within 12 h. Further exploration revealed that the same amount of the media was optimal for decreasing N2O emissions from the anaerobic activated sludge reactor by 80%.
Collapse
Affiliation(s)
- Parsa Mohajeri
- Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand.
| | - Carol M S Smith
- Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand
| | - Henry Wai Chau
- Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand
| | - Niklas Lehto
- Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand
| |
Collapse
|
37
|
Deng S, Xie B, Kong Q, Peng S, Wang H, Hu Z, Li D. An oxic/anoxic-integrated and Fe/C micro-electrolysis-mediated vertical constructed wetland for decentralized low-carbon greywater treatment. BIORESOURCE TECHNOLOGY 2020; 315:123802. [PMID: 32683289 DOI: 10.1016/j.biortech.2020.123802] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The treatment of decentralized low-carbon greywater in rural area, particularly in cold weather, remains a challenge. Oxic/anoxic process and Fe/C micro-electrolysis were incorporated into vertical constructed wetland to develop ME-(O/A)CW for practical decentralized low-carbon greywater treatment. ME-(O/A)CW provided NH4+-N, TN, TP and COD removal of 94.3%, 86.2%, 98.0% and 92.7%, respectively, at hydraulic loading rate of 0.9 m3/(m2·d) under low ambient temperature of -11.5 to 8.0 °C. Effective nitrification, phosphorus-accumulating and organic-degradation were proceeded in the aerobic layers and efficient H2-/Fe2+-mediated autotrophic denitrification and Fe3+-based phosphorus immobilization were developed in the anaerobic layers through in-situ H2-/Fe2+-supply by Fe/C micro-electrolysis. AOB (e.g. Nitrosomonadales), NOB/PAOs (e.g. Nitrospira), autotrophic denitrificans (e.g. Thiobacillus, Hydrogenophaga and Sulfurimonas), heterotrophic denitrificans (e.g. Denitratisoma) and Fe(II)-oxidizing bacteria (e.g. Ferritrophicum) dominated ME-(O/A)CW and confirmed the reaction mechanisms. The developed ME-(O/A)CW presented significant potential in the practical application for decentralized low-carbon greywater treatment under low ambient temperature.
Collapse
Affiliation(s)
- Shihai Deng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Shuai Peng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hengchen Wang
- China School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China
| | - Zhifeng Hu
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Desheng Li
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| |
Collapse
|
38
|
Ge X, Fu W, Wang Y, Wang L, Yao F. Removal of nitrate nitrogen from water by phosphotungstate-supported TiO 2 photocatalytic method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40475-40482. [PMID: 32666458 DOI: 10.1007/s11356-020-09947-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Nitrate nitrogen in water, especially in groundwater, is a major problem in the current drinking water environment. In this study, copper- and nickel-modified phosphotungstate catalysts supported on TiO2 were prepared by the sol-gel solvothermal method, and photocatalytic reduction by phosphotungstate was used to remove nitrate nitrogen in water under ultraviolet irradiation. The maximum removal rate was 59.60% with 0.8 g/L Cu-H3PW12O40/TiO2, 90 mg/L nitrate nitrogen, and 60 min reaction time. For Ni-H3PW12O40/TiO2, the maximum removal rate of nitrate nitrogen was 54.58%, achieved with a catalyst concentration of 0.8 g/L, nitrate nitrogen concentration of 120 mg/L, and reaction time of 30 min. Both catalysts could remove nitrate nitrogen from water under the condition of photocatalysis.
Collapse
Affiliation(s)
- Xiaohong Ge
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Ecology and Environmental Protection, Linyi Vocational University of Science and Technology, Linyi, 276000, People's Republic of China
| | - Weizhang Fu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Yujun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lingsheng Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Fanfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| |
Collapse
|
39
|
Peng S, Deng S, Li D, Xie B, Yang X, Lai C, Sun S, Yao H. Iron-carbon galvanic cells strengthened anaerobic/anoxic/oxic process (Fe/C-A2O) for high-nitrogen/phosphorus and low-carbon sewage treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137657. [PMID: 32199356 DOI: 10.1016/j.scitotenv.2020.137657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
The treatment of sewage with high-nitrogen/-phosphorus and low-carbon remains a challenge. A novel iron-carbon galvanic cells strengthened anaerobic/anoxic/oxic process (Fe/C-A2O) was developed for high-nitrogen/-phosphorus and low-carbon sewage treatment. The cost-effective iron-scraps (ISs) was recycled as Fe(0)-source under the mediation of Fe/C galvanic cell reaction to develop effective Fe(0)-oxidizing autotrophic-denitrification and -dephosphorization. Utilizing practical high-nitrogen/-phosphorus and low-carbon sewage as target wastewater, the performance, impact factors, contribution of Fe/C galvanic cell reactions, microbial characteristics, strengthening mechanisms, and application potential of Fe/C-A2O process were investigated. The Fe/C-A2O process achieved high TN and TP removal efficiencies of 92.0 ± 1.3% and 97.2 ± 0.9% with removal loads of 0.176 ± 0.002 kg TN/(m3·d) and 0.017 ± 0.002 kg TP/(m3·d), respectively. Optimal HRT of 12 h, DO of 4.0-4.5 mg/L, and reflux-ratio of 4:1 were obtained, and no sludge-reflux was required. Autotrophic-denitrification and -dephosphorization supported by the Fe/C galvanic cell reactions contributed 63.1% and 75.3% of TN and TP removal, respectively. Microbial characterization revealed the dominance of autotrophic denitrifiers (e.g., Thiobacillus), AOB (e.g., Nitrosomonas), NOB (e.g., Nitrospira), and heterotrophic denitrifiers (e.g., Zoogloea). The mechanism analysis demonstrated that Fe/C galvanic cells strengthened nitrogen removal by raising Fe2+/H2-supported autotrophic denitrification; and strengthened dephosphorization by introducing Fe3+-based PO43--precipitation and enhancing the denitrifying phosphate-accumulation by denitrifying phosphate-accumulating organisms (DPAOs). Based on the efficiency and cost evaluation, the ISs-based Fe/C-A2O process showed significant application potential as an upgrade strategy for traditional A2O process in advanced high-nitrogen/phosphorus and low-carbon sewage treatment.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Shihai Deng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore.
| | - Desheng Li
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Binghan Xie
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Xue Yang
- Process & Engineering Center, National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, PR China
| | - Cai Lai
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Shaobin Sun
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| |
Collapse
|
40
|
Nikpour B, Jalilzadeh Yengejeh R, Takdastan A, Hassani AH, Zazouli MA. The investigation of biological removal of nitrogen and phosphorous from domestic wastewater by inserting anaerobic/anoxic holding tank in the return sludge line of MLE-OSA modified system. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1-10. [PMID: 32399216 PMCID: PMC7203377 DOI: 10.1007/s40201-019-00419-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 11/18/2019] [Indexed: 05/19/2023]
Abstract
In this study, the biological removal of nitrogen and phosphorous (BNR) was investigated by applying modified MLE-OSA technique. To conduct this study, three pilot plants scale were designed and established: 1) MLE similar to the current method used in Sari Wastewater Treatment Plant as control reactor 2) MLE-OSA4 with 4-h hydrolic retention time in sludge holding tank 3) MLE-OSA6 with 6-h hydrolic retention time in sludge holding tank. In this modified process for combining OSA technique with MLE system, two anaerobic/anoxic tanks were installed in the return sludge line with capacities of 70 and 107 l for MLE-OSA4 and MLE-OSA6, respectively. To set up the process, outlet sewage of the primary settlement tank of Sari Wastewater Treatment Plant was used. After a period of 45-60 days and reaching the steady state, the reactors were operated and the main, controllable parameters and laboratory experiments such as DO, ORP, Temperature, pH, COD, BOD5, MLSS, and nutrients (N&P) were precisely analyzed according to standard methods for examination of water and wastewater. The results showed that utilizing MLE-OSA system with 4 and 6 h hydraulic retention times decreased the ORP by around 109 ± 9 to 160 ± 25 mv and increased sludge retention time from 29 to 33 days. Moreover the percentages of phosphorus removal efficiency in MLE, MLE-OSA4 and MLE-OSA6 processes were 31 ± 5.2, 36.8 ± 1.9, and 39.4 ± 1.9 and the percentages of total nitrogen removal efficiency were 67.2 ± 7.6, 75.6 ± 4.8, and 78.5 ± 2.2 respectively. This study revealed that the modified MLE-OSA is more efficient than MLE for P and N removal. Hence it can replace this process.
Collapse
Affiliation(s)
- Behzad Nikpour
- Department of Environmental Engineering, Khuzestan Science and Research Branch, Islamic Azad University, Ahvaz, Iran and Department of Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
- Department of Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - R. Jalilzadeh Yengejeh
- Department of Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - A. Takdastan
- Department of Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
- Department of Environmental technologies research center, Ahvaz Jundishapur University of medical sciences, Ahvaz, Iran
| | - A. H. Hassani
- Faculty of Natural resources and Environment, Department of Environmental Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M. A. Zazouli
- Department of Environmental Health, Health Sciences Research Center, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
41
|
Xia Y, Cheng Y, Li L, Chen Y, Jiang Y. A microcosm study on persulfate oxidation combined with enhanced bioremediation to remove dissolved BTEX in gasoline-contaminated groundwater. Biodegradation 2020; 31:213-222. [PMID: 32472328 DOI: 10.1007/s10532-020-09904-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/21/2020] [Indexed: 11/26/2022]
Abstract
The combination of persulfate (PS) oxidation with enhanced bioremediation (EBR) is a potential trend in remediating organic-contaminated groundwater. However, the impacts of PS on EBR presented in the transition zone between PS oxidation zone and EBR zone need further study. To better characterize the impacts and provide available indicators, PS oxidation and EBR with nitrate amended were performed through the microcosm experiments to remove dissolved benzene, toluene, ethylbenzene and xylene (denoted as BTEX) in gasoline-saturated groundwater. The results indicated that PS oxidation combined with EBR almost completely removed BTEX with the ratio of > 93% over the experiments, which is better than PS oxidation (54-97%) but still worse than EBR (100%). The removal velocities of BTEX in EBR, PS oxidation, and PS oxidation combined with EBR were 0.94, 0.1-0.16, and 0.1-0.54 mg/L/d, respectively. High concentration of PS, along with high-strength activation, made the pH decrease to 3.3-4.4 and the Eh increase to 141-203 mV, thus greatly inhibited microbial activities as well. In such circumstances, oxygen and nitrate could not be significantly used as electron acceptors by microbials. To reduce the impacts of PS oxidation on EBR, the PS/BTEX molar ratio of < 6 and the PS/Fe2+ molar ratio of > 1 may be appropriate in transition zone. The hydro-chemical indicators, including pH, Eh, and availability of electron acceptors such as oxygen and nitrate, could reflect the impacts of PS oxidation on bioprocesses. During in-situ chemical oxidation (ISCO), PS injection and PS activation by Fe2+ should be managed for decreasing the impacts on EBR, based on the PS/BTEX and PS/Fe2+ molar ratios.
Collapse
Affiliation(s)
- Yuan Xia
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Yaping Cheng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Liuyue Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Yudao Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China.
| | - Yaping Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| |
Collapse
|
42
|
Peng S, Kong Q, Deng S, Xie B, Yang X, Li D, Hu Z, Sun S. Application potential of simultaneous nitrification/Fe 0-supported autotrophic denitrification (SNAD) based on iron-scraps and micro-electrolysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135087. [PMID: 32000338 DOI: 10.1016/j.scitotenv.2019.135087] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Oxygen has not been purposely introduced to the autotrophic denitrification systems and simultaneous nitrification/autotrophic denitrification (SNAD) has not been proposed. In this study, oxygen was introduced into a micro-electrolysis-enhanced Fe0-supported autotrophic denitrification (mFe0AD) system. The nitrogen removal performance was investigated and the application potential of iron-scraps-supported simultaneous nitrification/mFe0AD was evaluated. The results showed that Fe0AD was surprisingly enhanced by oxygen together with nitrification at average dissolved oxygen (DO) of 0.08-1.56 mg/L. The ammonia oxidizing bacterial, nitrite oxidizing bacteria, facultative autotrophic denitrificans, and iron compounds transformation bacteria were markedly enriched. Average denitrification rate shifted from 0.116 to 0.340 kg N/(m3·d) with increase of average total nitrogen removal efficiency from 31.4% to 90.5%. Oxygen could enhance the biological conversion and storage of iron compounds, which was capable of reducing the coating of Fe0 surface.The accelerating of oxygen on Fe0 passivation appeared when increasing the average DO from 1.56 to 2.17 mg/L. Therefore, the SNAD was recommended to be operated at the DO range of 0.08-1.56 mg/L. ME significantly enhanced Fe0AD, and the utilization of iron-scraps reduced its cost. The denitrification rate is comparable with methanol supported heterotrophic denitrification with 58.9% reduction on the cost. The iron-scraps supported SNAD is competitive in both denitrification rate and costs in the ammonia contaminated low-carbon water treatment.
Collapse
Affiliation(s)
- Shuai Peng
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Qiang Kong
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Shihai Deng
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| | - Binghan Xie
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Xue Yang
- Process & Engineering Center, National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, PR China
| | - Desheng Li
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Zhifeng Hu
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Shaobin Sun
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| |
Collapse
|
43
|
Yang W, Wang J, Shi X, Tang H, Wang X, Wang S, Zhang W, Lu J. Preferential Nitrate Removal from Water Using a New Recyclable Polystyrene Adsorbent Functionalized with Triethylamine Groups. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenlan Yang
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Jicheng Wang
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Xinxing Shi
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Huan Tang
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Xiaozhi Wang
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Shengsen Wang
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Jilai Lu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, P. R. China
| |
Collapse
|
44
|
Zarei S, Farhadian N, Akbarzadeh R, Pirsaheb M, Asadi A, Safaei Z. Fabrication of novel 2D Ag-TiO2/γ-Al2O3/Chitosan nano-composite photocatalyst toward enhanced photocatalytic reduction of nitrate. Int J Biol Macromol 2020; 145:926-935. [DOI: 10.1016/j.ijbiomac.2019.09.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/07/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022]
|
45
|
Rezvani F, Sarrafzadeh MH, Oh HM. Hydrogen producer microalgae in interaction with hydrogen consumer denitrifiers as a novel strategy for nitrate removal from groundwater and biomass production. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Ogawa Y, Sodeno A, Takatani M, Osawa T. Reaction Orders of the Hydrogenation of Nitrate and Nitrite in Water over a Nickel Catalyst. Catal Letters 2020. [DOI: 10.1007/s10562-019-02945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Shojaipour M, Ghaemy M, Amininasab SM. Removal of NO3− ions from water using bioadsorbent based on gum tragacanth carbohydrate biopolymer. Carbohydr Polym 2020; 227:115367. [DOI: 10.1016/j.carbpol.2019.115367] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 10/26/2022]
|
48
|
Modification of Fe2O3-contained lignocellulose nanocomposite with silane group to remove nitrate and bacterial contaminations from wastewater. IRANIAN POLYMER JOURNAL 2019. [DOI: 10.1007/s13726-019-00749-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Amini M, Amini Khoei Z, Erfanifar E. Nitrate (NO3−) and phosphate (PO43−) removal from aqueous solutions by microalgae Dunaliella salina. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Affiliation(s)
- Yi-Ting Chiu
- Department of Environmental Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Chu-Hong Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|