1
|
Zhu J, Pan F, Cai H, Pan L, Li Y, Li L, Li Y, Wu X, Fan H. Positron emission tomography imaging of lung cancer: An overview of alternative positron emission tomography tracers beyond F18 fluorodeoxyglucose. Front Med (Lausanne) 2022; 9:945602. [PMID: 36275809 PMCID: PMC9581209 DOI: 10.3389/fmed.2022.945602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer has been the leading cause of cancer-related mortality in China in recent decades. Positron emission tomography-computer tomography (PET/CT) has been established in the diagnosis of lung cancer. 18F-FDG is the most widely used PET tracer in foci diagnosis, tumor staging, treatment planning, and prognosis assessment by monitoring abnormally exuberant glucose metabolism in tumors. However, with the increasing knowledge on tumor heterogeneity and biological characteristics in lung cancer, a variety of novel radiotracers beyond 18F-FDG for PET imaging have been developed. For example, PET tracers that target cellular proliferation, amino acid metabolism and transportation, tumor hypoxia, angiogenesis, pulmonary NETs and other targets, such as tyrosine kinases and cancer-associated fibroblasts, have been reported, evaluated in animal models or under clinical investigations in recent years and play increasing roles in lung cancer diagnosis. Thus, we perform a comprehensive literature review of the radiopharmaceuticals and recent progress in PET tracers for the study of lung cancer biological characteristics beyond glucose metabolism.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,Respiratory and Critical Care Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China,NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Fei Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - YunChun Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China,Department of Nuclear Medicine, The Second People’s Hospital of Yibin, Yibin, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China,Xiaoai Wu,
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Hong Fan,
| |
Collapse
|
2
|
Huang Y, Fan J, Li Y, Fu S, Chen Y, Wu J. Imaging of Tumor Hypoxia With Radionuclide-Labeled Tracers for PET. Front Oncol 2021; 11:731503. [PMID: 34557414 PMCID: PMC8454408 DOI: 10.3389/fonc.2021.731503] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/19/2021] [Indexed: 01/27/2023] Open
Abstract
The hypoxic state in a solid tumor refers to the internal hypoxic environment that appears as the tumor volume increases (the maximum radius exceeds 180-200 microns). This state can promote angiogenesis, destroy the balance of the cell’s internal environment, and lead to resistance to radiotherapy and chemotherapy, as well as poor prognostic factors such as metastasis and recurrence. Therefore, accurate quantification, mapping, and monitoring of hypoxia, targeted therapy, and improvement of tumor hypoxia are of great significance for tumor treatment and improving patient survival. Despite many years of development, PET-based hypoxia imaging is still the most widely used evaluation method. This article provides a comprehensive overview of tumor hypoxia imaging using radionuclide-labeled PET tracers. We introduced the mechanism of tumor hypoxia and the reasons leading to the poor prognosis, and more comprehensively included the past, recent and ongoing studies of PET radiotracers for tumor hypoxia imaging. At the same time, the advantages and disadvantages of mainstream methods for detecting tumor hypoxia are summarized.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junying Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Chen
- Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
3
|
Guan SS, Wu CT, Liao TZ, Lin KL, Peng CL, Shih YH, Weng MF, Chen CT, Yeh CH, Wang YC, Liu SH. A novel 111indium-labeled dual carbonic anhydrase 9-targeted probe as a potential SPECT imaging radiotracer for detection of hypoxic colorectal cancer cells. Eur J Pharm Biopharm 2021; 168:38-52. [PMID: 34450241 DOI: 10.1016/j.ejpb.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Tumor hypoxia is a common feature in colorectal cancer (CRC), and is associated with resistance to radiotherapy and chemotherapy. Thus, a specifically targeted probe for the detection of hypoxic CRC cells is urgently needed. Carbonic anhydrase 9 (CA9) is considered to be a specific marker for hypoxic CRC diagnosis. Here, a nuclear imaging Indium-111 (111In)-labeled dual CA9-targeted probe was synthesized and evaluated for CA9 detection in in vitro, in vivo, and in human samples. The CA9-targeted peptide (CA9tp) and CA9 inhibitor acetazolamide (AAZ) were combined to form a dual CA9-targeted probe (AAZ-CA9tp) using an automatic microwave peptide synthesizer, which then was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for radioisotope (111In) labeling (111In-DOTA-AAZ-CA9tp). The assays for cell binding, stability, and toxicity were conducted in hypoxic CRC HCT15 cells. The analyses for imaging and biodistribution were performed in an HCT15 xenograft mouse model. The binding and distribution of 111In-DOTA-AAZ-CA9tp were detected in human CRC samples using microautoradiography. AAZ-CA9tp possessed good CA9-targeting ability in hypoxic HCT15 cells. The dual CA9-targeted radiotracer showed high serum stability, high surface binding, and high affinity in vitro. After exposure of 111In-DOTA-AAZ-CA9tp to the HCT15-bearing xenograft mice, the levels of 111In-DOTA-AAZ-CA9tp were markedly and specifically increased in the hypoxic tumor tissues compared to control mice. 111In-DOTA-AAZ-CA9tp also targeted the areas of CA9 overexpression in human colorectal tumor tissue sections. The results of this study suggest that the novel 111In-DOTA-AAZ-CA9tp nuclear imaging agent may be a useful tool for the detection of hypoxic CRC cells in clinical practice.
Collapse
Affiliation(s)
- Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan; Master Program of Food and Drug Safety, China Medical University, Taichung 40402, Taiwan
| | - Tse-Zung Liao
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Kun-Liang Lin
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Cheng-Liang Peng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Ying-Hsia Shih
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Mao-Feng Weng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Chun-Tang Chen
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Chung-Hsin Yeh
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Ying-Chieh Wang
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Jen-Ai Road Section 1, Taipei 10051, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
5
|
A phase 0 study of the pharmacokinetics, biodistribution, and dosimetry of 188Re-liposome in patients with metastatic tumors. EJNMMI Res 2019; 9:46. [PMID: 31119414 PMCID: PMC6531516 DOI: 10.1186/s13550-019-0509-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/17/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Liposomes are drug nano-carriers that are capable of targeting therapeutics to tumor sites because of enhanced permeability retention (EPR). In several preclinical studies with various tumor-bearing mice models, 188Re-liposome that has been developed by the Institute of Nuclear Energy Research (INER) demonstrates favorable in vivo tumor targeting, biodistribution, pharmacokinetics, and dosimetry. It inhibits the growth of tumors, increased survival, demonstrates good synergistic combination, and was safe to use. This study conducts a phase 0 low-radioactivity clinical trial of nano-targeted radiotherapeutics 188Re-liposome to evaluate the effectiveness with which it targets tumors and the pharmacokinetics, biodistribution, dosimetry, and its safety in use. Twelve patients with metastatic cancers are studied in this trial. Serial whole-body scans and SPECT/CT are taken at 1, 4, 8, 24, 48, and 72 h after intravenous injection of 111 MBq of 188Re-liposome. The effectiveness with which tumors are targeted, the pharmacokinetics, biodistribution, dosimetry, and safety are evaluated using the VelocityAI and OLINDA/EXM software. Blood samples are collected at different time points for a pharmacokinetics study and a safety evaluation that involves monitoring changes in liver, renal, and hematological functions. RESULTS The T½z for 188Re-liposome in blood and plasma are 36.73 ± 14.00 h and 52.02 ± 45.21 h, respectively. The doses of radiation that are absorbed to vital organs such as the liver, spleen, lung, kidney, and bone marrow are 0.92 ± 0.35, 1.38 ± 1.81, 0.58 ± 0.28, 0.32 ± 0.09, and 0.06 ± 0.01 mGy/MBq, respectively, which is far less than the reference maximum tolerance dose after injection of 188Re-liposome. 188Re-liposome is absorbed by metastatic tumor lesions and the normal reticuloendothelial (RES) system. Certain patients exhibit a therapeutic response. CONCLUSION This phase 0 exploratory IND study shows that nanocarrier 188Re-liposome achieves favorable tumor accumulation and tumor to normal organ uptake ratios for a subset of cancer patients. The clinical pharmacokinetic, biodistribution, and dosimetry results justify a further dose-escalating phase 1 clinical trial. TRIAL REGISTRATION Taiwan FDA MA1101G0 (Jan 31, 2012).
Collapse
|
6
|
Marcu LG, Reid P, Bezak E. The Promise of Novel Biomarkers for Head and Neck Cancer from an Imaging Perspective. Int J Mol Sci 2018; 19:E2511. [PMID: 30149561 PMCID: PMC6165113 DOI: 10.3390/ijms19092511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/25/2023] Open
Abstract
It is an agreed fact that overall survival among head and neck cancer patients has increased over the last decade. Several factors however, are still held responsible for treatment failure requiring more in-depth evaluation. Among these, hypoxia and proliferation-specific parameters are the main culprits, along with the more recently researched cancer stem cells. This paper aims to present the latest developments in the field of biomarkers for hypoxia, stemness and tumour proliferation, from an imaging perspective that includes both Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) as well as functional magnetic resonance imaging (MRI). Quantitative imaging of biomarkers is a prerequisite for accurate treatment response assessment, bringing us closer to the highly needed personalised therapy.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Science, University of Oradea, 410087 Oradea, Romania.
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Paul Reid
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
- Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
7
|
Lyng H, Malinen E. Hypoxia in cervical cancer: from biology to imaging. Clin Transl Imaging 2017; 5:373-388. [PMID: 28804704 PMCID: PMC5532411 DOI: 10.1007/s40336-017-0238-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/24/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE Hypoxia imaging may improve identification of cervical cancer patients at risk of treatment failure and be utilized in treatment planning and monitoring, but its clinical potential is far from fully realized. Here, we briefly describe the biology of hypoxia in cervix tumors of relevance for imaging, and evaluate positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques that have shown promise for assessing hypoxia in a clinical setting. We further discuss emerging imaging approaches, and how imaging can play a role in future treatment strategies to target hypoxia. METHODS We performed a PubMed literature search, using keywords related to imaging and hypoxia in cervical cancer, with a particular emphasis on studies correlating imaging with other hypoxia measures and treatment outcome. RESULTS Only a few and rather small studies have utilized PET with tracers specific for hypoxia, and no firm conclusions regarding preferred tracer or clinical potential can be drawn so far. Most studies address indirect hypoxia imaging with dynamic contrast-enhanced techniques. Strong evidences for a role of these techniques in hypoxia imaging have been presented. Pre-treatment images have shown significant association to outcome in several studies, and images acquired during fractionated radiotherapy may further improve risk stratification. Multiparametric MRI and multimodality PET/MRI enable combined imaging of factors of relevance for tumor hypoxia and warrant further investigation. CONCLUSIONS Several imaging approaches have shown promise for hypoxia imaging in cervical cancer. Evaluation in large clinical trials is required to decide upon the optimal modality and approach.
Collapse
Affiliation(s)
- Heidi Lyng
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Medical Physics, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Laforest R, Dehdashti F, Liu Y, Frye J, Frye S, Luehmann H, Sultan D, Shan JS, Freimark BD, Siegel BA. First-in-Man Evaluation of 124I-PGN650: A PET Tracer for Detecting Phosphatidylserine as a Biomarker of the Solid Tumor Microenvironment. Mol Imaging 2017; 16:1536012117733349. [PMID: 29037107 PMCID: PMC5648081 DOI: 10.1177/1536012117733349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/17/2017] [Accepted: 08/20/2017] [Indexed: 11/24/2022] Open
Abstract
PURPOSE PGN650 is a F(ab')2 antibody fragment that targets phosphatidylserine (PS), a marker normally absent that becomes exposed on tumor cells and tumor vasculature in response to oxidative stress and increases in response to therapy. PGN650 was labeled with 124I to create a positron emission tomography (PET) agent as an in vivo biomarker for tumor microenvironment and response to therapy. In this phase 0 study, we evaluated the pharmacokinetics, safety, radiation dosimetry, and tumor targeting of this tracer in a cohort of patients with cancer. METHODS Eleven patients with known solid tumors received approximately 140 MBq (3.8 mCi) 124I-PGN650 intravenously and underwent positron emission tomography-computed tomography (PET/CT) approximately 1 hour, 3 hours, and either 24 hours or 48 hours later to establish tracer kinetics for the purpose of calculating radiation dosimetry (from integration of the organ time-activity curves and OLINDA/EXM using the adult male and female models). RESULTS Known tumor foci demonstrated mildly increased uptake, with the highest activity at the latest imaging time. There were no unexpected adverse events. The liver was the organ receiving the highest radiation dose (0.77 mGy/MBq); the effective dose was 0.41 mSv/MBq. CONCLUSION Although 124I-PGN650 is safe for human PET imaging, the tumor targeting with this agent in patients was less than previously observed in animal studies.
Collapse
Affiliation(s)
- Richard Laforest
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Farrokh Dehdashti
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yongjian Liu
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer Frye
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sarah Frye
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Hannah Luehmann
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Deborah Sultan
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | - Barry A. Siegel
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
9
|
Maulucci G, Bačić G, Bridal L, Schmidt HH, Tavitian B, Viel T, Utsumi H, Yalçın AS, De Spirito M. Imaging Reactive Oxygen Species-Induced Modifications in Living Systems. Antioxid Redox Signal 2016; 24:939-58. [PMID: 27139586 PMCID: PMC4900226 DOI: 10.1089/ars.2015.6415] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Reactive Oxygen Species (ROS) may regulate signaling, ion channels, transcription factors, and biosynthetic processes. ROS-related diseases can be due to either a shortage or an excess of ROS. RECENT ADVANCES Since the biological activity of ROS depends on not only concentration but also spatiotemporal distribution, real-time imaging of ROS, possibly in vivo, has become a need for scientists, with potential for clinical translation. New imaging techniques as well as new contrast agents in clinically established modalities were developed in the previous decade. CRITICAL ISSUES An ideal imaging technique should determine ROS changes with high spatio-temporal resolution, detect physiologically relevant variations in ROS concentration, and provide specificity toward different redox couples. Furthermore, for in vivo applications, bioavailability of sensors, tissue penetration, and a high signal-to-noise ratio are additional requirements to be satisfied. FUTURE DIRECTIONS None of the presented techniques fulfill all requirements for clinical translation. The obvious way forward is to incorporate anatomical and functional imaging into a common hybrid-imaging platform. Antioxid. Redox Signal. 24, 939-958.
Collapse
Affiliation(s)
- Giuseppe Maulucci
- 1 Institute of Physics, Catholic University of Sacred Heart , Roma, Italy
| | - Goran Bačić
- 2 Faculty of Physical Chemistry, University of Belgrade , Belgrade, Serbia
| | - Lori Bridal
- 3 Laboratoire d'Imagerie Biomédicale, Sorbonne Universités and UPMC Univ Paris 06 and CNRS and INSERM , Paris, France
| | - Harald Hhw Schmidt
- 4 Department of Pharmacology and Personalised Medicine, CARIM, Faculty of Health, Medicine & Life Science, Maastricht University , Maastricht, the Netherlands
| | - Bertrand Tavitian
- 5 Laboratoire de Recherche en Imagerie, Université Paris Descartes, Hôpital Européen Georges Pompidou , Service de Radiologie, Paris, France
| | - Thomas Viel
- 5 Laboratoire de Recherche en Imagerie, Université Paris Descartes, Hôpital Européen Georges Pompidou , Service de Radiologie, Paris, France
| | - Hideo Utsumi
- 6 Innovation Center for Medical Redox Navigation, Kyushu University , Fukuoka, Japan
| | - A Süha Yalçın
- 7 Department of Biochemistry, School of Medicine, Marmara University , İstanbul, Turkey
| | - Marco De Spirito
- 1 Institute of Physics, Catholic University of Sacred Heart , Roma, Italy
| |
Collapse
|
10
|
Abstract
Clinical studies using Eppendorf needle sensors have invariably documented the resistance of hypoxic human tumors to therapy. These studies first documented the need for individual patient measurement of hypoxia, as hypoxia varied from tumor to tumor. Furthermore, hypoxia in sarcomas and cervical cancer leads to distant metastasis or local or regional spread, respectively. For various reasons, the field has moved away from direct needle sensor oxygen measurements to indirect assays (hypoxia-inducible factor-related changes and bioreductive metabolism) and the latter can be imaged noninvasively. Many of hypoxia's detrimental therapeutic effects are reversible in mice but little treatment improvement in hypoxic human tumors has been seen. The question is why? What factors cause human tumors to be refractory to antihypoxia strategies? We suggest the primary cause to be the complexity of hypoxia formation and its characteristics. Three basic types of hypoxia exist, encompassing various diffusional (distance from perfused vessel), temporal (on or off cycling), and perfusional (blood flow efficiency) limitations. Surprisingly, there is no current information on their relative prevalence in human tumors and even animal models. This is important because different hypoxia subtypes are predicted to require different diagnostic and therapeutic approaches, but the implications of this remain unknown. Even more challenging, no agreement exists for the best way to measure hypoxia. Some results even suggest that hypoxia is unlikely to be targetable therapeutically. In this review, the authors revisit various critical aspects of this field that are sometimes forgotten or misrepresented in the recent literature. As most current noninvasive imaging studies involve PET-isotope-labeled 2-nitroimidazoles, we emphasize key findings made in our studies using 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide (EF5) and F-18-labeled EF5. These show the importance of differentiating hypoxia subtypes, optimizing drug pharmacology, ensuring drug and isotope stability, identifying key biochemical and physiological variables in tumors, and suggesting therapeutic strategies that are most likely to succeed.
Collapse
Affiliation(s)
- Cameron J Koch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA.
| | - Sydney M Evans
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|