1
|
Alieva RT, Ulasov AV, Khramtsov YV, Slastnikova TA, Lupanova TN, Gribova MA, Georgiev GP, Rosenkranz AA. Optimization of a Modular Nanotransporter Design for Targeted Intracellular Delivery of Photosensitizer. Pharmaceutics 2024; 16:1083. [PMID: 39204428 PMCID: PMC11360004 DOI: 10.3390/pharmaceutics16081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Modular nanotransporters (MNTs) are drug delivery systems for targeted cancer treatment. As MNTs are composed of several modules, they offer the advantage of high specificity and biocompatibility in delivering drugs to the target compartment of cancer cells. The large carrier module brings together functioning MNT modules and serves as a platform for drug attachment. The development of smaller-sized MNTs via truncation of the carrier module appears advantageous in facilitating tissue penetration. In this study, two new MNTs with a truncated carrier module containing either an N-terminal (MNTN) or a C-terminal (MNTC) part were developed by genetic engineering. Both new MNTs demonstrated a high affinity for target receptors, as revealed by fluorescent-labeled ligand-competitive binding. The liposome leakage assay proved the endosomolytic activity of MNTs. Binding to the importin heterodimer of each truncated MNT was revealed by a thermophoresis assay, while only MNTN possessed binding to Keap1. Finally, the photodynamic efficacy of the photosensitizer attached to MNTN was significantly higher than when attached to either MNTC or the original MNTs. Thus, this work reveals that MNT's carrier module can be truncated without losing MNT functionality, favoring the N-terminal part of the carrier module due to its ability to bind Keap1.
Collapse
Affiliation(s)
- Rena T. Alieva
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Maria A. Gribova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|
2
|
Rosenkranz AA, Slastnikova TA. Prospects of Using Protein Engineering for Selective Drug Delivery into a Specific Compartment of Target Cells. Pharmaceutics 2023; 15:pharmaceutics15030987. [PMID: 36986848 PMCID: PMC10055131 DOI: 10.3390/pharmaceutics15030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A large number of proteins are successfully used to treat various diseases. These include natural polypeptide hormones, their synthetic analogues, antibodies, antibody mimetics, enzymes, and other drugs based on them. Many of them are demanded in clinical settings and commercially successful, mainly for cancer treatment. The targets for most of the aforementioned drugs are located at the cell surface. Meanwhile, the vast majority of therapeutic targets, which are usually regulatory macromolecules, are located inside the cell. Traditional low molecular weight drugs freely penetrate all cells, causing side effects in non-target cells. In addition, it is often difficult to elaborate a small molecule that can specifically affect protein interactions. Modern technologies make it possible to obtain proteins capable of interacting with almost any target. However, proteins, like other macromolecules, cannot, as a rule, freely penetrate into the desired cellular compartment. Recent studies allow us to design multifunctional proteins that solve these problems. This review considers the scope of application of such artificial constructs for the targeted delivery of both protein-based and traditional low molecular weight drugs, the obstacles met on the way of their transport to the specified intracellular compartment of the target cells after their systemic bloodstream administration, and the means to overcome those difficulties.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
3
|
Elghobary MEN, Munekane M, Mishiro K, Fuchigami T, Ogawa K. Preparation and Evaluation of Thermosensitive Liposomes Encapsulating I-125-Labeled Doxorubicin Derivatives for Auger Electron Therapy. Molecules 2023; 28:molecules28041864. [PMID: 36838851 PMCID: PMC9962004 DOI: 10.3390/molecules28041864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Auger electrons (AEs) are very low-energy electrons emitted by radionuclides such as I-125 (125I). This energy is deposited across a small distance (<0.5 μm), resulting in high linear energy transfer that is potent for causing lethal damage to cancer cells. Thus, AE-emitting radiotherapeutic agents have great potential for cancer treatment. In this study, thermosensitive liposomes (TSLs) encapsulating 125I-labeled doxorubicin (DOX) derivatives were developed for Auger electron therapy, targeting the DNA of cancer cells. A radioiodinated DOX derivative [125I]5 highly accumulated in the nuclei of cancer cells and showed potent cytotoxicity against Colon 26 cancer cells by AEs. Subsequently, [125I]5 was loaded into the TSLs with high encapsulation efficiency. Potent release of [125I]5 from TSLs was achieved with heating, whereas a decreased release was observed without heating. Furthermore, TSLs encapsulating [125I]5 showed a high uptake in the nuclei at 42 °C for 1 h. We supposed that [125I]5 was released by heating at 42 °C and accumulated in the nuclei in the cells. These results suggest that the combination of TSLs encapsulating [125I]5 and hyperthermia is an effective cancer therapy.
Collapse
Affiliation(s)
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- Correspondence: (M.M.); (K.O.); Tel./Fax: +81-76-234-4461 (M.M.); +81-76-234-4460 (K.O.)
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
- Correspondence: (M.M.); (K.O.); Tel./Fax: +81-76-234-4461 (M.M.); +81-76-234-4460 (K.O.)
| |
Collapse
|
4
|
Rosenkranz AA, Slastnikova TA, Durymanov MO, Georgiev GP, Sobolev AS. Exploiting active nuclear import for efficient delivery of Auger electron emitters into the cell nucleus. Int J Radiat Biol 2023; 99:28-38. [PMID: 32856963 DOI: 10.1080/09553002.2020.1815889] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The most attractive features of Auger electrons (AEs) in cancer therapy are their extremely short range and sufficiently high linear energy transfer (LET) for a majority of them. The cytotoxic effects of AE emitters can be realized only in close vicinity to sensitive cellular targets and they are negligible if the emitters are located outside the cell. The nucleus is considered the compartment most sensitive to high LET particles. Therefore, the use of AE emitters could be most useful in specific recognition of a cancer cell and delivery of AE emitters into its nucleus. PURPOSE This review describes the studies aimed at developing effective anticancer agents for the delivery of AE emitters to the nuclei of target cancer cells. The use of peptide-based conjugates, nanoparticles, recombinant proteins, and other constructs for AE emitter targeted intranuclear delivery as well as their advantages and limitations are discussed. CONCLUSION Transport from the cytoplasm to the nucleus along with binding to the cancer cell is one of the key stages in the delivery of AE emitters; therefore, several constructs for exploitation of this transport have been developed. The transport is carried out through a nuclear pore complex (NPC) with the use of specific amino acid nuclear localization sequences (NLS) and carrier proteins named importins, which are located in the cytosol. Therefore, the effectiveness of NLS-containing delivery constructs designed to provide energy-dependent transport of AE emitter into the nuclei of cancer cells also depends on their efficient entry into the cytosol of the target cell.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Bastami H, Chiniforoush TA, Heidari S, Sadeghi M. Dose evaluation of auger electrons emitted from the 119Sb in cancer treatment. Appl Radiat Isot 2022; 185:110250. [DOI: 10.1016/j.apradiso.2022.110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022]
|
6
|
Rigby A, Blower JE, Blower PJ, Terry SYA, Abbate V. Targeted Auger electron-emitter therapy: Radiochemical approaches for thallium-201 radiopharmaceuticals. Nucl Med Biol 2021; 98-99:1-7. [PMID: 33906122 PMCID: PMC7610824 DOI: 10.1016/j.nucmedbio.2021.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Thallium-201 is a radionuclide that has previously been used clinically for myocardial perfusion scintigraphy. Although in this role it has now been largely replaced by technetium-99 m radiopharmaceuticals, thallium-201 remains attractive in the context of molecular radionuclide therapy for cancer micrometastases or single circulating tumour cells. This is due to its Auger electron (AE) emissions, which are amongst the highest in total energy and number per decay for AE-emitters. Currently, chemical platforms to achieve this potential through developing thallium-201-labelled targeted radiopharmaceuticals are not available. Here, we describe convenient methods to oxidise [201Tl]Tl(I) to chelatable [201Tl]Tl(III) and identify challenges in stable chelation of thallium to support future synthesis of effective [201Tl]-labelled radiopharmaceuticals. METHODS A plasmid pBR322 assay was carried out to determine the DNA damaging properties of [201Tl]Tl(III). A range of oxidising agents (ozone, oxygen, hydrogen peroxide, chloramine-T, iodogen, iodobeads, trichloroisocyanuric acid) and conditions (acidity, temperature) were assessed using thin layer chromatography. Chelators EDTA, DTPA and DOTA were investigated for their [201Tl]Tl(III) radiolabelling efficacy and complex stability. RESULTS Isolated plasmid studies demonstrated that [201Tl]Tl(III) can induce single and double-stranded DNA breaks. Iodo-beads, iodogen and trichloroisocyanuric acid enabled more than 95% conversion from [201Tl]Tl(I) to [201Tl]Tl(III) under conditions compatible with future biomolecule radiolabelling (mild pH, room temperature and post-oxidation removal of oxidising agent). Although chelation of [201Tl]Tl(III) was possible with EDTA, DTPA and DOTA, only radiolabeled DOTA showed good stability in serum. CONCLUSIONS Decay of [201Tl]Tl(III) in proximity to DNA causes DNA damage. Iodobeads provide a simple, mild method to convert thallium-201 from a 1+ to 3+ oxidation state and [201Tl]Tl(III) can be chelated by DOTA with moderate stability. Of the well-established chelators evaluated, DOTA is most promising for future molecular radionuclide therapy using thallium-201; nevertheless, a new generation of chelating agents offering resistance to reduction and dissociation of [201Tl]Tl(III) complexes is required.
Collapse
Affiliation(s)
- Alex Rigby
- King's College London, School of Biomedical Engineering and Imaging Sciences, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Julia E Blower
- King's College London, School of Biomedical Engineering and Imaging Sciences, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Philip J Blower
- King's College London, School of Biomedical Engineering and Imaging Sciences, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Samantha Y A Terry
- King's College London, School of Biomedical Engineering and Imaging Sciences, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom.
| | - Vincenzo Abbate
- King's College London, School of Population Health and Environmental Sciences, Analytical, Environmental and Forensic Sciences, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
7
|
Costa IM, Cheng J, Osytek KM, Imberti C, Terry SYA. Methods and techniques for in vitro subcellular localization of radiopharmaceuticals and radionuclides. Nucl Med Biol 2021; 98-99:18-29. [PMID: 33964707 PMCID: PMC7610823 DOI: 10.1016/j.nucmedbio.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022]
Abstract
In oncology, the holy grail of radiotherapy is specific radiation dose deposition in tumours with minimal healthy tissue toxicity. If used appropriately, injectable, systemic radionuclide therapies could meet these criteria, even for treatment of micrometastases and single circulating tumour cells. The clinical use of α and β- particle-emitting molecular radionuclide therapies is rising, however clinical translation of Auger electron-emitting radionuclides is hampered by uncertainty around their exact subcellular localisation, which in turn affects the accuracy of dosimetry. This review aims to discuss and compare the advantages and disadvantages of various subcellular localisation methods available to localise radiopharmaceuticals and radionuclides for in vitro investigations.
Collapse
Affiliation(s)
- Ines M Costa
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Jordan Cheng
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Katarzyna M Osytek
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Cinzia Imberti
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom; Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Samantha Y A Terry
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
8
|
Rosenkranz AA, Slastnikova TA. Epidermal Growth Factor Receptor: Key to Selective Intracellular Delivery. BIOCHEMISTRY (MOSCOW) 2021; 85:967-1092. [PMID: 33050847 DOI: 10.1134/s0006297920090011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an integral surface protein mediating cellular response to a number of growth factors. Its overexpression and increased activation due to mutations is one of the most common traits of many types of cancer. Development and clinical use of the agents, which block EGFR activation, became a prime example of the personalized targeted medicine. However, despite the obvious success in this area, cancer cure remains unattainable in most cases. Because of that, as well as the result of the search for possible ways to overcome the difficulties of treatment, a huge number of new treatment methods relying on the use of EGFR overexpression and its changes to destroy cancer cells. Modern data on the structure, functioning, and intracellular transport of EGFR, its natural ligands, as well as signaling cascades triggered by the EGFR activation, peculiarities of the EGFR expression and activation in oncological disorders, as well as applied therapeutic approaches aimed at blocking EGFR signaling pathway are summarized and analyzed in this review. Approaches to the targeted delivery of various chemotherapeutic agents, radionuclides, immunotoxins, photosensitizers, as well as the prospects for gene therapy aimed at cancer cells with EGFR overexpression are reviewed in detail. It should be noted that increasing attention is being paid nowadays to the development of multifunctional systems, either carrying several different active agents, or possessing several environment-dependent transport functions. Potentials of the systems based on receptor-mediated endocytosis of EGFR and their possible advantages and limitations are discussed.
Collapse
Affiliation(s)
- A A Rosenkranz
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
9
|
Nadar R, Franssen G, Van Dijk N, Codee-van der Schilden K, de Weijert M, Oosterwijk E, Iafisco M, Margiotta N, Heskamp S, van den Beucken J, Leeuwenburgh S. Bone tumor-targeted delivery of theranostic 195mPt-bisphosphonate complexes promotes killing of metastatic tumor cells. Mater Today Bio 2021; 9:100088. [PMID: 33490949 PMCID: PMC7809194 DOI: 10.1016/j.mtbio.2020.100088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Platinum-based drugs such as cisplatin are very potent chemotherapeutics, whereas radioactive platinum (195mPt) is a rich source of low-energy Auger electrons, which kills tumor cells by damaging DNA. Auger electrons damage cells over a very short range. Consequently, 195mPt-based radiopharmaceuticals should be targeted toward tumors to maximize radiotherapeutic efficacy and minimize Pt-based systemic toxicity. Herein, we show that systemically administered radioactive bisphosphonate-functionalized platinum (195mPt-BP) complexes specifically accumulate in intratibial bone metastatic lesions in mice. The 195mPt-BP complexes accumulate 7.3-fold more effectively in bone 7 days after systemic delivery compared to 195mPt-cisplatin lacking bone-targeting bisphosphonate ligands. Therapeutically, 195mPt-BP treatment causes 4.5-fold more γ-H2AX formation, a biomarker for DNA damage in metastatic tumor cells compared to 195mPt-cisplatin. We show that systemically administered 195mPt-BP is radiotherapeutically active, as evidenced by an 11-fold increased DNA damage in metastatic tumor cells compared to non-radioactive Pt-BP controls. Moreover, apoptosis in metastatic tumor cells is enhanced more than 3.4-fold upon systemic administration of 195mPt-BP vs. radioactive 195mPt-cisplatin or non-radioactive Pt-BP controls. These results provide the first preclinical evidence for specific accumulation and strong radiotherapeutic activity of 195mPt-BP in bone metastatic lesions, which offers new avenues of research on radiotherapeutic killing of tumor cells in bone metastases by Auger electrons.
Collapse
Affiliation(s)
- R.A. Nadar
- Department of Dentistry – Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Philips van Leydenlaan 25, 6525 EX, Nijmegen, the Netherlands
| | - G.M. Franssen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - N.W.M. Van Dijk
- Department of Dentistry – Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Philips van Leydenlaan 25, 6525 EX, Nijmegen, the Netherlands
| | | | - M. de Weijert
- Department of Urology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, the Netherlands
| | - E. Oosterwijk
- Department of Urology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, the Netherlands
| | - M. Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza, Italy
| | - N. Margiotta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - S. Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - J.J.J.P. van den Beucken
- Department of Dentistry – Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Philips van Leydenlaan 25, 6525 EX, Nijmegen, the Netherlands
| | - S.C.G. Leeuwenburgh
- Department of Dentistry – Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Philips van Leydenlaan 25, 6525 EX, Nijmegen, the Netherlands
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza, Italy
| |
Collapse
|
10
|
Moustapha ME. Radioiodination of Atorvastatin as a Model Radiopharmaceutical for Targeting Liver. RADIOCHEMISTRY 2020. [DOI: 10.1134/s1066362220040104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Karyagina TS, Ulasov AV, Rosenkranz AA, Slastnikova TA, Khramtsov YV, Lupanova TN, Georgiev GP, Sobolev AS. New Recombinant Carriers Binding Specifically to the Epidermal Growth Factor Receptor. DOKL BIOCHEM BIOPHYS 2020; 490:22-24. [PMID: 32342307 DOI: 10.1134/s1607672920010081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 11/23/2022]
Abstract
New recombinant carriers-modular nanotransporters (MNTs)-with N-terminal ligand module to the epidermal growth factor receptor (EGFR) were developed and characterized. Human epidermal growth factor (hEGF) and antibody-like protein Z1907 were used as a ligand module. We demonstrated that MNTs are able to internalize in a receptor-specific manner into the target cancer cells and to accumulate in the target cell nuclei. Conjugation of MNTs with the Auger electron emitter 111In significantly enhanced the cytotoxic effect of 111In on the target cells. It was found that the transfer of EGF from the C-terminus to the N-terminus of the MNT enhanced the proliferation of target cells, whereas the use of Z1907 did not have a similar effect.
Collapse
Affiliation(s)
- T S Karyagina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A V Ulasov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow State University, Moscow, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Y V Khramtsov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - T N Lupanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - G P Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia. .,Moscow State University, Moscow, Russia.
| |
Collapse
|
12
|
Khramtsov YV, Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Stabilization of Modular Nanotransporters by Embedding Hemin in Them in a New Strain with Heme Receptor Expression. DOKL BIOCHEM BIOPHYS 2020; 490:47-49. [PMID: 32342313 DOI: 10.1134/s1607672920010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 11/23/2022]
Abstract
It was found that the use of a new strain-producer Escherichia coli, expressing the heme receptor ChuA, enables obtaining a hemin-containing modular nanotransporter (MNT) for drug delivery into the nuclei of target cells. The hemin-containing MNT becomes stabilized, which leads to an increase in its thermal stability and prevents aggregation of this protein.
Collapse
Affiliation(s)
- Yu V Khramtsov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A V Ulasov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow State University, Moscow, Russia
| | - G P Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia. .,Moscow State University, Moscow, Russia.
| |
Collapse
|
13
|
Karyagina TS, Ulasov AV, Slastnikova TA, Rosenkranz AA, Lupanova TN, Khramtsov YV, Georgiev GP, Sobolev AS. Targeted Delivery of 111In Into the Nuclei of EGFR Overexpressing Cells via Modular Nanotransporters With Anti-EGFR Affibody. Front Pharmacol 2020; 11:176. [PMID: 32194412 PMCID: PMC7064642 DOI: 10.3389/fphar.2020.00176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
Since cell nucleus is one of the most vulnerable compartments, the maximum therapeutic effect from a variety of locally acting agents, such as photosensitizers, alfa-emitters, Auger electron emitters, will be expected when they get there. Therefore, the targeted delivery of these agents into the nuclei of target tumor cells is necessary for their anticancer effects and minimization of side effects. Modular nanotransporters (MNT) are artificial polypeptides comprising several predefined modules that recognize target cell, launching their subsequent internalization, escape from endosomes, and transport the drug load to the nucleus. This technology significantly enhances the cytotoxicity of locally acting drugs in vitro and in vivo. Epidermal growth factor receptors (EGFR) are useful molecular targets as they are overexpressed in glioblastoma, head-and-neck cancer, bladder cancer, and other malignancies. Here, we examined the possibility of using internalizable anti-EGFR affibody as an EGFR-targeting MNT module for drug transport into the cancer cell nuclei. It binds to both murine and human EGFR facilitating preclinical studies. We showed that MNT with affibody on the N-terminus (MNTN-affibody) effectively delivered the Auger electron emitter 111In to target cell nuclei and had pronounced cytotoxic efficacy against EGFR-overexpressing human A431 epidermoid carcinoma cells. Using EGFR-expressing human adenocarcinoma MCF-7 cells, we demonstrated that in contrast to MNT with N-terminal epidermal growth factor (EGF), MNTN-affibody and MNT with EGF on the C-terminus did not stimulate cancer cell proliferation.
Collapse
Affiliation(s)
- Tatiana S Karyagina
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana N Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yuri V Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Georgii P Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
14
|
Delivery systems exploiting natural cell transport processes of macromolecules for intracellular targeting of Auger electron emitters. Nucl Med Biol 2019; 80-81:45-56. [PMID: 31810828 DOI: 10.1016/j.nucmedbio.2019.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
The presence of Auger electrons (AE) among the decay products of a number of radionuclides makes these radionuclides an attractive means for treating cancer because these short-range electrons can cause significant damage in the immediate vicinity of the decomposition site. Moreover, the extreme locality of the effect provides a potential for selective eradication of cancer cells with minimal damage to adjacent normal cells provided that the delivery of the AE emitter to the most vulnerable parts of the cell can be achieved. Few cellular compartments have been regarded as the desired target site for AE emitters, with the cell nucleus generally recognized as the preferred site for AE decay due to the extreme sensitivity of nuclear DNA to direct damage by radiation of high linear energy transfer. Thus, the advantages of AE emitters for cancer therapy are most likely to be realized by their selective delivery into the nucleus of the malignant cells. To achieve this goal, delivery systems must combine a challenging complex of properties that not only provide cancer cell preferential recognition but also cell entry followed by transport into the cell nucleus. A promising strategy for achieving this is the recruitment of natural cell transport processes of macromolecules, involved in each of the aforementioned steps. To date, a number of constructs exploiting intracellular transport systems have been proposed for AE emitter delivery to the nucleus of a targeted cell. An example of such a multifunctional vehicle that provides smart step-by-step delivery is the so-called modular nanotransporter, which accomplishes selective recognition, binding, internalization, and endosomal escape followed by nuclear import of the delivered radionuclide. The current review will focus on delivery systems utilizing various intracellular transport pathways and their combinations in order to provide efficient targeting of AE to the cancer cell nucleus.
Collapse
|
15
|
Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy - a review. EJNMMI Radiopharm Chem 2019; 4:27. [PMID: 31659527 PMCID: PMC6800417 DOI: 10.1186/s41181-019-0075-2] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background Auger electrons (AEs) are very low energy electrons that are emitted by radionuclides that decay by electron capture (e.g. 111In, 67Ga, 99mTc, 195mPt, 125I and 123I). This energy is deposited over nanometre-micrometre distances, resulting in high linear energy transfer (LET) that is potent for causing lethal damage in cancer cells. Thus, AE-emitting radiotherapeutic agents have great potential for treatment of cancer. In this review, we describe the radiobiological properties of AEs, their radiation dosimetry, radiolabelling methods, and preclinical and clinical studies that have been performed to investigate AEs for cancer treatment. Results AEs are most lethal to cancer cells when emitted near the cell nucleus and especially when incorporated into DNA (e.g. 125I-IUdR). AEs cause DNA damage both directly and indirectly via water radiolysis. AEs can also kill targeted cancer cells by damaging the cell membrane, and kill non-targeted cells through a cross-dose or bystander effect. The radiation dosimetry of AEs considers both organ doses and cellular doses. The Medical Internal Radiation Dose (MIRD) schema may be applied. Radiolabelling methods for complexing AE-emitters to biomolecules (antibodies and peptides) and nanoparticles include radioiodination (125I and 123I) or radiometal chelation (111In, 67Ga, 99mTc). Cancer cells exposed in vitro to AE-emitting radiotherapeutic agents exhibit decreased clonogenic survival correlated at least in part with unrepaired DNA double-strand breaks (DSBs) detected by immunofluorescence for γH2AX, and chromosomal aberrations. Preclinical studies of AE-emitting radiotherapeutic agents have shown strong tumour growth inhibition in vivo in tumour xenograft mouse models. Minimal normal tissue toxicity was found due to the restricted toxicity of AEs mostly on tumour cells targeted by the radiotherapeutic agents. Clinical studies of AEs for cancer treatment have been limited but some encouraging results were obtained in early studies using 111In-DTPA-octreotide and 125I-IUdR, in which tumour remissions were achieved in several patients at administered amounts that caused low normal tissue toxicity, as well as promising improvements in the survival of glioblastoma patients with 125I-mAb 425, with minimal normal tissue toxicity. Conclusions Proof-of-principle for AE radiotherapy of cancer has been shown preclinically, and clinically in a limited number of studies. The recent introduction of many biologically-targeted therapies for cancer creates new opportunities to design novel AE-emitting agents for cancer treatment. Pierre Auger did not conceive of the application of AEs for targeted cancer treatment, but this is a tremendously exciting future that we and many other scientists in this field envision.
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Valerie J Facca
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Joint Department of Medical Imaging and Toronto General Research Institute, University Health Network, Toronto, ON, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
16
|
Rosenkranz AA, Slastnikova TA, Karmakova TA, Vorontsova MS, Morozova NB, Petriev VM, Abrosimov AS, Khramtsov YV, Lupanova TN, Ulasov AV, Yakubovskaya RI, Georgiev GP, Sobolev AS. Antitumor Activity of Auger Electron Emitter 111In Delivered by Modular Nanotransporter for Treatment of Bladder Cancer With EGFR Overexpression. Front Pharmacol 2018; 9:1331. [PMID: 30510514 PMCID: PMC6252321 DOI: 10.3389/fphar.2018.01331] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Gamma-ray emitting 111In, which is extensively used for imaging, is also a source of short-range Auger electrons (AE). While exhibiting negligible effect outside cells, these AE become highly toxic near DNA within the cell nucleus. Therefore, these radionuclides can be used as a therapeutic anticancer agent if delivered precisely into the nuclei of tumor target cells. Modular nanotransporters (MNTs) designed to provide receptor-targeted delivery of short-range therapeutic cargoes into the nuclei of target cells are perspective candidates for specific intracellular delivery of AE emitters. The objective of this study was to evaluate the in vitro and in vivo efficacy of 111In attached MNTs to kill human bladder cancer cells overexpressing epidermal growth factor receptor (EGFR). The cytotoxicity of 111In delivered by the EGFR-targeted MNT (111In-MNT) was greatly enhanced on EJ-, HT-1376-, and 5637-expressing EGFR bladder cancer cell lines compared with 111In non-targeted control. In vivo microSPECT/CT imaging and antitumor efficacy studies revealed prolonged intratumoral retention of 111In-MNT with t½ = 4.1 ± 0.5 days as well as significant dose-dependent tumor growth delay (up to 90% growth inhibition) after local infusion of 111In-MNT in EJ xenograft-bearing mice.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Tatiana A Karmakova
- National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Maria S Vorontsova
- National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Natalia B Morozova
- National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vasiliy M Petriev
- National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia.,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | | | - Yuri V Khramtsov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexey V Ulasov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Raisa I Yakubovskaya
- National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | | | - Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Slastnikova TA, Ulasov AV, Rosenkranz AA, Sobolev AS. Targeted Intracellular Delivery of Antibodies: The State of the Art. Front Pharmacol 2018; 9:1208. [PMID: 30405420 PMCID: PMC6207587 DOI: 10.3389/fphar.2018.01208] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
A dominant area of antibody research is the extension of the use of this mighty experimental and therapeutic tool for the specific detection of molecules for diagnostics, visualization, and activity blocking. Despite the ability to raise antibodies against different proteins, numerous applications of antibodies in basic research fields, clinical practice, and biotechnology are restricted to permeabilized cells or extracellular antigens, such as membrane or secreted proteins. With the exception of small groups of autoantibodies, natural antibodies to intracellular targets cannot be used within living cells. This excludes the scope of a major class of intracellular targets, including some infamous cancer-associated molecules. Some of these targets are still not druggable via small molecules because of large flat contact areas and the absence of deep hydrophobic pockets in which small molecules can insert and perturb their activity. Thus, the development of technologies for the targeted intracellular delivery of antibodies, their fragments, or antibody-like molecules is extremely important. Various strategies for intracellular targeting of antibodies via protein-transduction domains or their mimics, liposomes, polymer vesicles, and viral envelopes, are reviewed in this article. The pitfalls, challenges, and perspectives of these technologies are discussed.
Collapse
Affiliation(s)
- Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - A. S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
Bavelaar BM, Lee BQ, Gill MR, Falzone N, Vallis KA. Subcellular Targeting of Theranostic Radionuclides. Front Pharmacol 2018; 9:996. [PMID: 30233374 PMCID: PMC6131480 DOI: 10.3389/fphar.2018.00996] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
The last decade has seen rapid growth in the use of theranostic radionuclides for the treatment and imaging of a wide range of cancers. Radionuclide therapy and imaging rely on a radiolabeled vector to specifically target cancer cells. Radionuclides that emit β particles have thus far dominated the field of targeted radionuclide therapy (TRT), mainly because the longer range (μm-mm track length) of these particles offsets the heterogeneous expression of the molecular target. Shorter range (nm-μm track length) α- and Auger electron (AE)-emitting radionuclides on the other hand provide high ionization densities at the site of decay which could overcome much of the toxicity associated with β-emitters. Given that there is a growing body of evidence that other sensitive sites besides the DNA, such as the cell membrane and mitochondria, could be critical targets in TRT, improved techniques in detecting the subcellular distribution of these radionuclides are necessary, especially since many β-emitting radionuclides also emit AE. The successful development of TRT agents capable of homing to targets with subcellular precision demands the parallel development of quantitative assays for evaluation of spatial distribution of radionuclides in the nm-μm range. In this review, the status of research directed at subcellular targeting of radionuclide theranostics and the methods for imaging and quantification of radionuclide localization at the nanoscale are described.
Collapse
Affiliation(s)
| | | | | | | | - Katherine A. Vallis
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Sobolev AS. Modular Nanotransporters for Nuclear-Targeted Delivery of Auger Electron Emitters. Front Pharmacol 2018; 9:952. [PMID: 30210340 PMCID: PMC6119715 DOI: 10.3389/fphar.2018.00952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
This review describes artificial modular nanotransporters (MNTs) delivering their cargos into target cells and then into the nuclei – the most vulnerable cell compartment for most anticancer agents and especially for radionuclides emitting short-range particles. The MNT strategy uses natural subcellular transport processes inherent in practically all cells including cancer cells. The MNTs use these processes just as a passenger who purchased tickets for a multiple-transfer trip making use of different kinds of public transport to reach the desired destination. The MNTs are fusion polypeptides consisting of several parts, replaceable modules, accomplishing binding to a specific receptor on the cell and subsequent internalization, endosomal escape and transport into the cell nucleus. Radionuclides emitting short-range particles, like Auger electron emitters, acquire cell specificity and significantly higher cytotoxicity both in vitro and in vivo when delivered by the MNTs into the nuclei of cancer cells. MNT modules are interchangeable, allowing replacement of receptor recognition modules, which permits their use for different types of cancer cells and, as a cocktail of several MNTs, for targeting several tumor-specific molecules for personalized medicine.
Collapse
Affiliation(s)
- Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
20
|
Ulasov AV, Khramtsov YV, Lupanova TN, Tsvetkova AD, Rosenkranz AA, Slastnikova TA, Georgiev GP, Sobolev AS. MNT Optimization for Intracellular Delivery of Antibody Fragments. DOKL BIOCHEM BIOPHYS 2018; 479:62-65. [PMID: 29779097 DOI: 10.1134/s1607672918020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 12/27/2022]
Abstract
We studied the possibility of optimizing modular nanotransporters (MNTs) for the intracellular delivery of antibody fragments into the nuclei of cells of a specified type. Basic MNT with a reduced size retaining the desired functions was obtained, and the principal possibility of obtaining an MNT carrying an antibody fragment by microbiological synthesis was shown.
Collapse
Affiliation(s)
- A V Ulasov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Y V Khramtsov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - T N Lupanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - A D Tsvetkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Faculty of Biology, Moscow State University, Moscow, 119992, Russia
| | - A A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Faculty of Biology, Moscow State University, Moscow, 119992, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - G P Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - A S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia. .,Faculty of Biology, Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
21
|
Slastnikova TA, Rosenkranz AA, Khramtsov YV, Karyagina TS, Ovechko SA, Sobolev AS. Development and evaluation of a new modular nanotransporter for drug delivery into nuclei of pathological cells expressing folate receptors. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1315-1334. [PMID: 28490863 PMCID: PMC5413543 DOI: 10.2147/dddt.s127270] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Modular nanotransporters (MNTs) are artificial multifunctional systems designed to facilitate receptor-specific transport from the cell surface into the cell nucleus through inclusion of polypeptide domains for accomplishing receptor binding and internalization, as well as sequential endosomal escape and nuclear translocation. The objective of this study was to develop a new MNT targeted at folate receptors (FRs) for precise delivery of therapeutic cargo to the nuclei of FR-positive cells and to evaluate its potential, particularly for delivery of therapeutic agents (eg, the Auger electron emitter 111In) into the nuclei of target cancer cells. METHODS A FR-targeted MNT was developed by site-specific derivatization of ligand-free MNT with maleimide-polyethylene glycol-folic acid. The ability of FR-targeted MNT to accumulate in target FR-expressing cells was evaluated using flow cytometry, and intracellular localization of this MNT was assessed using confocal laser scanning microscopy of cells. The cytotoxicity of the 111In-labeled FR-targeted MNT was evaluated on HeLa and U87MG cancer cell lines expressing FR. In vivo micro-single-photon emission computed tomography/CT imaging and antitumor efficacy studies were performed with intratumoral injection of 111In-labeled FR-targeted MNT in HeLa xenograft-bearing mice. RESULTS The resulting FR-targeted MNT accumulated in FR-positive HeLa cancer cell lines specifically and demonstrated the ability to reach its target destination - the cell nuclei. 111In-labeled FR-targeted MNT demonstrated efficient and specific FR-positive cancer cell eradication. A HeLa xenograft in vivo model revealed prolonged retention of 111In delivered by FR-targeted MNT and significant tumor growth delay (up to 80% growth inhibition). CONCLUSION The FR-targeted MNT met expectations of its ability to deliver active cargo into the nuclei of target FR-positive cells efficiently and specifically. As a result of this finding the new FR-targeted MNT approach warrants broad evaluation.
Collapse
Affiliation(s)
- Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
| | - Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences.,Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri V Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
| | - Tatiana S Karyagina
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
| | - Sergey A Ovechko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander S Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences.,Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
22
|
Pereira E, do Quental L, Palma E, Oliveira MC, Mendes F, Raposinho P, Correia I, Lavrado J, Di Maria S, Belchior A, Vaz P, Santos I, Paulo A. Evaluation of Acridine Orange Derivatives as DNA-Targeted Radiopharmaceuticals for Auger Therapy: Influence of the Radionuclide and Distance to DNA. Sci Rep 2017; 7:42544. [PMID: 28211920 PMCID: PMC5304164 DOI: 10.1038/srep42544] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023] Open
Abstract
A new family of 99mTc(I)- tricarbonyl complexes and 125I-heteroaromatic compounds bearing an acridine orange (AO) DNA targeting unit was evaluated for Auger therapy. Characterization of the DNA interaction, performed with the non-radioactive Re and 127I congeners, confirmed that all compounds act as DNA intercalators. Both classes of compounds induce double strand breaks (DSB) in plasmid DNA but the extent of DNA damage is strongly dependent on the linker between the Auger emitter (99mTc or 125I) and the AO moiety. The in vitro evaluation was complemented with molecular docking studies and Monte Carlo simulations of the energy deposited at the nanometric scale, which corroborated the experimental data. Two of the tested compounds, 125I-C5 and 99mTc-C3, place the corresponding radionuclide at similar distances to DNA and produce comparable DSB yields in plasmid and cellular DNA. These results provide the first evidence that 99mTc can induce DNA damage with similar efficiency to that of 125I, when both are positioned at comparable distances to the double helix. Furthermore, the high nuclear retention of 99mTc-C3 in tumoral cells suggests that 99mTc-labelled AO derivatives are more promising for the design of Auger-emitting radiopharmaceuticals than the 125I-labelled congeners.
Collapse
Affiliation(s)
- Edgar Pereira
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Letícia do Quental
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Elisa Palma
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.,Centro Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal
| | - Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Paula Raposinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Isabel Correia
- Centro Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal
| | - João Lavrado
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Salvatore Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Ana Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Isabel Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
23
|
Slastnikova TA, Rosenkranz AA, Morozova NB, Vorontsova MS, Petriev VM, Lupanova TN, Ulasov AV, Zalutsky MR, Yakubovskaya RI, Sobolev AS. Preparation, cytotoxicity, and in vivo antitumor efficacy of 111In-labeled modular nanotransporters. Int J Nanomedicine 2017; 12:395-410. [PMID: 28138237 PMCID: PMC5238804 DOI: 10.2147/ijn.s125359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Modular nanotransporters (MNTs) are a polyfunctional platform designed to achieve receptor-specific delivery of short-range therapeutics into the cell nucleus by receptor-mediated endocytosis, endosome escape, and targeted nuclear transport. This study evaluated the potential utility of the MNT platform in tandem with Auger electron emitting 111In for cancer therapy. METHODS Three MNTs developed to target either melanocortin receptor-1 (MC1R), folate receptor (FR), or epidermal growth factor receptor (EGFR) that are overexpressed on cancer cells were modified with p-SCN-Bn-NOTA and then labeled with 111In in high specific activity. Cytotoxicity of the 111In-labeled MNTs was evaluated on cancer cell lines bearing the appropriate receptor target (FR: HeLa, SK-OV-3; EGFR: A431, U87MG.wtEGFR; and MC1R: B16-F1). In vivo micro-single-photon emission computed tomography/computed tomography imaging and antitumor efficacy studies were performed with intratumoral injection of MC1R-targeted 111In-labeled MNT in B16-F1 melanoma tumor-bearing mice. RESULTS The three NOTA-MNT conjugates were labeled with a specific activity of 2.7 GBq/mg with nearly 100% yield, allowing use without subsequent purification. The cytotoxicity of 111In delivered by these MNTs was greatly enhanced on receptor-expressing cancer cells compared with 111In nontargeted control. In mice with B16-F1 tumors, prolonged retention of 111In by serial imaging and significant tumor growth delay (82% growth inhibition) were found. CONCLUSION The specific in vitro cytotoxicity, prolonged tumor retention, and therapeutic efficacy of MC1R-targeted 111In-NOTA-MNT suggest that this Auger electron emitting conjugate warrants further evaluation as a locally delivered radiotherapeutic, such as for ocular melanoma brachytherapy. Moreover, the high cytotoxicity observed with FR- and EGFR-targeted 111In-NOTA-MNT suggests further applications of the MNT delivery strategy should be explored.
Collapse
Affiliation(s)
- Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
| | - Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University
| | - Natalia B Morozova
- Department of Anticancer Therapy Modifiers and Protectors, Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, Moscow
| | - Maria S Vorontsova
- Department of Anticancer Therapy Modifiers and Protectors, Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, Moscow
| | - Vasiliy M Petriev
- National Medical Research Radiological Center, Russian Ministry of Health Care, Obninsk, Moscow Region
- Department of Nuclear Medicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - Tatiana N Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
| | - Alexey V Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Raisa I Yakubovskaya
- Department of Anticancer Therapy Modifiers and Protectors, Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, Moscow
| | - Alexander S Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University
| |
Collapse
|
24
|
Rosenkranz AA, Ulasov AV, Slastnikova TA, Khramtsov YV, Sobolev AS. Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment. BIOCHEMISTRY (MOSCOW) 2014; 79:928-46. [DOI: 10.1134/s0006297914090090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Koumarianou E, Slastnikova TA, Pruszynski M, Rosenkranz AA, Vaidyanathan G, Sobolev AS, Zalutsky MR. Radiolabeling and in vitro evaluation of (67)Ga-NOTA-modular nanotransporter--a potential Auger electron emitting EGFR-targeted radiotherapeutic. Nucl Med Biol 2014; 41:441-9. [PMID: 24776093 PMCID: PMC4048709 DOI: 10.1016/j.nucmedbio.2014.03.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Modular nanotransporters (MNTs) are vehicles designed to transport drugs from the cell surface via receptor-mediated endocytosis and endosomal escape to nucleus. Hence their conjugation to Auger electron emitters, can cause severe cell killing, by nuclear localization. Herein we evaluate the use of MNT as a platform for targeted radiotherapy with (67)Ga. METHODS EGF was the targeting ligand on the MNT, and NOTA was selected for its radiolabeling with (67)Ga. In the radiolabeling study we dealt with the precipitation of MNT (pI 5.7) at the labeling pH (4.5-5.5) of (67)Ga. Cellular and nuclei uptake of (67)Ga-NOTA-MNT by the A431 cell line was determined. Its specific cytotoxicity was compared to that of (67)Ga-EDTA, (67)Ga-NOTA-BSA and (67)Ga-NOTA-hEGF, in A431 and U87MGWTT, cell lines, by clonogenic assay. Dosimetry studies were also performed. RESULTS (67)Ga-NOTA-MNT was produced with 90% yield and specific activity of 25.6mCi/mg. The in vitro kinetics revealed an increased uptake over 24h. 55% of the internalized radioactivity was detected in the nuclei at 1h. The cytotoxicity of (67)Ga-NOTA-MNT on A431 cell line was 17 and 385-fold higher when compared to non-specific (67)Ga-NOTA-BSA and (67)Ga-EDTA. While its cytotoxic potency was 13 and 72-fold higher when compared to (67)Ga-NOTA-hEGF in the A431 and the U87MGWTT cell lines, respectively, validating its nuclear localization. The absorbed dose, for 63% cell killing, was 8Gy, confirming the high specific index of (67)Ga. CONCLUSION These results demonstrate the feasibility of using MNT as a platform for single cell kill targeted radiotherapy by Auger electron emitters.
Collapse
Affiliation(s)
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Moscow, Russia; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Marek Pruszynski
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Moscow, Russia; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Alexander S Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Moscow, Russia; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, USA; Departments of Biomedical Engineering and Radiation Oncology, Duke University, Durham, NC, USA.
| |
Collapse
|
26
|
Rosenkranz AA, Slastnikova TA, Durymanov MO, Sobolev AS. Malignant melanoma and melanocortin 1 receptor. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:1228-37. [PMID: 24460937 PMCID: PMC4064721 DOI: 10.1134/s0006297913110035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The conventional chemotherapeutic treatment of malignant melanoma still remains poorly efficient in most cases. Thus the use of specific features of these tumors for development of new therapeutic modalities is highly needed. Melanocortin 1 receptor (MC1R) overexpression on the cell surface of the vast majority of human melanomas, making MC1R a valuable marker of these tumors, is one of these features. Naturally, MC1R plays a key role in skin protection against damaging ultraviolet radiation by regulating eumelanin production. MC1R activation is involved in regulation of melanocyte cell division. This article reviews the peculiarities of regulation and expression of MC1R, melanocytes, and melanoma cells, along with the possible connection of MC1R with signaling pathways regulating proliferation of tumor cells. MC1R is a cell surface endocytic receptor, thus considered perspective for diagnostics and targeted drug delivery. A number of new therapeutic approaches that utilize MC1R, including endoradiotherapy with Auger electron and α- and β-particle emitters, photodynamic therapy, and gene therapy are now being developed.
Collapse
Affiliation(s)
- A. A. Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
- Faculty of Biology, Lomonosov Moscow State University, Leninsky Gory 1-12, 119234 Moscow, Russia; fax: +7 (495) 939-4309;
- Targeted Delivery of Pharmaceuticals “Translek” LLC, ul. Vavilova 34/5, 199334 Moscow, Russia;
| | - T. A. Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
| | - M. O. Durymanov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
- Faculty of Biology, Lomonosov Moscow State University, Leninsky Gory 1-12, 119234 Moscow, Russia; fax: +7 (495) 939-4309;
| | - A. S. Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
- Faculty of Biology, Lomonosov Moscow State University, Leninsky Gory 1-12, 119234 Moscow, Russia; fax: +7 (495) 939-4309;
- Targeted Delivery of Pharmaceuticals “Translek” LLC, ul. Vavilova 34/5, 199334 Moscow, Russia;
| |
Collapse
|