1
|
Gustafsson J, Taprogge J. Future trends for patient-specific dosimetry methodology in molecular radiotherapy. Phys Med 2023; 115:103165. [PMID: 37880071 DOI: 10.1016/j.ejmp.2023.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Molecular radiotherapy is rapidly expanding, and new radiotherapeutics are emerging. The majority of treatments is still performed using empirical fixed activities and not tailored for individual patients. Molecular radiotherapy dosimetry is often seen as a promising candidate that would allow personalisation of treatments as outcome should ultimately depend on the absorbed doses delivered and not the activities administered. The field of molecular radiotherapy dosimetry has made considerable progress towards the feasibility of routine clinical dosimetry with reasonably accurate absorbed-dose estimates for a range of molecular radiotherapy dosimetry applications. A range of challenges remain with respect to the accurate quantification, assessment of time-integrated activity and absorbed dose estimation. In this review, we summarise a range of technological and methodological advancements, mainly focussed on beta-emitting molecular radiotherapeutics, that aim to improve molecular radiotherapy dosimetry to achieve accurate, reproducible, and streamlined dosimetry. We describe how these new technologies can potentially improve the often time-consuming considered process of dosimetry and provide suggestions as to what further developments might be required.
Collapse
Affiliation(s)
| | - Jan Taprogge
- National Radiotherapy Trials Quality Assurance (RTTQA) Group, Joint Department of Physics, Royal Marsden NHSFT, Downs Road, Sutton SM2 5PT, United Kingdom; The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, United Kingdom
| |
Collapse
|
2
|
Dietze MMA, de Jong HWAM. Progress in large field-of-view interventional planar scintigraphy and SPECT imaging. Expert Rev Med Devices 2022; 19:393-403. [PMID: 35695477 DOI: 10.1080/17434440.2022.2088355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Handheld gamma cameras and gamma probes have been successfully implemented for enabling nuclear image or radio-guidance in minimally-invasive procedures. There is an opportunity for large field-of-view interventional planar scintigraphy and SPECT imaging to complement these small field-of-view devices for two reasons. First, a large field-of-view camera enables imaging of relatively larger organs and activity accumulations that are not close to the patient's skin. And second, more precise corrections can be implemented in the SPECT reconstruction algorithm, improving its quality. AREAS COVERED This review article discusses the progress that has been made in the field of large field-of-view interventional planar scintigraphy and SPECT imaging. First, an overview of planar scintigraphy and SPECT is provided. Second, an exploration is given of the potential applications where large field-of-view interventional planar scintigraphy and SPECT imaging may be employed. And third, the requirements for scanner hardware are discussed and an overview of the possible system configurations is provided. EXPERT OPINION We believe that there is an opportunity for large field-of-view interventional planar scintigraphy and SPECT imaging to assist clinical workflows. A major effort is now required to evaluate the prototype systems in clinical studies so that valuable practical experience can be obtained.
Collapse
Affiliation(s)
- Martijn M A Dietze
- Radiology and Nuclear Medicine, Utrecht University and University Medical Center, Utrecht, Netherlands
| | - Hugo W A M de Jong
- Radiology and Nuclear Medicine, Utrecht University and University Medical Center, Utrecht, Netherlands
| |
Collapse
|
3
|
Chiesa C, Sjogreen-Gleisner K, Walrand S, Strigari L, Flux G, Gear J, Stokke C, Gabina PM, Bernhardt P, Konijnenberg M. EANM dosimetry committee series on standard operational procedures: a unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres. EJNMMI Phys 2021; 8:77. [PMID: 34767102 PMCID: PMC8589932 DOI: 10.1186/s40658-021-00394-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
The aim of this standard operational procedure is to standardize the methodology employed for the evaluation of pre- and post-treatment absorbed dose calculations in 90Y microsphere liver radioembolization. Basic assumptions include the permanent trapping of microspheres, the local energy deposition method for voxel dosimetry, and the patient-relative calibration method for activity quantification.The identity of 99mTc albumin macro-aggregates (MAA) and 90Y microsphere biodistribution is also assumed. The large observed discrepancies in some patients between 99mTc-MAA predictions and actual 90Y microsphere distributions for lesions is discussed. Absorbed dose predictions to whole non-tumoural liver are considered more reliable and the basic predictors of toxicity. Treatment planning based on mean absorbed dose delivered to the whole non-tumoural liver is advised, except in super-selective treatments.Given the potential mismatch between MAA simulation and actual therapy, absorbed doses should be calculated both pre- and post-therapy. Distinct evaluation between target tumours and non-tumoural tissue, including lungs in cases of lung shunt, are vital for proper optimization of therapy. Dosimetry should be performed first according to a mean absorbed dose approach, with an optional, but important, voxel level evaluation. Fully corrected 99mTc-MAA Single Photon Emission Computed Tomography (SPECT)/computed tomography (CT) and 90Y TOF PET/CT are regarded as optimal acquisition methodologies, but, for institutes where SPECT/CT is not available, non-attenuation corrected 99mTc-MAA SPECT may be used. This offers better planning quality than non dosimetric methods such as Body Surface Area (BSA) or mono-compartmental dosimetry. Quantitative 90Y bremsstrahlung SPECT can be used if dedicated correction methods are available.The proposed methodology is feasible with standard camera software and a spreadsheet. Available commercial or free software can help facilitate the process and improve calculation time.
Collapse
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine Unit, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Stephan Walrand
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - Lidia Strigari
- Medical Physics Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Glenn Flux
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Caroline Stokke
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Pablo Minguez Gabina
- Department of Medical Physics and Radiation Protection, Gurutzeta/Cruces University Hospital, Barakaldo, Spain
| | - Peter Bernhardt
- Department of Radiation Physics, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Labour J, Boissard P, Baudier T, Khayi F, Kryza D, Durebex PV, Martino SPD, Mognetti T, Sarrut D, Badel JN. Yttrium-90 quantitative phantom study using digital photon counting PET. EJNMMI Phys 2021; 8:56. [PMID: 34318383 PMCID: PMC8316557 DOI: 10.1186/s40658-021-00402-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PET imaging of 90Y-microsphere distribution following radioembolisation is challenging due to the count-starved statistics from the low branching ratio of e+/e- pair production during 90Y decay. PET systems using silicon photo-multipliers have shown better 90Y image quality compared to conventional photo-multiplier tubes. The main goal of the present study was to evaluate reconstruction parameters for different phantom configurations and varying listmode acquisition lengths to improve quantitative accuracy in 90Y dosimetry, using digital photon counting PET/CT. METHODS Quantitative PET and dosimetry accuracy were evaluated using two uniform cylindrical phantoms specific for PET calibration validation. A third body phantom with a 9:1 hot sphere-to-background ratio was scanned at different activity concentrations of 90Y. Reconstructions were performed using OSEM algorithm with varying parameters. Time-of-flight and point-spread function modellings were included in all reconstructions. Absorbed dose calculations were carried out using voxel S-values convolution and were compared to reference Monte Carlo simulations. Dose-volume histograms and root-mean-square deviations were used to evaluate reconstruction parameter sets. Using listmode data, phantom and patient datasets were rebinned into various lengths of time to assess the influence of count statistics on the calculation of absorbed dose. Comparisons between the local energy deposition method and the absorbed dose calculations were performed. RESULTS Using a 2-mm full width at half maximum post-reconstruction Gaussian filter, the dosimetric accuracy was found to be similar to that found with no filter applied but also reduced noise. Larger filter sizes should not be used. An acquisition length of more than 10 min/bed reduces image noise but has no significant impact in the quantification of phantom or patient data for the digital photon counting PET. 3 iterations with 10 subsets were found suitable for large spheres whereas 1 iteration with 30 subsets could improve dosimetry for smaller spheres. CONCLUSION The best choice of the combination of iterations and subsets depends on the size of the spheres. However, one should be careful on this choice, depending on the imaging conditions and setup. This study can be useful in this choice for future studies for more accurate 90Y post-dosimetry using a digital photon counting PET/CT.
Collapse
Affiliation(s)
- Joey Labour
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | | | - Thomas Baudier
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - Fouzi Khayi
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - David Kryza
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- Hospices Civils de Lyon; Université de Lyon; Université Claude Bernard Lyon 1; LAGEPP UMR 5007 CNRS, Lyon, France
| | | | | | | | - David Sarrut
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - Jean-Noël Badel
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| |
Collapse
|
5
|
Ahmad MS, Suardi N, Shukri A, Mohammad H, Oglat AA, Alarab A, Makhamrah O. Chemical Characteristics, Motivation and Strategies in choice of Materials used as Liver Phantom: A Literature Review. J Med Ultrasound 2020; 28:7-16. [PMID: 32368444 PMCID: PMC7194418 DOI: 10.4103/jmu.jmu_4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022] Open
Abstract
Liver phantoms have been developed as an alternative to human tissue and have been used for different purposes. In this article, the items used for liver phantoms fabrication are mentioned same as in the previous literature reviews. Summary and characteristics of these materials are presented. The main factors that need to be available in the materials used for fabrication in computed tomography, ultrasound, magnetic resonance imaging, and nuclear medicine were analyzed. Finally, the discussion focuses on some purposes and aims of the liver phantom fabrication for use in several areas such as training, diagnoses of different diseases, and treatment planning for therapeutic strategies – for example, in selective internal radiation therapy, stereotactic body radiation therapy, laser-induced thermotherapy, radiofrequency ablation, and microwave coagulation therapy. It was found that different liver substitutes can be developed to fulfill the different requirements.
Collapse
Affiliation(s)
- Muntaser S Ahmad
- Department of Medical Physics and Radiation Science, School of Physics, Universiti Sains Malaysia, Malaysia
| | - Nursakinah Suardi
- Department of Medical Physics and Radiation Science, School of Physics, Universiti Sains Malaysia, Malaysia
| | - Ahmad Shukri
- Department of Medical Physics and Radiation Science, School of Physics, Universiti Sains Malaysia, Malaysia
| | - Hjouj Mohammad
- Department of Medical Imaging, Faculty of Health Professions, Al-Quds University, Abu Deis - Main Campus, Jerusalem, Palestine
| | - Ammar A Oglat
- Department of Medical Imaging, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, Jordan, Palestine
| | - Azzam Alarab
- Department of Medical Imaging, Faculty of Allied Medical Health, Palestine Ahlyia University, Bethlehem, Palestine
| | - Osama Makhamrah
- Department of Medical Imaging, Faculty of Health Professions, Al-Quds University, Abu Deis - Main Campus, Jerusalem, Palestine
| |
Collapse
|
6
|
|
7
|
Bastiaannet R, Kappadath SC, Kunnen B, Braat AJAT, Lam MGEH, de Jong HWAM. The physics of radioembolization. EJNMMI Phys 2018; 5:22. [PMID: 30386924 PMCID: PMC6212377 DOI: 10.1186/s40658-018-0221-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Radioembolization is an established treatment for chemoresistant and unresectable liver cancers. Currently, treatment planning is often based on semi-empirical methods, which yield acceptable toxicity profiles and have enabled the large-scale application in a palliative setting. However, recently, five large randomized controlled trials using resin microspheres failed to demonstrate a significant improvement in either progression-free survival or overall survival in both hepatocellular carcinoma and metastatic colorectal cancer. One reason for this might be that the activity prescription methods used in these studies are suboptimal for many patients.In this review, the current dosimetric methods and their caveats are evaluated. Furthermore, the current state-of-the-art of image-guided dosimetry and advanced radiobiological modeling is reviewed from a physics' perspective. The current literature is explored for the observation of robust dose-response relationships followed by an overview of recent advancements in quantitative image reconstruction in relation to image-guided dosimetry.This review is concluded with a discussion on areas where further research is necessary in order to arrive at a personalized treatment method that provides optimal tumor control and is clinically feasible.
Collapse
Affiliation(s)
- Remco Bastiaannet
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - S. Cheenu Kappadath
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Unit 1352, Houston, TX 77030 USA
| | - Britt Kunnen
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Arthur J. A. T. Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Marnix G. E. H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Hugo W. A. M. de Jong
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
8
|
Low-dose 90Y PET/CT imaging optimized for lesion detectability and quantitative accuracy. Nucl Med Commun 2017; 38:985-997. [DOI: 10.1097/mnm.0000000000000742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Beijst C, Kunnen B, Lam MGEH, de Jong HWAM. Technical Advances in Image Guidance of Radionuclide Therapy. J Nucl Med Technol 2017; 45:272-279. [PMID: 29042472 DOI: 10.2967/jnmt.117.190991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022] Open
Abstract
Internal radiation therapy with radionuclides (i.e., radionuclide therapy) owes its success to the many advantages over other, more conventional, treatment options. One distinct advantage of radionuclide therapies is the potential to use (part of) the emitted radiation for imaging of the radionuclide distribution. The combination of diagnostic and therapeutic properties in a set of matched radiopharmaceuticals (sometimes combined in a single radiopharmaceutical) is often referred to as theranostics and allows accurate diagnostic imaging before therapy. The use of imaging benefits treatment planning, dosimetry, and assessment of treatment response. This paper focuses on a selection of advances in imaging technology relevant for image guidance of radionuclide therapy. This involves developments in nuclear imaging modalities, as well as other anatomic and functional imaging modalities. The quality and quantitative accuracy of images used for guidance of radionuclide therapy is continuously being improved, which in turn may improve the therapeutic outcome and efficiency of radionuclide therapies.
Collapse
Affiliation(s)
- Casper Beijst
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and .,Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Britt Kunnen
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and.,Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| | - Hugo W A M de Jong
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| |
Collapse
|
10
|
Li T, Ao ECI, Lambert B, Brans B, Vandenberghe S, Mok GSP. Quantitative Imaging for Targeted Radionuclide Therapy Dosimetry - Technical Review. Theranostics 2017; 7:4551-4565. [PMID: 29158844 PMCID: PMC5695148 DOI: 10.7150/thno.19782] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
Targeted radionuclide therapy (TRT) is a promising technique for cancer therapy. However, in order to deliver the required dose to the tumor, minimize potential toxicity in normal organs, as well as monitor therapeutic effects, it is important to assess the individualized internal dosimetry based on patient-specific data. Advanced imaging techniques, especially radionuclide imaging, can be used to determine the spatial distribution of administered tracers for calculating the organ-absorbed dose. While planar scintigraphy is still the mainstream imaging method, SPECT, PET and bremsstrahlung imaging have promising properties to improve accuracy in quantification. This article reviews the basic principles of TRT and discusses the latest development in radionuclide imaging techniques for different theranostic agents, with emphasis on their potential to improve personalized TRT dosimetry.
Collapse
Affiliation(s)
- Tiantian Li
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Edwin C. I. Ao
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Bieke Lambert
- Dept of Radiology and Nuclear medicine, Ghent University, De Pintelaan 185 9000 Gent, Belgium
- AZ Maria Middelares, Buiten-Ring-Sint-Denijs 30, 9000 Gent, Belgium
| | - Boudewijn Brans
- Dept of Nuclear Medicine, UZ Ghent-Ghent University, St-Pietersnieuwstraat 41, 9000 Gent, Belgium
| | - Stefaan Vandenberghe
- MEDISIP-ELIS-IBITECH-IMEC, Ghent University, St-Pietersnieuwstraat 41, 9000 Gent, Belgium
| | - Greta S. P. Mok
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
11
|
Analysis of the influence of 111In on 90Y-bremsstrahlung SPECT based on Monte Carlo simulation. Ann Nucl Med 2016; 30:675-681. [PMID: 27510893 DOI: 10.1007/s12149-016-1112-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE 90Y-ibritumomab tiuxetan (Zevalin) which is used for the treatment of malignant lymphomas can be used for SPECT imaging based on bremsstrahlung from 90Y beta particles. However, gamma rays emitted by 111In, which is administered to evaluate the indication for the treatment, contaminate the 90Y bremsstrahlung images. Our objective is to investigate the influence of 111In on the 90Y SPECT images using Monte Carlo simulation. METHODS We used an in-house developed simulation code for the Monte Carlo simulation of electrons and photons (MCEP). Two hot spheres with diameters of 40 mm were put in an elliptical phantom. Both spheres ("sphere 1" and "sphere 2") were filled with 90Y and 111In mixed solutions. The activities of 90Y in sphere 1 and sphere 2 were 241 and 394 kBq/mL, respectively, and the ones of 111In were 8.14 and 13.3 kBq/mL, respectively. The background activity of 90Y was 38.6 kBq/mL, whereas that of 111In was 1.30 kBq/mL; moreover, the acquisition time was 30 min. Two energy windows were used: one is 90-190 keV included the 111In photopeak; the other is 90-160 keV. To evaluate the quality of the SPECT images, the contrast recovery coefficient (CRC) and the constant noise ratio (CNR) of the SPECT images were derived. RESULTS For the energy window between 90 and 160 keV, the 111In count was 74 % of the total. In that case, the CRC values were 30.1 and 30.7 % for "sphere 1" and "sphere 2", respectively, whereas the CNR values were 6.8 and 12.1, respectively. For the energy window between 90 and 190 keV, the 111In count reached 85 % of the total count. The CRC and CNR values were 38.6 and 40.0 % and 10.6 and 19.4, respectively. CONCLUSIONS Our simulation study revealed that the cross talk between 111In and 90Y in SPECT imaging is rather serious. Even for the energy window excluding the 111In photopeak, the count ratio of 90Y was less than 30 % of the total. However, the influence of 111In on 90Y-SPECT imaging cannot be ignored, and the count ratio because of 111In is important to estimate the density of 90Y.
Collapse
|
12
|
|
13
|
Takahashi A, Himuro K, Yamashita Y, Komiya I, Baba S, Sasaki M. Monte Carlo simulation of PET and SPECT imaging of 90Y. Med Phys 2015; 42:1926-35. [PMID: 25832083 DOI: 10.1118/1.4915545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Yittrium-90 ((90)Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because (90)Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of (90)Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation-reconstruction framework for (90)Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitatively consider the disadvantages associated with them. METHODS Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of (18)F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded (90)Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of (90)Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. RESULTS The simulated (90)Y-PET image accurately simulated the experimental results. PET image is visually superior to SPECT image because of the low background noise. The simulation reveals that the detected photon number in SPECT is comparable to that of PET, but the large fraction (approximately 75%) of scattered and penetration photons contaminates SPECT image. The lower limit of (90)Y detection in SPECT image was approximately 200 kBq/ml, while that in PET image was approximately 100 kBq/ml. CONCLUSIONS By comparing the background noise level and the image concentration profile of both the techniques, PET image quality was determined to be superior to that of bremsstrahlung SPECT. The developed simulation codes will be very useful in the future investigations of PET and bremsstrahlung SPECT imaging of (90)Y.
Collapse
Affiliation(s)
- Akihiko Takahashi
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuhiko Himuro
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuo Yamashita
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Isao Komiya
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shingo Baba
- Department of Clinical Radiology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masayuki Sasaki
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
14
|
Roshan HR, Azarm A, Mahmoudian B, Islamian JP. Advances in SPECT for Optimizing the Liver Tumors Radioembolization Using Yttrium-90 Microspheres. World J Nucl Med 2015; 14:75-80. [PMID: 26097416 PMCID: PMC4455176 DOI: 10.4103/1450-1147.157120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Radioembolization (RE) with Yttrium-90 ((90)Y) microspheres is an effective treatment for unresectable liver tumors. The activity of the microspheres to be administered should be calculated based on the type of microspheres. Technetium-99m macroaggregated albumin ((99m)Tc-MAA) single photon emission computed tomography/computed tomography (SPECT/CT) is a reliable assessment before RE to ensure the safe delivery of microspheres into the target. (90)Y bremsstrahlung SPECT imaging as a posttherapeutic assessment approach enables the reliable determination of absorbed dose, which is indispensable for the verification of treatment efficacy. This article intends to provide a review of the methods of optimizing (90)Y bremsstrahlung SPECT imaging to improve the treatment efficacy of liver tumor RE using (90)Y microspheres.
Collapse
Affiliation(s)
- Hoda Rezaei Roshan
- Department of Medical Physics, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadreza Azarm
- Department of Medical Physics, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Mahmoudian
- Department of Radiology, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalil Pirayesh Islamian
- Department of Medical Physics, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Theranostic Imaging of Yttrium-90. BIOMED RESEARCH INTERNATIONAL 2015; 2015:481279. [PMID: 26106608 PMCID: PMC4464848 DOI: 10.1155/2015/481279] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023]
Abstract
This paper overviews Yttrium-90 ((90)Y) as a theranostic and nuclear medicine imaging of (90)Y radioactivity with bremsstrahlung imaging and positron emission tomography. In addition, detection and optical imaging of (90)Y radioactivity using Cerenkov luminescence will also be reviewed. Methods and approaches for qualitative and quantitative (90)Y imaging will be briefly discussed. Although challenges remain for (90)Y imaging, continued clinical demand for predictive imaging response assessment and target/nontarget dosimetry will drive research and technical innovation to provide greater clinical utility of (90)Y as a theranostic agent.
Collapse
|
16
|
O' Doherty J. A review of 3D image-based dosimetry, technical considerations and emerging perspectives in 90Y microsphere therapy. ACTA ACUST UNITED AC 2015; 2:1-34. [PMID: 27182449 DOI: 10.17229/jdit.2015-0428-016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Yttrium-90 radioembolization (90Y-RE) is a well-established therapy for the treatment of hepatocellular carcinoma (HCC) and also of metastatic liver deposits from other malignancies. Nuclear Medicine and Cath Lab diagnostic imaging takes a pivotal role in the success of the treatment, and in order to fully exploit the efficacy of the technique and provide reliable quantitative dosimetry that are related to clinical endpoints in the era of personalized medicine, technical challenges in imaging need to be overcome. In this paper, the extensive literature of current 90Y-RE techniques and challenges facing it in terms of quantification and dosimetry are reviewed, with a focus on the current generation of 3D dosimetry techniques. Finally, new emerging techniques are reviewed which seek to overcome these challenges, such as high-resolution imaging, novel surgical procedures and the use of other radiopharmaceuticals for therapy and pre-therapeutic planning.
Collapse
Affiliation(s)
- Jim O' Doherty
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
17
|
Beijst C, Elschot M, Viergever MA, de Jong HWAM. A parallel-cone collimator for high-energy SPECT. J Nucl Med 2015; 56:476-82. [PMID: 25655627 DOI: 10.2967/jnumed.114.149658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED In SPECT using high-energy photon-emitting isotopes, such as (131)I, parallel-hole collimators with thick septa are required to limit septal penetration, at the cost of sensitivity and resolution. This study investigated a parallel-hole collimator with cone-shaped holes, which was designed to limit collimator penetration while preserving resolution and sensitivity. The objective was to demonstrate that a single-slice prototype of the parallel-cone (PC) collimator was capable of improving the image quality of high-energy SPECT. METHODS The image quality of the PC collimator was quantitatively compared with that of clinically used low-energy high-resolution (LEHR; for (99m)Tc) and high-energy general-purpose (HEGP; for (131)I and (18)F) parallel-hole collimators. First, Monte Carlo simulations of single and double point sources were performed to assess sensitivity and resolution by comparing point-spread functions (PSFs). Second, a prototype PC collimator was used in an experimental phantom study to assess and compare contrast recovery coefficients and image noise. RESULTS Monte Carlo simulations showed reduced broadening of the PSF due to collimator penetration for the PC collimator as compared with the HEGP collimator (e.g., 0.9 vs. 1.4 cm in full width at half maximum for (131)I). Simulated double point sources placed 2 cm apart were separately detectable for the PC collimator, whereas this was not the case for (131)I and (18)F at distances from the collimator face of 10 cm or more for the HEGP collimator. The sensitivity, measured over the simulated profiles as the total amount of counts per decay, was found to be higher for the LEHR and HEGP collimators than for the PC collimator (e.g., 3.1 × 10(-5) vs. 2.9 × 10(-5) counts per decay for (131)I). However, at equal noise level, phantom measurements showed that contrast recovery coefficients were similar for the PC and LEHR collimators for (99m)Tc but that the PC collimator significantly improved the contrast recovery coefficients as compared with the HEGP collimator for (131)I and (18)F. CONCLUSION High-energy SPECT imaging with a single-slice prototype of the proposed PC collimator has shown the potential for significantly improved image quality in comparison with standard parallel-hole collimators.
Collapse
Affiliation(s)
- Casper Beijst
- Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Mattijs Elschot
- Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| | - Max A Viergever
- Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Hugo W A M de Jong
- Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| |
Collapse
|
18
|
Martí-Climent JM, Prieto E, Elosúa C, Rodríguez-Fraile M, Domínguez-Prado I, Vigil C, García-Velloso MJ, Arbizu J, Peñuelas I, Richter JA. PET optimization for improved assessment and accurate quantification of 90
Y-microsphere biodistribution after radioembolization. Med Phys 2014; 41:092503. [DOI: 10.1118/1.4892383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
Cremonesi M, Chiesa C, Strigari L, Ferrari M, Botta F, Guerriero F, De Cicco C, Bonomo G, Orsi F, Bodei L, Di Dia A, Grana CM, Orecchia R. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol 2014; 4:210. [PMID: 25191640 PMCID: PMC4137387 DOI: 10.3389/fonc.2014.00210] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/23/2014] [Indexed: 12/18/2022] Open
Abstract
Radioembolization (RE) of liver cancer with 90Y-microspheres has been applied in the last two decades with notable responses and acceptable toxicity. Two types of microspheres are available, glass and resin, the main difference being the activity/sphere. Generally, administered activities are established by empirical methods and differ for the two types. Treatment planning based on dosimetry is a prerogative of few centers, but has notably gained interest, with evidence of predictive power of dosimetry on toxicity, lesion response, and overall survival (OS). Radiobiological correlations between absorbed doses and toxicity to organs at risk, and tumor response, have been obtained in many clinical studies. Dosimetry methods have evolved from the macroscopic approach at the organ level to voxel analysis, providing absorbed dose spatial distributions and dose–volume histograms (DVH). The well-known effects of the external beam radiation therapy (EBRT), such as the volume effect, underlying disease influence, cumulative damage in parallel organs, and different tolerability of re-treatment, have been observed also in RE, identifying in EBRT a foremost reference to compare with. The radiobiological models – normal tissue complication probability and tumor control probability – and/or the style (DVH concepts) used in EBRT are introduced in RE. Moreover, attention has been paid to the intrinsic different activity distribution of resin and glass spheres at the microscopic scale, with dosimetric and radiobiological consequences. Dedicated studies and mathematical models have developed this issue and explain some clinical evidences, e.g., the shift of dose to higher toxicity thresholds using glass as compared to resin spheres. This paper offers a comprehensive review of the literature incident to dosimetry and radiobiological issues in RE, with the aim to summarize the results and to identify the most useful methods and information that should accompany future studies.
Collapse
Affiliation(s)
| | | | - Lidia Strigari
- Istituto Nazionale dei Tumori Regina Elena , Rome , Italy
| | | | | | | | | | | | - Franco Orsi
- Istituto Europeo di Oncologia , Milan , Italy
| | - Lisa Bodei
- Istituto Europeo di Oncologia , Milan , Italy
| | | | | | | |
Collapse
|
20
|
Walrand S, Hesse M, Wojcik R, Lhommel R, Jamar F. Optimal design of anger camera for bremsstrahlung imaging: monte carlo evaluation. Front Oncol 2014; 4:149. [PMID: 24982849 PMCID: PMC4056384 DOI: 10.3389/fonc.2014.00149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/29/2014] [Indexed: 11/29/2022] Open
Abstract
A conventional Anger camera is not adapted to bremsstrahlung imaging and, as a result, even using a reduced energy acquisition window, geometric x-rays represent <15% of the recorded events. This increases noise, limits the contrast, and reduces the quantification accuracy. Monte Carlo (MC) simulations of energy spectra showed that a camera based on a 30-mm-thick BGO crystal and equipped with a high energy pinhole collimator is well-adapted to bremsstrahlung imaging. The total scatter contamination is reduced by a factor 10 versus a conventional NaI camera equipped with a high energy parallel hole collimator enabling acquisition using an extended energy window ranging from 50 to 350 keV. By using the recorded event energy in the reconstruction method, shorter acquisition time and reduced orbit range will be usable allowing the design of a simplified mobile gantry. This is more convenient for use in a busy catheterization room. After injecting a safe activity, a fast single photon emission computed tomography could be performed without moving the catheter tip in order to assess the liver dosimetry and estimate the additional safe activity that could still be injected. Further long running time MC simulations of realistic acquisitions will allow assessing the quantification capability of such system. Simultaneously, a dedicated bremsstrahlung prototype camera reusing PMT–BGO blocks coming from a retired PET system is currently under design for further evaluation.
Collapse
Affiliation(s)
- Stephan Walrand
- Department of Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain , Brussels , Belgium
| | - Michel Hesse
- Department of Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain , Brussels , Belgium
| | | | - Renaud Lhommel
- Department of Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain , Brussels , Belgium
| | - François Jamar
- Department of Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain , Brussels , Belgium
| |
Collapse
|
21
|
Pasciak AS, Bourgeois AC, McKinney JM, Chang TT, Osborne DR, Acuff SN, Bradley YC. Radioembolization and the Dynamic Role of (90)Y PET/CT. Front Oncol 2014; 4:38. [PMID: 24579065 PMCID: PMC3936249 DOI: 10.3389/fonc.2014.00038] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/12/2014] [Indexed: 11/13/2022] Open
Abstract
Before the advent of tomographic imaging, it was postulated that decay of (90) Y to the 0(+) excited state of (90)Zr may result in emission of a positron-electron pair. While the branching ratio for pair-production is small (~32 × 10(-6)), PET has been successfully used to image (90) Y in numerous recent patients and phantom studies. (90) Y PET imaging has been performed on a variety of PET/CT systems, with and without time-of-flight (TOF) and/or resolution recovery capabilities as well as on both bismuth-germanate and lutetium yttrium orthosilicate (LYSO)-based scanners. On all systems, resolution and contrast superior to bremsstrahlung SPECT has been reported. The intrinsic radioactivity present in LYSO-based PET scanners is a potential limitation associated with accurate quantification of (90) Y. However, intrinsic radioactivity has been shown to have a negligible effect at the high activity concentrations common in (90) Y radioembolization. Accurate quantification is possible on a variety of PET scanner models, with or without TOF, although TOF improves accuracy at lower activity concentrations. Quantitative (90) Y PET images can be transformed into 3-dimensional (3D) maps of absorbed dose based on the premise that the (90) Y activity distribution does not change after infusion. This transformation has been accomplished in several ways, although the most common is with the use of 3D dose-point-kernel convolution. From a clinical standpoint, (90) Y PET provides a superior post-infusion evaluation of treatment technical success owing to its improved resolution. Absorbed dose maps generated from quantitative PET data can be used to predict treatment efficacy and manage patient follow-up. For patients who receive multiple treatments, this information can also be used to provide patient-specific treatment-planning for successive therapies, potentially improving response. The broad utilization of (90) Y PET has the potential to provide a wealth of dose-response information, which may lead to development of improved radioembolization treatment-planning models in the future.
Collapse
Affiliation(s)
- Alexander S Pasciak
- The University of Tennessee Medical Center , Knoxville, TN , USA ; The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| | - Austin C Bourgeois
- The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| | | | - Ted T Chang
- The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA ; University of Virginia Medical Center , Charlotte, VA , USA
| | - Dustin R Osborne
- The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| | - Shelley N Acuff
- The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| | - Yong C Bradley
- The University of Tennessee Graduate School of Medicine , Knoxville, TN , USA
| |
Collapse
|
22
|
Ahmadzadehfar H, Duan H, Haug AR, Walrand S, Hoffmann M. The role of SPECT/CT in radioembolization of liver tumours. Eur J Nucl Med Mol Imaging 2014; 41 Suppl 1:S115-24. [PMID: 24442600 DOI: 10.1007/s00259-013-2675-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/14/2023]
Abstract
Radioembolization (RE) with (90)Y microspheres is a promising catheter-based therapeutic option for patients with unresectable primary and metastatic liver tumours. Its rationale arises from the dual blood supply of liver tissue through the hepatic artery and the portal vein. Metastatic hepatic tumours measuring >3 mm derive 80 - 100 % of their blood supply from the arterial rather than the portal hepatic circulation. Typically, an angiographic evaluation combined with (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) scan precedes therapy to map the tumour feeding vessels as well as to avoid the inadvertent deposition of microspheres in organs other than the liver. Prior to administration of (99m)Tc-MAA, prophylactic coil embolization of the gastroduodenal artery is recommended to avoid extrahepatic deposition of the microspheres. SPECT/CT allows direct correlation of anatomic and functional information in patients with unresectable liver disease. SPECT/CT is recommended to assess intrahepatic distribution as well as extrahepatic gastrointestinal uptake in these patients. Pretherapeutic SPECT/CT is an important component of treatment planning including catheter positioning and dose finding. A post-therapy bremsstrahlung (BS) scan should follow RE to verify the distribution of the administered tracer. BS SPECT/CT imaging enables better localization and definition of intrahepatic and possible extrahepatic sphere distribution and to a certain degree allows posttreatment dosimetry. In this paper we address the usefulness and significance of SPECT/CT in therapy planning and therapy monitoring of RE.
Collapse
|
23
|
Maccauro M, Lorenzoni A, Boni G, Chiesa C, Spreafico C, Romito R, Mazzaferro V, Seregni E. Multiagent imaging of liver tumors with reference to intra-arterial radioembolization. Clin Transl Imaging 2013. [DOI: 10.1007/s40336-013-0040-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Goedicke A, Berker Y, Verburg FA, Behrendt FF, Winz O, Mottaghy FM. Study-parameter impact in quantitative 90-Yttrium PET imaging for radioembolization treatment monitoring and dosimetry. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:485-492. [PMID: 23047863 DOI: 10.1109/tmi.2012.2221135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A small positron-generating branch in 90-Yttrium ((90)Y) decay enables post-therapy dose assessment in liver cancer radioembolization treatment. The aim of this study was to validate clinical (90)Y positron emission tomography (PET) quantification, focusing on scanner linearity as well as acquisition and reconstruction parameter impact on scanner calibration. Data from three dedicated phantom studies (activity range: 55.2 MBq-2.1 GBq) carried out on a Philips Gemini TF 16 PET/CT scanner were analyzed after reconstruction with up to 361 parameter configurations. For activities above 200 MBq, scanner linearity could be confirmed with relative error margins 4%. An acquisition-time-normalized calibration factor of 1.04 MBq·s/CNTS was determined for the employed scanner. Stable activity convergence was found in hot phantom regions with relative differences in summed image intensities between -3.6% and +2.4%. Absolute differences in background noise artifacts between - 79.9% and + 350% were observed. Quantitative accuracy was dominated by subset size selection in the reconstruction. Using adequate segmentation and optimized acquisition parameters, the average activity recovery error induced by the axial scanner sensitivity profile was reduced to +2.4%±3.4% (mean ± standard deviation). We conclude that post-therapy dose assessment in (90)Y PET can be improved using adapted parameter setups.
Collapse
Affiliation(s)
- Andreas Goedicke
- Department of Nuclear Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Carlier T, Eugène T, Bodet-Milin C, Garin E, Ansquer C, Rousseau C, Ferrer L, Barbet J, Schoenahl F, Kraeber-Bodéré F. Assessment of acquisition protocols for routine imaging of Y-90 using PET/CT. EJNMMI Res 2013; 3:11. [PMID: 23414629 PMCID: PMC3614476 DOI: 10.1186/2191-219x-3-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the early theoretical prediction of the 0+-0+ transition of 90Zr, 90Y-PET underwent only recently a growing interest for the development of imaging radioembolization of liver tumors. The aim of this work was to determine the minimum detectable activity (MDA) of 90Y by PET imaging and the impact of time-of-flight (TOF) reconstruction on detectability and quantitative accuracy according to the lesion size. METHODS The study was conducted using a Siemens Biograph® mCT with a 22 cm large axial field of view. An IEC torso-shaped phantom containing five coplanar spheres was uniformly filled to achieve sphere-to-background ratios of 40:1. The phantom was imaged nine times in 14 days over 30 min. Sinograms were reconstructed with and without TOF information. A contrast-to-noise ratio (CNR) index was calculated using the Rose criterion, taking partial volume effects into account. The impact of reconstruction parameters on quantification accuracy, detectability, and spatial localization of the signal was investigated. Finally, six patients with hepatocellular carcinoma and four patients included in different 90Y-based radioimmunotherapy protocols were enrolled for the evaluation of the imaging parameters in a clinical situation. RESULTS The highest CNR was achieved with one iteration for both TOF and non-TOF reconstructions. The MDA, however, was found to be lower with TOF than with non-TOF reconstruction. There was no gain by adding TOF information in terms of CNR for concentrations higher than 2 to 3 MBq mL-1, except for infra-centimetric lesions. Recovered activity was highly underestimated when a single iteration or non-TOF reconstruction was used (10% to 150% less depending on the lesion size). The MDA was estimated at 1 MBq mL-1 for a TOF reconstruction and infra-centimetric lesions. Images from patients treated with microspheres were clinically relevant, unlike those of patients who received systemic injections of 90Y. CONCLUSIONS Only one iteration and TOF were necessary to achieve an MDA around 1 MBq mL-1 and the most accurate localization of lesions. For precise quantification, at least three iterations gave the best performance, using TOF reconstruction and keeping an MDA of roughly 1 MBq mL-1. One and three iterations were mandatory to prevent false positive results for quantitative analysis of clinical data. TRIAL REGISTRATION http://IDRCB 2011-A00043-38 P101103.
Collapse
Affiliation(s)
- Thomas Carlier
- Nuclear Medicine Department, University Hospital of Nantes, Place Alexis Ricordeau, Nantes, 44093, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Willowson K, Forwood N, Jakoby BW, Smith AM, Bailey DL. Quantitative 90
Y image reconstruction in PET. Med Phys 2012; 39:7153-9. [DOI: 10.1118/1.4762403] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
Walrand S, Hanin FX, Pauwels S, Jamar F. Tumour control probability derived from dose distribution in homogeneous and heterogeneous models: assuming similar pharmacokinetics, (125)Sn-(177)Lu is superior to (90)Y-(177)Lu in peptide receptor radiotherapy. Phys Med Biol 2012; 57:4263-75. [PMID: 22705627 DOI: 10.1088/0031-9155/57/13/4263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Clinical trials on (177)Lu-(90)Y therapy used empirical activity ratios. Radionuclides (RN) with larger beta maximal range could favourably replace (90)Y. Our aim is to provide RN dose-deposition kernels and to compare the tumour control probability (TCP) of RN combinations. Dose kernels were derived by integration of the mono-energetic beta-ray dose distributions (computed using Monte Carlo) weighted by their respective beta spectrum. Nine homogeneous spherical tumours (1-25 mm in diameter) and four spherical tumours including a lattice of cold, but alive, spheres (1, 3, 5, 7 mm in diameter) were modelled. The TCP for (93)Y, (90)Y and (125)Sn in combination with (177)Lu in variable proportions (that kept constant the renal cortex biological effective dose) were derived by 3D dose kernel convolution. For a mean tumour-absorbed dose of 180 Gy, 2 mm homogeneous tumours and tumours including 3 mm diameter cold alive spheres were both well controlled (TCP > 0.9) using a 75-25% combination of (177)Lu and (90)Y activity. However, (125)Sn-(177)Lu achieved a significantly better result by controlling 1 mm-homogeneous tumour simultaneously with tumours including 5 mm diameter cold alive spheres. Clinical trials using RN combinations should use RN proportions tuned to the patient dosimetry. (125)Sn production and its coupling to somatostatin analogue appear feasible. Assuming similar pharmacokinetics (125)Sn is the best RN for combination with (177)Lu in peptide receptor radiotherapy justifying pharmacokinetics studies in rodent of (125)Sn-labelled somatostatin analogues.
Collapse
Affiliation(s)
- Stephan Walrand
- Center of Nuclear Medicine, Université Catholique de Louvain, Av Hippocrate 10. 1200 Brussels, Belgium.
| | | | | | | |
Collapse
|
28
|
Walrand S, Lhommel R, Goffette P, Van den Eynde M, Pauwels S, Jamar F. Hemoglobin level significantly impacts the tumor cell survival fraction in humans after internal radiotherapy. EJNMMI Res 2012; 2:20. [PMID: 22608186 PMCID: PMC3413597 DOI: 10.1186/2191-219x-2-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/19/2012] [Indexed: 12/27/2022] Open
Abstract
Background Anemia is usually not taken into account in internal radiotherapy. We investigated whether the hemoglobin (Hb) level could have an impact on the tumor response, as observed in external beam radiotherapy (EBRT). Methods Absorbed doses of 25 hepatic metastatic sites in eight patients who underwent a liver selective internal radiotherapy (SIRT) were computed by a 3D convolution of a dose deposition kernel with the 90Y time-of-flight positron emission tomography (TOF-PET) images acquired following therapy. Early tumor response was assessed by comparing a follow-up FDG TOF-PET scan with a baseline scan. Hb level was measured on the day of the SIRT procedure. Results All patients displayed early tumor response increasing with the tumor-absorbed dose. Significant differences between patients were noted, the response slope correlating with the Hb level. After applying a global fit on all metastases using a tumor radiosensitivity modulated by a Hb enhancement factor (HEF) linearly dependent on the Hb level, a strong correlation (R = 0.96) was observed between the early response and the absorbed dose. Hb level had a major impact on tumor response by modulating HEF by a factor 6. Conclusions These results prove the significant impact of Hb level on the tumor response and support the study of methods for correcting tumor hypoxia, such as intensively performed in EBRT. The quantitative analysis of the relationship between tumor doses and early response has the power to allow fast screening of such correction methods in limited patient series. Internal radiotherapy could be more efficient if performed earlier in the therapy line, when the disease- and treatment-related anemia remains limited.
Collapse
Affiliation(s)
- Stephan Walrand
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Universitegrave Catholique de Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium.
| | | | | | | | | | | |
Collapse
|