1
|
Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res 2022; 39:1415-1455. [PMID: 35359241 PMCID: PMC9246765 DOI: 10.1007/s11095-022-03241-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Limited drug delivery to the brain is one of the major reasons for high failure rates of central nervous system (CNS) drug candidates. The blood–brain barrier (BBB) with its tight junctions, membrane transporters, receptors and metabolizing enzymes is a main player in drug delivery to the brain, restricting the entrance of the drugs and other xenobiotics. Current knowledge about the uptake transporters expressed at the BBB and brain parenchymal cells has been used for delivery of CNS drugs to the brain via targeting transporters. Although many transporter-utilizing (pro)drugs and nanocarriers have been developed to improve the uptake of drugs to the brain, their success rate of translation from preclinical development to humans is negligible. In the present review, we provide a systematic summary of the current progress in development of transporter-utilizing (pro)drugs and nanocarriers for delivery of drugs to the brain. In addition, we applied CNS pharmacokinetic concepts for evaluation of the limitations and gaps in investigation of the developed transporter-utilizing (pro)drugs and nanocarriers. Finally, we give recommendations for a rational development of transporter-utilizing drug delivery systems targeting the brain based on CNS pharmacokinetic principles.
Collapse
|
2
|
Rousseau-Blass F, Cribb AE, Beaudry F, Pang DS. A Pharmacokinetic-Pharmacodynamic Study of Intravenous Midazolam and Flumazenil in Adult New Zealand White-Californian Rabbits ( Oryctolagus cuniculus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2021; 60:319-328. [PMID: 33673881 PMCID: PMC8145127 DOI: 10.30802/aalas-jaalas-20-000084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/03/2020] [Accepted: 09/29/2020] [Indexed: 11/05/2022]
Abstract
Flumazenil, a competitive GABAA receptor antagonist, is commonly used in rabbits to shorten sedation or postanesthetic recovery after benzodiazepine administration. However, no combined pharmacokinetic (PK) and pharmacodynamic (PD) data are available to guide its administration in this species. In a prospective, randomized, blinded, crossover study design, the efficacy of IV flumazenil (FLU; 0.05 mg/kg) or saline control (SAL; equal volume) to reverse the loss of righting reflex (LORR) induced by IV midazolam (1.2 mg/kg) was investigated in 15 New Zealand white rabbits (2.73 to 4.65 kg, 1 y old). Rabbits were instrumented with arterial (central auricular artery) and venous (marginal auricular vein) catheters. After baseline blood sampling, IV midazolam was injected (T0). Flumazenil or saline (FLU/SAL) was injected 30 s after LORR. Arterial blood samples were collected at 1 and 3 min after midazolam injection, and at 1, 3, 6, 10, 15, 21, 28, 36, 45 and 60 min after injection with flumazenil. Plasma samples for midazolam, 1-OH-midazolam and flumazenil were analyzed using high performance liquid chromatography-high-resolution mass spectrometry and the time to return of righting reflex (ReRR) was compared between groups (Wilcoxon test). FLU terminal half-life, plasma clearance and volume of distribution were 26.3 min [95%CI: 23.3 to 29.3], 18.74 mL/min/kg [16.47 to 21.00] and 0.63 L/kg [0.55 to 0.71], respectively. ReRR was 25 times faster in rabbits treated with FLU (23 [8 to 44] s) compared with SAL (576 [130 to 1141] s; 95%CI [425 to 914 s]). Return of sedation (lateral recumbency) occurred in both groups (7/13 in FLU; 12/13 in SAL) with return of LORR in a few animals (4/13 in FLU; 7/13 in SAL) at 1540 [858 to 2328] s. In the population and anesthesia protocol studied, flumazenil quickly and reliably reversed sedation induced by midazolam injection. However, the potential return of sedation after flumazenil administration warrants careful monitoring in the recovery period.
Collapse
Affiliation(s)
- Frédérik Rousseau-Blass
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Alastair E Cribb
- Cummings School of Veterinary Medicine, Tufts University, N Grafton, Massachusetts
| | - Francis Beaudry
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Daniel Sj Pang
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine (UCVM), University of Calgary, Calgary, Alberta, Canada;,
| |
Collapse
|
3
|
Increase in P-glycoprotein levels in the blood-brain barrier of partial portal vein ligation /chronic hyperammonemia rats is medicated by ammonia/reactive oxygen species/ERK1/2 activation: In vitro and in vivo studies. Eur J Pharmacol 2019; 846:119-127. [PMID: 30639310 DOI: 10.1016/j.ejphar.2019.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Liver failure altered P-glycoprotein (P-gp) function and expression at blood-brain barrier (BBB), partly owing to hyperammonemia. We aimed to examine the effects of partial portal vein ligation (PVL) plus chronic hyperammonemia (CHA) on P-gp function and expression at rat BBB. Experimental rats included sham-operation (SH), PVL, CHA and PVL+CHA. The PVL+CHA rats were developed by ammonia-containing diet for 2 weeks after operation. The brain-to-plasma concentration ratios (Kp) and apparent unidirectional influx constants (Kin) of rhodamine123 and sodium fluorescein were measured to assess function of P-gp and BBB integrity, respectively. Human cerebral microvascular endothelial cells (HCMEC/D3) were used to assess effects of ammonia on P-gp expression and function. It was found that PVL+CHA significantly decreased Kp and Kin of rhodamine123 without affecting brain distribution of fluorescein. The P-gp expressions in membrane protein in cortex and hippocampus were significantly increased in CHA and PVL +CHA rats, especially in PVL + CHA rats, while remarkably increased phosphorylated ERK1/2 was only found in PVL +CHA rats. Expressions of tight junction proteins claudin-5 and occluding in rat brain remained unchanged. In vitro data showed that NH4Cl increased reactive oxygen species, membrane expression and function of P-gp as well as phosphorylated ERK1/2 levels in HCMEC/D3. The NH4Cl-induced alterations were reversed by reactive oxygen species scavenger N-acetylcysteine and ERK1/2 inhibitor U0126. In conclusion, PVL+CHA increased function and membrane translocation of P-gp at rat BBB partly via ammonia. Reactive oxygen species/ERK1/2 pathway activation may be one of the reasons that ammonia upregulated P-gp expression and function at BBB.
Collapse
|
4
|
Liow JS, Morse CL, Lu S, Frankland M, Tye GL, Zoghbi SS, Gladding RL, Shaik AB, Innis RB, Newman AH, Pike VW. [ O- methyl- 11C] N-(4-(4-(3-Chloro-2-methoxyphenyl)-piperazin-1-yl)butyl)-1 H-indole-2-carboxamide ([ 11C]BAK4-51) Is an Efflux Transporter Substrate and Ineffective for PET Imaging of Brain D₃ Receptors in Rodents and Monkey. Molecules 2018; 23:molecules23112737. [PMID: 30360553 PMCID: PMC6278341 DOI: 10.3390/molecules23112737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022] Open
Abstract
Selective high-affinity antagonists for the dopamine D₃ receptor (D₃R) are sought for treating substance use disorders. Positron emission tomography (PET) with an effective D₃R radioligand could be a useful tool for the development of such therapeutics by elucidating pharmacological specificity and target engagement in vivo. Currently, a D₃R-selective radioligand does not exist. The D₃R ligand, N-(4-(4-(3-chloro-2-methoxyphenyl)piperazin-1-yl)butyl)-1H-indole-2-carboxamide (BAK4-51, 1), has attractive properties for PET radioligand development, including full antagonist activity, very high D₃R affinity, D₃R selectivity, and moderate lipophilicity. We labeled 1 with the positron-emitter carbon-11 (t1/2 = 20.4 min) in the methoxy group for evaluation as a radioligand in animals with PET. However, [11C]1 was found to be an avid substrate for brain efflux transporters and lacked D₃R-specific signal in rodent and monkey brain in vivo.
Collapse
Affiliation(s)
- Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Michael Frankland
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - George L Tye
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Anver B Shaik
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Amy H Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Kassenbrock A, Vasdev N, Liang SH. Selected PET Radioligands for Ion Channel Linked Neuroreceptor Imaging: Focus on GABA, NMDA and nACh Receptors. Curr Top Med Chem 2017; 16:1830-42. [PMID: 26975506 DOI: 10.2174/1568026616666160315142457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) neuroimaging of ion channel linked receptors is a developing area of preclinical and clinical research. The present review focuses on recent advances with radiochemistry, preclinical and clinical PET imaging studies of three receptors that are actively pursued in neuropsychiatric drug discovery: namely the γ-aminobutyric acid-benzodiazapine (GABA) receptor, nicotinic acetylcholine receptor (nAChR), and N-methyl-D-aspartate (NMDA) receptor. Recent efforts to develop new PET radioligands for these targets with improved brain uptake, selectivity, stability and pharmacokinetics are highlighted.
Collapse
Affiliation(s)
| | | | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Froklage FE, Postnov A, Yaqub MM, Bakker E, Boellaard R, Hendrikse NH, Comans EF, Schuit RC, Schober P, Velis DN, Zwemmer J, Heimans JJ, Lammertsma AA, Voskuyl RA, Reijneveld JC. Altered GABAA receptor density and unaltered blood-brain barrier [11C]flumazenil transport in drug-resistant epilepsy patients with mesial temporal sclerosis. J Cereb Blood Flow Metab 2017; 37:97-105. [PMID: 26661244 PMCID: PMC5167109 DOI: 10.1177/0271678x15618219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/06/2015] [Accepted: 10/06/2015] [Indexed: 01/16/2023]
Abstract
Studies in rodents suggest that flumazenil is a P-glycoprotein substrate at the blood-brain barrier. This study aimed to assess whether [11C]flumazenil is a P-glycoprotein substrate in humans and to what extent increased P-glycoprotein function in epilepsy may confound interpretation of clinical [11C]flumazenil studies used to assess gamma-aminobutyric acid A receptors. Nine drug-resistant patients with epilepsy and mesial temporal sclerosis were scanned twice using [11C]flumazenil before and after partial P-glycoprotein blockade with tariquidar. Volume of distribution, nondisplaceable binding potential, and the ratio of rate constants of [11C]flumazenil transport across the blood-brain barrier (K1/k2) were derived for whole brain and several regions. All parameters were compared between pre- and post-tariquidar scans. Regional results were compared between mesial temporal sclerosis and contralateral sides. Tariquidar significantly increased global K1/k2 (+23%) and volume of distribution (+10%), but not nondisplaceable binding potential. At the mesial temporal sclerosis side volume of distribution and nondisplaceable binding potential were lower in hippocampus (both ∼-19%) and amygdala (both ∼-16%), but K1/k2 did not differ, suggesting that only regional gamma-aminobutyric acid A receptor density is altered in epilepsy. In conclusion, although [11C]flumazenil appears to be a (weak) P-glycoprotein substrate in humans, this does not seem to affect its role as a tracer for assessing gamma-aminobutyric acid A receptor density.
Collapse
Affiliation(s)
- Femke E Froklage
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands .,Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | - Andrey Postnov
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Maqsood M Yaqub
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Esther Bakker
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - N Harry Hendrikse
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands.,Department of Clinical Pharmacology & Pharmacy, VU University Medical Center, Amsterdam, the Netherlands
| | - Emile Fi Comans
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Patrick Schober
- Department of Anesthesiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Demetrios N Velis
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands.,Department of Neurosurgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Jack Zwemmer
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Jan J Heimans
- Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Rob A Voskuyl
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Jaap C Reijneveld
- Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Effects of common anesthetic agents on [ 18F]flumazenil binding to the GABA A receptor. EJNMMI Res 2016; 6:80. [PMID: 27826950 PMCID: PMC5101239 DOI: 10.1186/s13550-016-0235-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/29/2016] [Indexed: 12/25/2022] Open
Abstract
Background The availability of GABAA receptor binding sites in the brain can be assessed by positron emission tomography (PET) using the radioligand, [18F]flumazenil. However, the brain uptake and binding of this PET radioligand are influenced by anesthetic drugs, which are typically needed in preclinical imaging studies and clinical imaging studies involving patient populations that do not tolerate relatively longer scan times. The objective of this study was to examine the effects of anesthesia on the binding of [18F]flumazenil to GABAA receptors in mice. Methods Brain and whole blood radioactivity concentrations were measured ex vivo by scintillation counting or in vivo by PET in four groups of mice following administration of [18F]flumazenil: awake mice and mice anesthetized with isoflurane, dexmedetomidine, or ketamine/dexmedetomidine. Dynamic PET recordings were obtained for 60 min in mice anesthetized by either isoflurane or ketamine/dexmedetomidine. Static PET recordings were obtained at 25 or 55 min after [18F]flumazenil injection in awake or dexmedetomidine-treated mice acutely anesthetized with isoflurane. The apparent distribution volume (VT*) was calculated for the hippocampus and frontal cortex from either the full dynamic PET scans using an image-derived input function or from a series of ex vivo experiments using whole blood as the input function. Results PET images showed persistence of high [18F]flumazenil uptake (up to 20 % ID/g) in the brains of mice scanned under isoflurane or ketamine/dexmedetomidine anesthesia, whereas uptake was almost indiscernible in late samples or static scans from awake or dexmedetomidine-treated animals. The steady-state VT* was twofold higher in hippocampus of isoflurane-treated mice and dexmedetomidine-treated mice than in awake mice. Conclusions Anesthesia has pronounced effects on the binding and blood-brain distribution of [18F]flumazenil. Consequently, considerable caution must be exercised in the interpretation of preclinical and clinical PET studies of GABAA receptors involving the use of anesthesia.
Collapse
|
8
|
A microPET comparison of the effects of etifoxine and diazepam on [ 11 C]flumazenil uptake in rat brains. Neurosci Lett 2016; 612:74-79. [DOI: 10.1016/j.neulet.2015.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/03/2015] [Accepted: 11/24/2015] [Indexed: 11/19/2022]
|
9
|
Assmus F, Seelig A, Gobbi L, Borroni E, Glaentzlin P, Fischer H. Label-free assay for the assessment of nonspecific binding of positron emission tomography tracer candidates. Eur J Pharm Sci 2015; 79:27-35. [DOI: 10.1016/j.ejps.2015.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/02/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
|
10
|
5-HT2A receptor SPECT imaging with [¹²³I]R91150 under P-gp inhibition with tariquidar: More is better? Nucl Med Biol 2015; 43:81-88. [PMID: 26454782 DOI: 10.1016/j.nucmedbio.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/18/2015] [Accepted: 09/05/2015] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Pharmacological P-glycoprotein (P-gp) inhibition with tariquidar (TQD) is considered a promising strategy for the augmentation of radiotracer brain uptake. However, a region-dependent effect may compromise the robustness of quantitative studies. For this reason, we studied the effect of a TQD pretreatment on 5-HT2A imaging with [(123)I]R91150 and compared results with those obtained in Mdr1a knock-out (KO) rats. METHODS Ex vivo autoradiography was performed in TQD (15 mg/kg) pretreated wild-type (WT-TQD), Mdr1a knock-out (KO) and untreated WT rats for Specific Binding Ratio (SBR) estimation. In vivo dynamic SPECT imaging with serial arterial blood sampling was performed in the former two groups of rats and kinetic analysis was performed with a one tissue-compartment (1TC) model and the Specific Uptake Ratio (SUR). Results were analyzed statistically using repeated measures ANOVA. RESULTS SBR values differed between WT-TQD, Mdr1a KO and WT rats in a region-dependent manner (p<0.0001). In vivo brain uptake of radiotracer did not differ between groups. Similarly, kinetic analysis provided distribution volume (V(T)) values that did not differ significantly between groups. SUR binding potential (BPND) values from both groups highly correlated with corresponding V(T) (r=0.970, p<0.0001 and r=0.962, p<0.0001, respectively). However, SUR measured over averaged images between 100 and 120 min, using cerebellum as reference region, demonstrated values that were, by average, 2.99±0.53 times higher in the WT-TQD group, with the difference between groups being region-dependent (p<0.001). In addition, coefficient of variation of the SUR BPND values across brain regions was significantly higher in the WT-TQD rats (41.25%±9.63% versus 11.13%±5.59%, p<0.0001). CONCLUSION P-gp inhibition with TQD leads to region-dependent effect in the rat brain, with probably sub-optimal effect in cerebellum. This warrants attention when it is used as a reference region for quantitative studies.
Collapse
|
11
|
Sustained macrophage infiltration upon multiple intra-articular injections: an improved rat model of rheumatoid arthritis for PET guided therapy evaluation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:509295. [PMID: 25695087 PMCID: PMC4324741 DOI: 10.1155/2015/509295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/27/2014] [Accepted: 09/07/2014] [Indexed: 12/11/2022]
Abstract
To widen the therapeutic window for PET guided evaluation of novel anti-RA agents, modifications were made in a rat model of rheumatoid arthritis (RA). Arthritis was induced in the right knee of Wistar rats with repeated boosting to prolong articular inflammation. The contralateral knee served as control. After immunization with methylated bovine serum albumin (mBSA) in complete Freund's adjuvant and custom Bordetella pertussis antigen, one or more intra-articular (i.a.) mBSA injections were given over time in the right knee. Serum anti-mBSA antibodies, DTH response, knee thickness, motion, and synovial macrophages were analyzed and [18F]FDG(-general inflammation) and (R)-[11C]PK11195 (macrophages-)PET was performed followed by ex vivo tissue distribution. Significant anti-mBSA levels, DTH, swelling of arthritic knee, and sustained and prolonged macrophage infiltration in synovial tissue were found, especially using multiple i.a. injections. Increased [18F]FDG and (R)-[11C]PK11195 accumulation was demonstrated in arthritic knees as compared to contralateral knees, which was confirmed in ex vivo tissue distribution studies. Boosting proved advantageous for achieving a chronic model without remission. The model will offer excellent opportunities for repeated PET studies to monitor progression of disease and efficacy of novel therapeutic agents for RA in the same animal.
Collapse
|
12
|
Bankstahl JP. What does a picture tell? In vivo imaging of ABC transporter function. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 12:e113-9. [PMID: 25027369 DOI: 10.1016/j.ddtec.2014.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Activity of ABC transporters in tumor tissue or at the blood–brain barrier is believed to be responsible for treatment failure of substrate drugs. As this mechanism will not be present in every single patient, diagnostic tools to study transporter function are urgently needed. Many efforts were made over the past years to improve in vivo quantification of ABC transporter function by molecular imaging techniques. This includes development of new positron emitting tracers, but also the evaluation of modified experimental protocols using already existing tracers. In addition to imaging of transporter function in healthy animals or volunteers, results from disease models or human patients are covered in this review.
Collapse
|
13
|
Syvänen S, Eriksson J. Advances in PET imaging of P-glycoprotein function at the blood-brain barrier. ACS Chem Neurosci 2013; 4:225-37. [PMID: 23421673 DOI: 10.1021/cn3001729] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) restricts substrate compounds from entering the brain and may thus contribute to pharmacoresistance observed in patient groups with refractory epilepsy and HIV. Altered P-gp function has also been implicated in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Positron emission tomography (PET), a molecular imaging modality, has become a promising method to study the role of P-gp at the BBB. The first PET study of P-gp function was conducted in 1998, and during the past 15 years two main categories of P-gp PET tracers have been investigated: tracers that are substrates of P-gp efflux and tracers that are inhibitors of P-gp function. PET, as a noninvasive imaging technique, allows translational research. Examples of this are preclinical investigations of P-gp function before and after administering P-gp modulating drugs, investigations in various animal and disease models, and clinical investigations regarding disease and aging. The objective of the present review is to give an overview of available PET radiotracers for studies of P-gp and to discuss how such studies can be designed. Further, the review summarizes results from PET studies of P-gp function in different central nervous system disorders.
Collapse
Affiliation(s)
- Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, 751 85 Uppsala, Sweden
| | - Jonas Eriksson
- PET Centre, Uppsala University Hospital, 751 85 Uppsala, Sweden
- Preclinical PET Platform, Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| |
Collapse
|