1
|
Saxena S, Dufossé L, Deshmukh SK, Chhipa H, Gupta MK. Endophytic Fungi: A Treasure Trove of Antifungal Metabolites. Microorganisms 2024; 12:1903. [PMID: 39338577 PMCID: PMC11433805 DOI: 10.3390/microorganisms12091903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Emerging and reemerging fungal infections are very common in nosocomial and non-nosocomial settings in people having poor immunogenic profiles either due to hematopoietic stem cell transplants or are using immunomodulators to treat chronic inflammatory disease or autoimmune disorders, undergoing cancer therapy or suffering from an immune weakening disease like HIV. The refractory behavior of opportunistic fungi has necessitated the discovery of unconventional antifungals. The emergence of black fungus infection during COVID-19 also triggered the antifungal discovery program. Natural products are one of the alternative sources of antifungals. Endophytic fungi reside and co-evolve within their host plants and, therefore, offer a unique bioresource of novel chemical scaffolds with an array of bioactivities. Hence, immense possibilities exist that these unique chemical scaffolds expressed by the endophytic fungi may play a crucial role in overcoming the burgeoning antimicrobial resistance. These chemical scaffolds so expressed by these endophytic fungi comprise an array of chemical classes beginning from cyclic peptides, sesquiterpenoids, phenols, anthraquinones, coumarins, etc. In this study, endophytic fungi reported in the last six years (2018-2023) have been explored to document the antifungal entities they produce. Approximately 244 antifungal metabolites have been documented in this period by different groups of fungi existing as endophytes. Various aspects of these antifungal metabolites, such as antifungal potential and their chemical structures, have been presented. Yet another unique aspect of this review is the exploration of volatile antifungal compounds produced by these endophytic fungi. Further strategies like epigenetic modifications by chemical as well as biological methods and OSMAC to induce the silent gene clusters have also been presented to generate unprecedented bioactive compounds from these endophytic fungi.
Collapse
Affiliation(s)
- Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Laurent Dufossé
- Chimie et Biotechnologie des Produits Naturels (ChemBioPro Lab) & ESIROI Agroalimentaire, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis, France
| | - Sunil K. Deshmukh
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
- R&D Division, Greenvention Biotech Pvt. Ltd., Uruli Kanchan 412202, Maharashtra, India
| | - Hemraj Chhipa
- College of Horticulture and Forestry, Agriculture University Kota, Jhalawar 322360, Rajasthan, India;
| | - Manish Kumar Gupta
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India;
| |
Collapse
|
2
|
Boshra MH, El-Housseiny GS, Farag MMS, Aboshanab KM. Innovative approaches for mycotoxin detection in various food categories. AMB Express 2024; 14:7. [PMID: 38216801 PMCID: PMC10786816 DOI: 10.1186/s13568-024-01662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024] Open
Abstract
Mycotoxins (MTs), produced by filamentous fungi, represent a severe hazard to the health of humans and food safety, affecting the quality of various agricultural products. They can contaminate a wide range of foods, during any processing phase before or after harvest. Animals and humans who consume MTs-contaminated food or feed may experience acute or chronic poisoning, which may result in serious pathological consequences. Accordingly, developing rapid, easy, and accurate methods of MTs detection in food becomes highly urgent and critical as a quality control and to guarantee food safety and lower health hazards. In this review, we highlighted and discussed innovative approaches like biosensors, fluorescent polarization, capillary electrophoresis, infrared spectroscopy, and electronic noses for MT identification pointing out current challenges and future directions. The limitations, current challenges, and future directions of conventional detection methods versus innovative methods have also been highlighted and discussed.
Collapse
Affiliation(s)
- Marina H Boshra
- Department of Mycotoxins, Central Public Health Laboratories (CPHL), Ministry of Health, Cairo, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St., Ain Shams University, Abbassia, PO: 11566, Cairo, Egypt
| | - Mohammed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St., Ain Shams University, Abbassia, PO: 11566, Cairo, Egypt.
| |
Collapse
|
3
|
You Y, Zhou Y, Duan X, Mao X, Li Y. Research progress on the application of different preservation methods for controlling fungi and toxins in fruit and vegetable. Crit Rev Food Sci Nutr 2023; 63:12441-12452. [PMID: 35866524 DOI: 10.1080/10408398.2022.2101982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables are susceptible to fungal infections during picking, transportation, storage and processing, which have a high potential to produce toxins. Fungi and toxins can cause acute or chronic poisoning after entering the body. In the field of fruit and vegetable preservation, technologies such as temperature control, modified atmosphere, irradiation, application of natural or chemical preservatives, and edible films are commonly used. In practical applications, according to the types, physiological differences and actual needs of fruits and vegetables, suitable preservation methods can be selected to achieve the effect of preservation and control of fungi and toxins. The starting point of fresh-keeping technology is to delay post-harvest senescence of fruits and vegetables, inhibit the respiratory intensity, and control the reproduction of microorganisms, which is important to control the reproduction of fungi and the production of toxins. From the three directions of physical, chemical and biological means, the article analyses and explores the effects of different external factors on the production of toxins and the effects of different preservation techniques on fungal growth and toxin production in fruits and vegetables, in order to provide new ideas for the preservation of fruits and vegetables and the control of harmful substances in food.
Collapse
Affiliation(s)
- Yanli You
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yunna Zhou
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Xuewu Duan
- Department of South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xin Mao
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yanshen Li
- Yantai University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
4
|
Yuan Z, Li Y, He Y, Qian K, Zhang Y. Differential Analysis of Three Copper-Based Nanomaterials with Different Morphologies to Suppress Alternaria alternata and Safety Evaluation. Int J Mol Sci 2023; 24:ijms24119673. [PMID: 37298626 DOI: 10.3390/ijms24119673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The overuse of copper-based fertilizers and pesticides over the last few decades has resulted in detrimental risks to our environment. Nano-enabled agrichemicals with a high effective utilization ratio have shown great potential for maintaining or minimizing environmental issues in agriculture. Copper-based nanomaterials (Cu-based NMs) serve as a promising alternative to fungicides. Three types of Cu-based NMs with different morphologies were analyzed for their different antifungal effects on Alternaria alternata in this current study. Compared to commercial copper hydroxide water power (Cu(OH)2 WP), all tested Cu-based NMs, including cuprous oxide nanoparticles (Cu2O NPs), copper nanorods (Cu NRs) and copper nanowires (Cu NWs), especially Cu2O NPs and Cu NWs, showed higher antifungal activity against Alternaria alternata. Its EC50 were 104.24 and 89.40 mg L-1, respectively, achieving comparable activity using a dose approximately 1.6 and 1.9-fold lower. Cu-based NMs could introduce the downregulation of melanin production and soluble protein content. In contrast to trends in antifungal activity, Cu2O NPs showed the strongest power in regulating melanin production and protein content and similarly exhibited the highest acute toxicity to adult zebrafish compared to other Cu-based NMs. These results demonstrate that Cu-based NMs could offer great potential in plant disease management strategies.
Collapse
Affiliation(s)
- Zitong Yuan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yiwei Li
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuke He
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yongqiang Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Al-Theyab N, Alrasheed O, Abuelizz HA, Liang M. Draft genome sequence of potato crop bacterial isolates and nanoparticles-intervention for the induction of secondary metabolites biosynthesis. Saudi Pharm J 2023; 31:783-794. [PMID: 37228327 PMCID: PMC10203779 DOI: 10.1016/j.jsps.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Insights about the effects of gold nanoparticles (AuNPs) on the biosynthetic manipulation of unknown microbe secondary metabolites could be a promising technique for prospective research on nano-biotechnology. Aim In this research, we aimed to isolate a fresh, non-domesticated unknown bacterium strain from a common scab of potato crop located in Saudi Arabia and study the metabolic profile. Methodology This was achieved through genomic DNA (gDNA) sequencing using Oxford Nanopore Technology. The genomic data were subjected to several bioinformatics tools, including canu-1.9 software, Prokka, DFAST, Geneious Prime, and AntiSMASH. We exposed the culture of the bacterial isolate with different concentrations of AuNPs and investigated the effects of AuNPs on secondary metabolites biosynthesis using several analytical techniques. Furthermore, Tandem-mass spectrometric (MS/MS) technique was optimized for the characterization of several significant sub-classes. Results The genomic draft sequence assembly, alignment, and annotation have verified the bacterial isolate as Priestia megaterium. This bacterium has secondary metabolites related to different biosynthetic gene clusters. AuNPs intervention showed an increase in the production of compounds with the molecular weights of 254 and 270 Da in a direct-dependent manner with the increase of the AuNPs concentrations. Conclusion The increase in the yields of compound 1 and 2 concomitantly with the increase in the concentration of the added AuNPs provide evidences about the effects of nanoparticles on the biosynthesis of the secondary metabolites. It contributes to the discovery of genes involved in different biosynthetic gene clusters (BGCs) and prediction of the structures of the natural products.
Collapse
Affiliation(s)
- Nada Al-Theyab
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar Alrasheed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mingtao Liang
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
6
|
Avîrvarei AC, Salanță LC, Pop CR, Mudura E, Pasqualone A, Anjos O, Barboza N, Usaga J, Dărab CP, Burja-Udrea C, Zhao H, Fărcaș AC, Coldea TE. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023; 12:foods12040838. [PMID: 36832913 PMCID: PMC9957501 DOI: 10.3390/foods12040838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The food and beverage market has become broader due to globalization and consumer claims. Under the umbrella of consumer demands, legislation, nutritional status, and sustainability, the importance of food and beverage safety must be decisive. A significant sector of food production is related to ensuring fruit and vegetable conservation and utilization through fermentation. In this respect, in this review, we critically analyzed the scientific literature regarding the presence of chemical, microbiological and physical hazards in fruit-based fermented beverages. Furthermore, the potential formation of toxic compounds during processing is also discussed. In managing the risks, biological, physical, and chemical techniques can reduce or eliminate any contaminant from fruit-based fermented beverages. Some of these techniques belong to the technological flow of obtaining the beverages (i.e., mycotoxins bound by microorganisms used in fermentation) or are explicitly applied for a specific risk reduction (i.e., mycotoxin oxidation by ozone). Providing manufacturers with information on potential hazards that could jeopardize the safety of fermented fruit-based drinks and strategies to lower or eliminate these hazards is of paramount importance.
Collapse
Affiliation(s)
- Alexandra Costina Avîrvarei
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Ofelia Anjos
- Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
- Spectroscopy and Chromatography Laboratory, CBP-BI-Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Natalia Barboza
- Food Technology Department, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Jessie Usaga
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Cosmin Pompei Dărab
- Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
7
|
Hamad GM, Mehany T, Simal-Gandara J, Abou-Alella S, Esua OJ, Abdel-Wahhab MA, Hafez EE. A review of recent innovative strategies for controlling mycotoxins in foods. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109350] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Cerón-Bustamante M, Balducci E, Beccari G, Nicholson P, Covarelli L, Benincasa P. Effect of light spectra on cereal fungal pathogens, a review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Production of Natural Pigments by Penicillium brevicompactum Using Agro-Industrial Byproducts. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The demand for natural pigments for industrial applications has significantly increased. Penicillium brevicompactum was recently reported as a promising pigments producer using submerged fermentation and a synthetic culture medium containing lactose. In this work, pigment production by P. brevicompactum was studied under different fermentation conditions, namely, submerged fermentation with free (SmF) and immobilized mycelium (SmFi), and solid-state fermentation (SSF). The potential of culture media composed of agro-industrial byproducts (cheese-whey (CW) and corn steep liquor (CSL)) was investigated for the first time as low-cost alternatives to pigment production by P. brevicompactum. The fungus showed great adaptability to the different culture media and types of fermentation, being able to synthesize pigments under all the tested conditions. A culture medium composed of 34.6 g/L of CW and 8 g/L of CSL proved to be the most suitable alternative to the synthetic medium, especially under SmF and SmFi. Our data also show that different mixtures of pigments (yellow, orange, and red) can be produced depending on the medium composition and the type of fermentation. Additionally, the immobilization and reuse of biomass to produce pigments by P. brevicompactum were demonstrated for the first time, suggesting the possibility of operating under repeated batch mode at an industrial scale.
Collapse
|
10
|
Gacem MA, Abd-Elsalam KA. Nanomaterials for the Reduction of Mycotoxins in Cereals. CEREAL DISEASES: NANOBIOTECHNOLOGICAL APPROACHES FOR DIAGNOSIS AND MANAGEMENT 2022:371-406. [DOI: 10.1007/978-981-19-3120-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Salimova D, Dalinova A, Dubovik V, Senderskiy I, Stepanycheva E, Tomilova O, Hu Q, Berestetskiy A. Entomotoxic Activity of the Extracts from the Fungus, Alternaria tenuissima and Its Major Metabolite, Tenuazonic Acid. J Fungi (Basel) 2021; 7:774. [PMID: 34575812 PMCID: PMC8468458 DOI: 10.3390/jof7090774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
The study of fungal antibiotics in their competitive interactions with arthropods may lead to the development of novel biorational insecticides. Extracts of Alternaria tenuissima MFP253011 obtained using various methods showed a wide range of biological activities, including entomotoxic properties. Analysis of their composition and bioactivity allowed us to reveal several known mycotoxins and unidentified compounds that may be involved in the entomotoxic activity of the extracts. Among them, tenuazonic acid (TeA), which was the major component of the A. tenuissima extracts, was found the most likely to have larvicidal activity against Galleria mellonella. In the intrahaemocoel injection bioassay, TeA was toxic to G. mellonella and of Zophobas morio with an LT50 of 6 and 2 days, respectively, at the level of 50 µg/larva. Administered orally, TeA inhibited the growth of G. mellonella larvae and caused mortality of Acheta domesticus adults (LT50 7 days) at a concentration of 250 µg/g of feed. TeA showed weak contact intestinal activity against the two phytophages, Tetranychus urticae and Schizaphis graminum, causing 15% and 27% mortality at a concentration of 1 mg/mL, respectively. TeA was cytotoxic to the Sf9 cell line (IC50 25 µg/mL). Thus, model insects such as G. mellonella could be used for further toxicological characterization of TeA.
Collapse
Affiliation(s)
- Dilara Salimova
- Department of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Podbelskogo Shosse, 3, Pushkin, 196608 Saint-Petersburg, Russia; (D.S.); (A.D.); (V.D.); (I.S.); (E.S.)
| | - Anna Dalinova
- Department of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Podbelskogo Shosse, 3, Pushkin, 196608 Saint-Petersburg, Russia; (D.S.); (A.D.); (V.D.); (I.S.); (E.S.)
| | - Vsevolod Dubovik
- Department of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Podbelskogo Shosse, 3, Pushkin, 196608 Saint-Petersburg, Russia; (D.S.); (A.D.); (V.D.); (I.S.); (E.S.)
| | - Igor Senderskiy
- Department of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Podbelskogo Shosse, 3, Pushkin, 196608 Saint-Petersburg, Russia; (D.S.); (A.D.); (V.D.); (I.S.); (E.S.)
| | - Elena Stepanycheva
- Department of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Podbelskogo Shosse, 3, Pushkin, 196608 Saint-Petersburg, Russia; (D.S.); (A.D.); (V.D.); (I.S.); (E.S.)
| | - Oksana Tomilova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, 630091 Novosibirsk, Russia;
| | - Qiongbo Hu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Alexander Berestetskiy
- Department of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Podbelskogo Shosse, 3, Pushkin, 196608 Saint-Petersburg, Russia; (D.S.); (A.D.); (V.D.); (I.S.); (E.S.)
| |
Collapse
|
12
|
Lu R, Tendal K, Frederiksen MW, Uhrbrand K, Li Y, Madsen AM. Strong variance in the inflammatory and cytotoxic potentials of Penicillium and Aspergillus species from cleaning workers' exposure in nursing homes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138231. [PMID: 32408454 DOI: 10.1016/j.scitotenv.2020.138231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Penicillium and Aspergillus are among the dominant genera of fungi in many environments. Exposure to these fungi may cause inflammation-related health effects, however the knowledge about this at species level is limited. The aim of this study was to obtain knowledge about cleaning workers' exposure to fungi and to investigate the total inflammatory potential (TIP) and the cytotoxic potential of fungal species. The fungi were obtained from the personal exposure of cleaning workers' in five nursing homes. In total 271 fungal isolates were identified using MALDI-TOF MS. The TIP and cytotoxic potential were determined for 30 different fungal isolates covering 17 species in an in vitro assay by exposing HL-60 cells to the fungal spores of each isolate. The geometric mean exposure of the cleaning workers was 351 CFU fungi/m3 air. We showed that the TIP and cytotoxicity varied among both species and isolates. At the two lowest doses, there was a positive relationship between spore concentration and TIP. The species with highest TIPs were A. candidus and P. italicum, while the most cytotoxic ones were A. niger and A. fumigatus. There was no obvious relationship between the TIP of an isolate and its cytotoxicity. The results of this study provide a better understanding of the inflammatory potential and cytotoxicity of different environmental fungal species and contribute to the risk evaluation of exposure to different Penicillium and Aspergillus species.
Collapse
Affiliation(s)
- Rui Lu
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark; School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kira Tendal
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Katrine Uhrbrand
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Yanpeng Li
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
13
|
Pan R, Bai X, Chen J, Zhang H, Wang H. Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy: A Literature Review. Front Microbiol 2019; 10:294. [PMID: 30863377 PMCID: PMC6399155 DOI: 10.3389/fmicb.2019.00294] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
Microbial secondary metabolites (MSMs) have played and continue to play a highly significant role in the drug discovery and development process. Genetically, MSM chemical structures are biologically synthesized by microbial gene clusters. Recently, however, the speed of new bioactive MSM discovery has been slowing down due to consistent employment of conventional cultivation and isolation procedure. In order to alleviate this challenge, a number of new approaches have been developed. The strategy of one strain many compounds (OSMAC) has been shown as a simple and powerful tool that can activate many silent biogenetic gene clusters in microorganisms to make more natural products. This review highlights important and successful examples using OSMAC approaches, which covers changing medium composition and cultivation status, co-cultivation with other strain(s), adding enzyme inhibitor(s) and MSM biosynthetic precursor(s). Available evidences had shown that variation of cultivation condition is the most effective way to produce more MSMs and facilitate the discovery of new therapeutic agents.
Collapse
Affiliation(s)
- Rui Pan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jianwei Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
14
|
Lu Y, Ye C, Che J, Xu X, Shao D, Jiang C, Liu Y, Shi J. Genomic sequencing, genome-scale metabolic network reconstruction, and in silico flux analysis of the grape endophytic fungus Alternaria sp. MG1. Microb Cell Fact 2019; 18:13. [PMID: 30678677 PMCID: PMC6345013 DOI: 10.1186/s12934-019-1063-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Alternaria sp. MG1, an endophytic fungus isolated from grape, is a native producer of resveratrol, which has important application potential. However, the metabolic characteristics and physiological behavior of MG1 still remains mostly unraveled. In addition, the resveratrol production of the strain is low. Thus, the whole-genome sequencing is highly required for elucidating the resveratrol biosynthesis pathway. Furthermore, the metabolic network model of MG1 was constructed to provide a computational guided approach for improving the yield of resveratrol. RESULTS Firstly, a draft genomic sequence of MG1 was generated with a size of 34.7 Mbp and a GC content of 50.96%. Genome annotation indicated that MG1 possessed complete biosynthesis pathways for stilbenoids, flavonoids, and lignins. Eight secondary metabolites involved in these pathways were detected by GC-MS analysis, confirming the metabolic diversity of MG1. Furthermore, the first genome-scale metabolic network of Alternaria sp. MG1 (named iYL1539) was reconstructed, accounting for 1539 genes, 2231 metabolites, and 2255 reactions. The model was validated qualitatively and quantitatively by comparing the in silico simulation with experimental data, and the results showed a high consistency. In iYL1539, 56 genes were identified as growth essential in rich medium. According to constraint-based analysis, the importance of cofactors for the resveratrol biosynthesis was successfully demonstrated. Ethanol addition was predicted in silico to be an effective method to improve resveratrol production by strengthening acetyl-CoA synthesis and pentose phosphate pathway, and was verified experimentally with a 26.31% increase of resveratrol. Finally, 6 genes were identified as potential targets for resveratrol over-production by the recently developed methodology. The target-genes were validated using salicylic acid as elicitor, leading to an increase of resveratrol yield by 33.32% and the expression of gene 4CL and CHS by 1.8- and 1.6-fold, respectively. CONCLUSIONS This study details the diverse capability and key genes of Alternaria sp. MG1 to produce multiple secondary metabolites. The first model of the species Alternaria was constructed, providing an overall understanding of the physiological behavior and metabolic characteristics of MG1. The model is a highly useful tool for enhancing productivity by rational design of the metabolic pathway for resveratrol and other secondary metabolites.
Collapse
Affiliation(s)
- Yao Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, 710072, Shaanxi, China
| | - Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jinxin Che
- Department of Biological and Food Engineering, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, 710072, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, 710072, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, 710072, Shaanxi, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
15
|
Jiang LX, Han LL, Wang HP, Xu JW, Xiao JH. Improved production of jiangxienone in submerged fermentation of Cordyceps jiangxiensis under nitrogen deficiency. Bioprocess Biosyst Eng 2018; 41:1417-1423. [PMID: 29948214 DOI: 10.1007/s00449-018-1970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
Abstract
Jiangxienone produced by Cordyceps jiangxiensis exhibits significant cytotoxicity and good selectivity against various human cancer cells, especially gastric cancer cells. In this work, the effect of nitrogen deficiency on the accumulation of jiangxienone and the transcription levels of jiangxienone biosynthesis genes was studied in submerged fermentation of C. jiangxiensis. Results showed that accumulation of jiangxienone was improved under nitrogen deficiency condition. A maximal jiangxienone content of 3.2 µg/g cell dry weight was reached at 5 mM glutamine, and it was about 8.9-fold higher than that obtained at 60 mM glutamine (control). The transcription levels of the biosynthetic pathway genes hmgr and sqs and the nitrogen regulatory gene areA were upregulated by 7-, 14-, and 28-fold, respectively, in culture with 5 mM glutamine compared to the control. It was hypothesized that the jiangxienone biosynthesis may involve the mevalonate pathway in C. jiangxiensis. Taken together, our study indicated that nitrogen deficiency is an efficient strategy for enhancing jiangxienone accumulation in submerged fermentation of C. jiangxiensis, which is useful for further understanding the regulation of jiangxienone biosynthesis.
Collapse
Affiliation(s)
- Lu-Xi Jiang
- Division of Applied Mycology and Biochemical Pharmacy, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Li-Liang Han
- Division of Applied Mycology and Biochemical Pharmacy, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Hui-Ping Wang
- Department of Neurology, Kunming Children's Hospital, Kunming Medical University, Kunming, 650228, People's Republic of China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Jian-Hui Xiao
- Division of Applied Mycology and Biochemical Pharmacy, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People's Republic of China.
| |
Collapse
|
16
|
Gracida-Rodríguez J, Gómez-Valadez A, Tovar-Jiménez X, Amaro-Reyes A, Arana-Cuenca A, Zamudio-Pérez E. Optimization of the biosynthesis of naphthoquinones by endophytic fungi isolated of Ferocactus latispinus. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Heryani H, Putra MD. Kinetic study and modeling of biosurfactant production using Bacillus sp. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
Characterisation of a flavonoid ligand of the fungal protein Alt a 1. Sci Rep 2016; 6:33468. [PMID: 27633190 PMCID: PMC5025882 DOI: 10.1038/srep33468] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Spores of pathogenic fungi are virtually ubiquitous and cause human disease and severe losses in crops. The endophytic fungi Alternaria species produce host-selective phytotoxins. Alt a 1 is a strongly allergenic protein found in A. alternata that causes severe asthma. Despite the well-established pathogenicity of Alt a 1, the molecular mechanisms underlying its action and physiological function remain largely unknown. To gain insight into the role played by this protein in the pathogenicity of the fungus, we studied production of Alt a 1 and its activity in spores. We found that Alt a 1 accumulates inside spores and that its release with a ligand is pH-dependent, with optimum production in the 5.0-6.5 interval. The Alt a 1 ligand was identified as a methylated flavonoid that inhibits plant root growth and detoxifies reactive oxygen species. We also found that Alt a 1 changes its oligomerization state depending on the pH of the surrounding medium and that these changes facilitate the release of the ligand. Based on these results, we propose that release of Alt a 1 should be a pathogenic target in approaches used to block plant defenses and consequently to favor fungal entry into the plant.
Collapse
|
19
|
Juan C, Oueslati S, Mañes J. Evaluation of Alternaria mycotoxins in strawberries: quantification and storage condition. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:861-8. [PMID: 27103180 DOI: 10.1080/19440049.2016.1177375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alternariol (AOH), alternariol methyl ether (AME) and tentoxin (TEN) are Alternaria mycotoxins produced by the most common post-harvest pathogens of fruits. The production of these metabolites depends on several environmental factors, mainly temperature, water activity, pH and the technological treatments that have been applied to the product. In this study, the occurrence of AOH, AME and TEN was evaluated in strawberries samples stored at different temperatures ranges (at 22 ± 2 or 6 ± 2°C) and different periods (up to 1 month) simulating the current practice of consumer's storage conditions. Sample extraction was performed using a liquid-liquid extraction method prior to LC-MS/MS analysis. AOH was the most prevalent mycotoxins with a 42% at strawberries stored at (22 ± 2)°C and 37% stored at (6 ± 2)°C. The highest AOH levels were found in samples conserved at (22 ± 2)°C ranging between 26 and 752 ng g(-1). AME levels ranged between 11 and 137 ng g(-)(1), which were found mainly in stored samples at (6 ± 2)°C for more than 28 days. None sample presented levels of TEN in either of the studied conditions.
Collapse
Affiliation(s)
- Cristina Juan
- a Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy , University of Valencia , Valencia , Spain
| | - Souheib Oueslati
- b Laboratoire Materiaux, Molécules et Applications (LMMA) , Institut Préparatoire aux Etudes Scientifiques et Techniques (IPEST) , La Marsa , Tunisia
| | - Jordi Mañes
- a Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy , University of Valencia , Valencia , Spain
| |
Collapse
|
20
|
Hashem A, Fathi Abd-Allah E, Sultan Al-Obeed R, Abdullah Alqarawi A, Alwathnani HA. Effect of Carbon, Nitrogen Sources and Water Activity on Growth and Ochratoxin Production of Aspergillus carbonarius (Bainier) Thom. Jundishapur J Microbiol 2015; 8:e17569. [PMID: 25825649 PMCID: PMC4362018 DOI: 10.5812/jjm.17569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/13/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ochratoxin A (OTA) is a toxic secondary metabolite produced by fungi belonging to Aspergillus and Penicillium genera. The production of OTA is influenced by environmental conditions and nutritional requirements. The postharvest application of bunches of table grape fruit (TGF), with water activity of 0.8 aw, was highly effective for controlling OTA contamination in vitro and in vivo (table grape). OBJECTIVES The aim of this study was to determine the influence of environmental conditions and nutritional requirements on growth and OTA production by Aspergillus carbonarius, as well as, the impact of water activity on OTA production and growth characters of A. carbonarius. Furthermore, we also examined the influence of the application of different levels of water activity (aw 0.8) on the preservation of the general appearance of TGF and control of their contamination with OTA. MATERIALS AND METHODS The growth and OTA production by A. carbonarius were studied using glucose-ammonium nitrate salt broth medium. Effect of water activity was studied using glycerol (0.80, 0.85, 0.90, and 0.98 aw). The bunches of table grape fruits were immersed in glycerol solution (equivalent to 0.80 aw) and placed as a double layer in cardboard boxes (25 × 35 × 10 cm). The boxes were stored at 20°C for 15 days to simulate local market conditions. RESULTS The maximum OTA production by A. carbonarius was observed on broth medium after eight days of incubation at 20°C, with pH 4, and fructose and ammonium nitrate supplementation as carbon and nitrogen sources, respectively. The water activity (0.9, 0.85 aw) caused significant decrease in OTA production by A. carbonarius. The postharvest application of water activity (0.8 aw) was highly effective for maintenance of the table grape quality, which was expressed as weight loss, firmness and decay, while it also controlled OTA contamination of fruits under concept of local market conditions. CONCLUSIONS Our results reported that deterioration of TGF by A. carbonarius could be minimized by application of aw. Our experiments were performed under conditions of local markets, which support the economy of many thousands of families in Egypt, especially in the poor rural areas. In future adequate research is required to use these technologies commercially.
Collapse
Affiliation(s)
- Abeer Hashem
- Department of Mycology and Plant Disease Survey, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rashid Sultan Al-Obeed
- Plant Production Department, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Abdullah Alqarawi
- Plant Production Department, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hend Awad Alwathnani
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Putra MD, Abasaeed AE, Atiyeh HK, Al-Zahrani SM, Gaily MH, Sulieman AK, Zeinelabdeen MA. Kinetic Modeling and Enhanced Production of Fructose and Ethanol From Date Fruit Extract. CHEM ENG COMMUN 2014. [DOI: 10.1080/00986445.2014.968711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Chikezie PC, Ojiako OA. Cyanide and Aflatoxin Loads of Processed Cassava (Manihot esculenta) Tubers (Garri) in Njaba, Imo State, Nigeria. Toxicol Int 2014; 20:261-7. [PMID: 24403736 PMCID: PMC3877494 DOI: 10.4103/0971-6580.121679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objectives: The present study sought to investigate the role of palm oil, in conjunction with the duration of fermentation, on cyanide and aflatoxin (AFT) loads of processed cassava tubers (Garri). Materials and Methods: Matured cassava (Manihot esculenta Crantz) tubers were harvested from three different locations (Akunna, Mkporo-Oji and Durungwu) in Njaba Local Government Area, Imo State, Nigeria. The cassava tubers were processed into Garri according to standard schemes with required modifications and measured for cyanide content using titrimetric methods. Samples of Garri for determination of AFT levels were stored for 30 days before the commencement of spectrophotometric analysis. Results: Cyanide content of peeled cassava tubers was within the range of 4.07 ± 0.16-5.20 ± 0.19 mg hydrocyanic acid (HCN) equivalent/100 g wet weight, whereas the various processed cassava tubers was within the range of 1.44 ± 0.34-3.95 ± 0.23 mg HCN equivalents/100 g. For the 48 h fermentation scheme, Garri treated with palm oil exhibited marginal reduction in cyanide contents by 0.96%, 3.52% and 3.69%, whereas 4 h fermentation scheme is in concurrence with palm oil treatment caused 4.42%, 7.47% and 5.15% elimination of cyanide contents compared with corresponding untreated Garri samples (P > 0.05). Levels of AFT of the various Garri samples ranged between 0.26 ± 0.07 and 0.55 ± 0.04 ppb/100 g. There was no significant difference (P > 0.05) in AFT levels among the various samples in relation to their corresponding sources. Conclusion: The present study showed that the 48 h fermentation scheme for Garri production caused significant (P < 0.05) reduction, but did not obliterate the cyanide content of cassava tubers. Conversely, the 48 h fermentation scheme promoted the elevation of AFT levels, but was relatively reduced in Garri samples treated with palm oil.
Collapse
Affiliation(s)
| | - Okey A Ojiako
- Department of Biochemistry, Federal University of Technology, Owerri, Nigeria
| |
Collapse
|
23
|
AMATULLI MT, FANELLI F, MORETTI A, MULE G, LOGRIECO AF. Alternaria species and mycotoxins associated to black point of cereals. ACTA ACUST UNITED AC 2013. [DOI: 10.2520/myco.63.39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Saha D, Fetzner R, Burkhardt B, Podlech J, Metzler M, Dang H, Lawrence C, Fischer R. Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in Alternaria alternata. PLoS One 2012; 7:e40564. [PMID: 22792370 PMCID: PMC3391263 DOI: 10.1371/journal.pone.0040564] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/09/2012] [Indexed: 11/18/2022] Open
Abstract
Alternaria alternata produces more than 60 secondary metabolites, among which alternariol (AOH) and alternariol-9-methyl ether (AME) are important mycotoxins. Whereas the toxicology of these two polyketide-based compounds has been studied, nothing is known about the genetics of their biosynthesis. One of the postulated core enzymes in the biosynthesis of AOH and AME is polyketide synthase (PKS). In a draft genome sequence of A. alternata we identified 10 putative PKS-encoding genes. The timing of the expression of two PKS genes, pksJ and pksH, correlated with the production of AOH and AME. The PksJ and PksH proteins are predicted to be 2222 and 2821 amino acids in length, respectively. They are both iterative type I reducing polyketide synthases. PksJ harbors a peroxisomal targeting sequence at the C-terminus, suggesting that the biosynthesis occurs at least partly in these organelles. In the vicinity of pksJ we found a transcriptional regulator, altR, involved in pksJ induction and a putative methyl transferase, possibly responsible for AME formation. Downregulation of pksJ and altR caused a large decrease of alternariol formation, suggesting that PksJ is the polyketide synthase required for the postulated Claisen condensations during the biosynthesis. No other enzymes appeared to be required. PksH downregulation affected pksJ expression and thus caused an indirect effect on AOH production.
Collapse
Affiliation(s)
- Debjani Saha
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ramona Fetzner
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Britta Burkhardt
- Department of Food Chemistry, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Joachim Podlech
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Organic Chemistry, Karlsruhe, Germany
| | - Manfred Metzler
- Department of Food Chemistry, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ha Dang
- Virginia Bioinformatics Institute, Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Christopher Lawrence
- Virginia Bioinformatics Institute, Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|