1
|
Mohebbi A, Kiani I, Mohammadzadeh S, Mohammadi A, Tavangar SM. Qualitative and quantitative differentiation efficiency of dual-tracer PET/CT with 18F-fluorodeoxyglucose and 11C-acetate for primary hepatocellular carcinoma: a systematic review and meta-analysis. Abdom Radiol (NY) 2024:10.1007/s00261-024-04302-y. [PMID: 39060514 DOI: 10.1007/s00261-024-04302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Primary hepatocellular carcinoma (HCC) represents a substantial global health challenge. Early diagnosis of HCC is crucial for improved patient outcomes. The aim of this study was to assess qualitative and quantitative diagnostic performance of PET/CT using 11C-acetate and [18F]-fluorodeoxyglucose (FDG) in detection of primary HCC and to determine if 11C-acetate added to [18F]-FDG alleviates the low sensitivity rate mentioned in guidelines. METHODS Protocol was pre-registered at https://osf.io/2vcb9 . We searched PubMed, Web of Science, Embase, and the Cochrane Library for included studies. Quality Assessment of Diagnostic Accuracy Studies 2 was used to assess the risk of bias. Possible sources of statistical heterogeneity were explored. Additionally, mentioned three PET/CT tests were evaluated for their diagnostic performance in differentiating HCC from its differential diagnoses. Grades of Recommendation, Assessment, Development, and Evaluation was used to assess quality of generated evidence. RESULTS Twenty-four studies were analyzed. Qualitative dual-tracer PET/CT demonstrated 92.0% per-lesion sensitivity, and a significantly higher direct sensitivity difference of 30% to conventional CT, 44.7% to [18F]-FDG, and 12.0% to 11C-acetate. Regarding differentiation rate, [18F]-FDG was superior to 11C-acetate in poorly differentiated lesions while 11C-acetate was superior in well-differentiated lesions. Regarding size, dual tracer combination solved the high missing rate of HCC lesions in 1-2 cm and 2-5 cm groups but could not help in size < 1 cm. CONCLUSION Dual-tracer PET/CT utilizing 11C-acetate and [18F]-FDG represents a sensitive method for detecting primary HCC. By concurrently quantifying or qualifying the uptake of 11C-acetate and [18F]-FDG, this multimodal approach enables precise localization of intrahepatic lesions.
Collapse
Affiliation(s)
- Alisa Mohebbi
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Kiani
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadzadeh
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Mohammadi
- Department of Radiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Chiu KWH, Chiang CL, Chan KSK, Hui Y, Ren J, Wei X, Ng KS, Lee HFV, Chia NH, Cheung TT, Chan S, Chan ACY, Ng KCK, Seto WKW, Khong PL, Kong FM. Dual-tracer PET/CT in the management of hepatocellular carcinoma. JHEP Rep 2024; 6:101099. [PMID: 38974366 PMCID: PMC11225831 DOI: 10.1016/j.jhepr.2024.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 07/09/2024] Open
Abstract
Background & Aims Combined 18F-fluorodeoxyglucose (FDG) and 11C-acetate (dual-tracer) positron-emission tomography/computed tomography (PET/CT) is being increasingly performed for the management of hepatocellular carcinoma (HCC), although its role is not well defined. Therefore, we evaluated its effectiveness in (i) staging, (ii) characterization of indeterminate lesions on conventional imaging, and (iii) detection of HCC in patients with unexplained elevations in serum alpha-fetoprotein (AFP) levels. Methods We retrospectively assessed 525 consecutive patients from three tertiary centers between 2014 and 2020. For staging, we recorded new lesion detection rates, changes in the Barcelona Clinic Liver Cancer (BCLC) classification, and treatment allocation due to dual-tracer PET/CT. To characterize indeterminate lesions and unexplained elevation of serum AFP levels, the sensitivity and specificity of dual-tracer PET/CT in diagnosing HCC were evaluated. A multidisciplinary external review and a cost-benefit analysis of patients for metastatic screening were also performed. Results Dual-tracer PET/CT identified new lesions in 14.3% of 273 staging patients, resulting in BCLC upstaging in 11.7% and treatment modifications in 7.7%. It upstaged 8.1% of 260 patients undergoing metastatic screening, with estimated savings of US$495 per patient. It had a sensitivity and specificity of 80.7% (95% CI 71.2-88.6%) and 94.8% (95% CI 90.4-98.6%), respectively, for diagnosing HCC in 201 indeterminate lesions. It detected HCC in 45.1% of 51 patients with unexplained elevations in serum AFP concentrations. External review revealed substantial agreement between local and external image interpretation and patient assessment (n = 273, κ = 0.822; 95% CI 0.803-0.864). Conclusions Dual-tracer PET/CT provides added value beyond conventional imaging in patients with HCC by improving staging, confirming HCC diagnosis with high accuracy in patients with indeterminate lesions, and detecting HCC in patients with unexplained elevation of serum AFP. Impact and implications Compared to CT or MRI, dual-tracer positron-emission tomography/computed tomography (PET/CT) led to upstaging in 12% of patients with hepatocellular carcinoma (HCC) undergoing staging, resulting in treatment modification in 8% of cases and a cost saving of US$495 per patient. It also accurately detected HCC in high-risk cases where CT or MRI were equivocal or normal. Dual-tracer PET/CT provides added value beyond conventional imaging in patients with HCC by improving staging, confirming HCC diagnosis with high accuracy in patients with indeterminate lesions, and detecting HCC in patients with unexplained elevation of serum AFP.
Collapse
Affiliation(s)
- Keith Wan Hang Chiu
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong, China
| | - Chi Leung Chiang
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong China
| | - Kenneth Sik Kwan Chan
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong China
| | - Yuan Hui
- Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangdong, China
| | - Jingyun Ren
- Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangdong, China
| | - Xiaojuan Wei
- Department of Clinical Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangdong, China
| | - Kwok Sing Ng
- Department of Nuclear Medicine, Queen Elizabeth Hospital, Hong Kong, China
| | - Ho Fun Victor Lee
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong China
| | - Nam Hung Chia
- Department of Surgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Tan-To Cheung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Stephen Chan
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Albert Chi-Yan Chan
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, China
| | | | - Wai Kay Walter Seto
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, China
| | - Pek-Lan Khong
- NUS Clinical Imaging Research Centre (CIRC), Singapore
| | - Feng-Ming Kong
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong China
| |
Collapse
|
3
|
Silins I, Moreno A, Wall A, Aigbirhio F, Gurnell M, Brown M, Roslin S, Antoni G, Hellman P, Sundin A, Lubberink M. Radiation dosimetry of para-chloro-2-[ 18F]fluoroethyl-etomidate: a PET tracer for adrenocortical imaging. EJNMMI Res 2024; 14:48. [PMID: 38771379 PMCID: PMC11109037 DOI: 10.1186/s13550-024-01109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND [11C]metomidate, a methyl ester analogue of etomidate, is used for positron emission tomography of adrenocortical cancer, and has been tested in recent clinical trials for lateralization in primary aldosteronism (PA). However, in PA, visualization as well as uptake quantification are hampered by the tracer's rather high non-specific liver uptake, and its overall clinical usefulness is also limited by the short 20-minute half-life of carbon-11. Therefore, we evaluated para-chloro-2-[18F]fluoroethyl-etomidate, [18F]CETO, a fluorine-18 (T1/2=109.8 min) analogue, as a potential new adrenocortical PET tracer. The aim of this study was to assess radiation dosimetry of [18F]CETO. RESULTS [18F]CETO showed a high uptake in adrenal glands, still increasing at 5 h post injection. Adrenal glands (absorbed dose coefficients 0.100 ± 0.032 mGy/MBq in males and 0.124 ± 0.013 mGy/MBq in females) received the highest absorbed dose. The effective dose coefficient was 20 µSv/MBq. CONCLUSIONS [18F]CETO has a favourable biodistribution in humans for adrenal imaging. The effective dose for a typical clinical PET examination with 200 MBq [18F]CETO is 4 mSv. TRIAL REGISTRATION ClinicalTrials.gov, NCT05361083 Retrospectively registered 29 April 2022. at, URL: https://clinicaltrials.gov/ct2/show/NCT05361083.
Collapse
Affiliation(s)
- Isabella Silins
- Department of Surgical Sciences, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Adrian Moreno
- Department of Surgical Sciences, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Anders Wall
- Department of Surgical Sciences, Uppsala University, Uppsala, SE-751 85, Sweden
| | | | - Mark Gurnell
- Institute of Metabolic Science & Department of Medicine, University of Cambridge, Cambridge, UK
| | - Morris Brown
- William Harvey Heart Centre, Queen Mary University of London, London, UK
| | - Sara Roslin
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Anders Sundin
- Department of Surgical Sciences, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, SE-751 85, Sweden.
| |
Collapse
|
4
|
Silins I, Sundin A, Nordeman P, Jahan M, Estrada S, Monazzam A, Lubberink M, Aigbirhio F, Hellman P, Antoni G. Para-chloro-2-[ 18F]fluoroethyl-etomidate: A promising new PET radiotracer for adrenocortical imaging. Int J Med Sci 2021; 18:2187-2196. [PMID: 33859526 PMCID: PMC8040415 DOI: 10.7150/ijms.51206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction: [11C]Metomidate ([11C]MTO), the methyl ester analogue of etomidate, was developed as a positron emission tomography (PET) radiotracer for adrenocortical tumours and has also been suggested for imaging in primary aldosteronism (PA). A disadvantage of [11C]MTO is the rather high non-specific binding in the liver, which impacts both visualization and quantification of the uptake in the right adrenal gland. Furthermore, the short 20-minute half-life of carbon-11 is a logistic challenge in the clinical setting. Objectives: The aim of this study was to further evaluate the previously published fluorine-18 (T1/2=109.5 min) etomidate analogue, para-chloro-2-[18F]fluoroethyl etomidate; [18F]CETO, as an adrenal PET tracer. Methods: In vitro experiments included autoradiography on human and cynomolgus monkey (non-human primate, NHP) tissues and binding studies on adrenal tissue from NHPs. In vivo studies with [18F]CETO in mice, rats and NHP, using PET and CT/MRI, assessed biodistribution and binding specificity in comparison to [11C]MTO. Results: The binding of [18F]CETO in the normal adrenal cortex, as well as in human adrenocortical adenomas and adrenocortical carcinomas, was shown to be specific, both in vitro (in humans) and in vivo (in rats and NHP) with an in vitro Kd of 0.66 nM. Non-specific uptake of [18F]CETO in NHP liver was found to be low compared to that of [11C]MTO. Conclusions: High specificity of [18F]CETO to the adrenal cortex was demonstrated, with in vivo binding properties qualitatively surpassing those of [11C]MTO. Non-specific binding to the liver was significantly lower than that of [11C]MTO. [18F]CETO is a promising new PET tracer for imaging of adrenocortical disease and should be evaluated further in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Per Hellman
- Department of Surgical Sciences, Uppsala University
| | | |
Collapse
|
5
|
Dubash SR, Idowu OA, Sharma R. The emerging role of positron emission tomography in hepatocellular carcinoma. Hepat Oncol 2015; 2:191-200. [PMID: 30190998 DOI: 10.2217/hep.15.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide. HCC a heterogeneous disease occurring on the background of cirrhosis. The presence of cirrhosis limits the sensitivity of conventional imaging modalities in differentiating HCC from surrounding cirrhotic parenchyma. Positron emission tomography (PET) using 18F-fluorodeoxyglucose (18F-FDG) is widely used for assessing a variety of malignancies, however, has poor sensitivity in the evaluation of HCC. This has led to the investigation of other radiotracers such as 11C-acetate and 11C-choline, with improved sensitivity in terms of detection and therapeutic response. In this review, we discuss the emerging field of PET imaging for the detection, staging and assessment of treatment response in HCC. In particular we discuss the role of 18F-FDG-PET in imaging hepatocellular cancer, the limitations of this PET tracer and emerging novel PET tracers being investigated that exploit key metabolic processes including fatty acid and lipid synthesis, choline kinase activity and gene expression.
Collapse
Affiliation(s)
- Suraiya R Dubash
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK.,Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - Oluwagbemiga A Idowu
- Department of Medical Oncology, Hammersmith Hospital, London, UK.,Department of Medical Oncology, Hammersmith Hospital, London, UK
| | - Rohini Sharma
- Division of Translational & Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK.,Medical Oncology & Clinical Pharmacology, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK.,Division of Translational & Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK.,Medical Oncology & Clinical Pharmacology, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| |
Collapse
|
6
|
Alam IS, Arshad MA, Nguyen QD, Aboagye EO. Radiopharmaceuticals as probes to characterize tumour tissue. Eur J Nucl Med Mol Imaging 2015; 42:537-61. [PMID: 25647074 DOI: 10.1007/s00259-014-2984-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/06/2023]
Abstract
Tumour cells exhibit several properties that allow them to grow and divide. A number of these properties are detectable by nuclear imaging methods. We discuss crucial tumour properties that can be described by current radioprobe technologies, further discuss areas of emerging radioprobe development, and finally articulate need areas that our field should aspire to develop. The review focuses largely on positron emission tomography and draws upon the seminal 'Hallmarks of Cancer' review article by Hanahan and Weinberg in 2011 placing into context the present and future roles of radiotracer imaging in characterizing tumours.
Collapse
Affiliation(s)
- Israt S Alam
- Comprehensive Cancer Imaging Centre, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
7
|
FDG and other radiopharmaceuticals in the evaluation of liver lesions. Clin Transl Imaging 2014. [DOI: 10.1007/s40336-014-0059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
|