1
|
O'Brien G, Cruz-Garcia L, Zyla J, Brown N, Finnon R, Polanska J, Badie C. Kras mutations and PU.1 promoter methylation are new pathways in murine radiation-induced AML. Carcinogenesis 2021; 41:1104-1112. [PMID: 31646336 PMCID: PMC7422620 DOI: 10.1093/carcin/bgz175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
Therapy-related and more specifically radiotherapy-associated acute myeloid leukaemia (AML) is a well-recognized potential complication of cytotoxic therapy for the treatment of a primary cancer. The CBA mouse model is used to study radiation leukaemogenesis mechanisms with Sfpi1/PU.1 deletion and point mutation already identified as driving events during AML development. To identify new pathways, we analysed 123 mouse radiation-induced AML (rAML) samples for the presence of mutations identified previously in human AML and found three genes to be mutated; Sfpi1 R235 (68%), Flt3-ITD (4%) and Kras G12 (3%), of which G12R was previously unreported. Importantly, a significant decrease in Sfpi1 gene expression is found almost exclusively in rAML samples without an Sfpi1 R235 mutation and is specifically associated with up-regulation of mir-1983 and mir-582-5p. Moreover, this down-regulation of Sfpi1 mRNA is negatively correlated with DNA methylation levels at specific CpG sites upstream of the Sfpi1 transcriptional start site. The down regulation of Sfpi1/PU.1 has also been reported in human AML cases revealing one common pathway of myeloid disruption between mouse and human AML where dysregulation of Sfpi1/PU.1 is a necessary step in AML development.
Collapse
Affiliation(s)
- Gráinne O'Brien
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - Lourdes Cruz-Garcia
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - Joanna Zyla
- Silesian University of Technology, Data Mining Division, Gliwice, Poland
| | - Natalie Brown
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - Rosemary Finnon
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - Joanna Polanska
- Silesian University of Technology, Data Mining Division, Gliwice, Poland
| | - Christophe Badie
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| |
Collapse
|
2
|
Fernández-Calleja V, Fernández-Nestosa MJ, Hernández P, Schvartzman JB, Krimer DB. CRISPR/Cas9-mediated deletion of the Wiskott-Aldrich syndrome locus causes actin cytoskeleton disorganization in murine erythroleukemia cells. PeerJ 2019; 7:e6284. [PMID: 30671311 PMCID: PMC6339507 DOI: 10.7717/peerj.6284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 01/18/2023] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is a recessive X-linked inmmunodeficiency caused by loss-of-function mutations in the gene encoding the WAS protein (WASp). WASp plays an important role in the polymerization of the actin cytoskeleton in hematopoietic cells through activation of the Arp2/3 complex. In a previous study, we found that actin cytoskeleton proteins, including WASp, were silenced in murine erythroleukemia cells defective in differentiation. Here, we designed a CRISPR/Cas9 strategy to delete a 9.5-kb genomic region encompassing the Was gene in the X chromosome of murine erythroleukemia (MEL) cells. We show that Was-deficient MEL cells have a poor organization of the actin cytoskeleton that can be recovered by restoring Was expression. We found that whereas the total amount of actin protein was similar between wild-type and Was knockout MEL cells, the latter exhibited an altered ratio of monomeric G-actin to polymeric F-actin. We also demonstrate that Was overexpression can mediate the activation of Bruton’s tyrosine kinase. Overall, these findings support the role of WASp as a key regulator of F-actin in erythroid cells.
Collapse
Affiliation(s)
- Vanessa Fernández-Calleja
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | | | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Jorge B Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Dora B Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Zhu H, Zhang L, Wu Y, Dong B, Guo W, Wang M, Yang L, Fan X, Tang Y, Liu N, Lei X, Wu H. T-ALL leukemia stem cell 'stemness' is epigenetically controlled by the master regulator SPI1. eLife 2018; 7:38314. [PMID: 30412053 PMCID: PMC6251627 DOI: 10.7554/elife.38314] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022] Open
Abstract
Leukemia stem cells (LSCs) are regarded as the origins and key therapeutic targets of leukemia, but limited knowledge is available on the key determinants of LSC 'stemness'. Using single-cell RNA-seq analysis, we identify a master regulator, SPI1, the LSC-specific expression of which determines the molecular signature and activity of LSCs in the murine Pten-null T-ALL model. Although initiated by PTEN-controlled β-catenin activation, Spi1 expression and LSC 'stemness' are maintained by a β-catenin-SPI1-HAVCR2 regulatory circuit independent of the leukemogenic driver mutation. Perturbing any component of this circuit either genetically or pharmacologically can prevent LSC formation or eliminate existing LSCs. LSCs lose their 'stemness' when Spi1 expression is silenced by DNA methylation, but Spi1 expression can be reactivated by 5-AZ treatment. Importantly, similar regulatory mechanisms may be also present in human T-ALL.
Collapse
Affiliation(s)
- Haichuan Zhu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Liuzhen Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yilin Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Bingjie Dong
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Weilong Guo
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Mei Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Lu Yang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Xiaoying Fan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yuliang Tang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ningshu Liu
- Drug Discovery Oncology, Bayer Pharmaceuticals, Berlin, Germany
| | - Xiaoguang Lei
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| |
Collapse
|
4
|
Fernández-Calleja V, Hernández P, Schvartzman JB, García de Lacoba M, Krimer DB. Differential gene expression analysis by RNA-seq reveals the importance of actin cytoskeletal proteins in erythroleukemia cells. PeerJ 2017; 5:e3432. [PMID: 28663935 PMCID: PMC5490462 DOI: 10.7717/peerj.3432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022] Open
Abstract
Development of drug resistance limits the effectiveness of anticancer treatments. Understanding the molecular mechanisms triggering this event in tumor cells may lead to improved therapeutic strategies. Here we used RNA-seq to compare the transcriptomes of a murine erythroleukemia cell line (MEL) and a derived cell line with induced resistance to differentiation (MEL-R). RNA-seq analysis identified a total of 596 genes (Benjamini–Hochberg adjusted p-value < 0.05) that were differentially expressed by more than two-fold, of which 81.5% (486/596) of genes were up-regulated in MEL cells and 110 up-regulated in MEL-R cells. These observations revealed that for some genes the relative expression of mRNA amount in the MEL cell line has decreased as the cells acquired the resistant phenotype. Clustering analysis of a group of genes showing the highest differential expression allowed identification of a sub-group among genes up-regulated in MEL cells. These genes are related to the organization of the actin cytoskeleton network. Moreover, the majority of these genes are preferentially expressed in the hematopoietic lineage and at least three of them, Was (Wiskott Aldrich syndrome), Btk (Bruton’s tyrosine kinase) and Rac2, when mutated in humans, give rise to severe hematopoietic deficiencies. Among the group of genes that were up-regulated in MEL-R cells, 16% of genes code for histone proteins, both canonical and variants. A potential implication of these results on the blockade of differentiation in resistant cells is discussed.
Collapse
Affiliation(s)
- Vanessa Fernández-Calleja
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Jorge B Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Mario García de Lacoba
- Bioinformatics and Biostatistics Service, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Dora B Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|