1
|
Hawaz E, Tafesse M, Tesfaye A, Beyene D, Kiros S, Kebede G, Boekhout T, Theelen B, Groenewald M, Degefe A, Degu S, Admas A, Muleta D. Isolation and characterization of bioethanol producing wild yeasts from bio-wastes and co-products of sugar factories. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01695-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Yeasts are widely used for the production of bioethanol from biomasses rich in sugar. The present study was aimed at isolating, screening, and characterizing fermentative wild yeast recovered from bio-waste and co-products of Ethiopian sugar factories for bioethanol production using sugarcane molasses as a substrate.
Method
The wild yeasts were identified according to their cellular morphology and D1/D2 and ITS1-5.8S-ITS2 rDNA sequencing. Analysis of ethanol and by-product concentration was done by HPLC equipped with a UV detector. Higher alcohols, acetaldehyde, and methanol were analyzed using GC-MS equipped with a flame ionization detector (FID).
Result
Seven strains (Meyerozyma caribbica MJTm3, Meyerozyma caribbica MJTPm4, Meyerozyma caribbica SHJF, Saccharomyces cerevisiae TA2, Wickerhamomyces anomalus MJTPm2, Wickerhamomyces anomalus 4m10, and Wickerhamomyces anomalus HCJ2F) were found tolerant to 18% (v/v) ethanol, whereas one strain Meyerozyma caribbica MJTm3 tolerated 20%. These strains also showed tolerance to 45°C, 50% of sugar, and pH 2–10. Meyerozyma caribbica MJTm3 produced 12.7% (v/v) of alcohol with an actual ethanol concentration of 26 g L−1, an ethanol yield of 47%, 78% of theoretical yield, and a productivity of 0.54 g L−1 h−1 from 30 °Brix of molasses at 48 h incubation under laboratory scale. Based on the one variable at a time optimization (OVAT), the optimal parameters for maximum bioethanol production were at initial pH 5.5, 35 °Brix, 30°C, 15% inoculum size, 150 rpm, 4 g L−1 di-ammonium phosphate supplement, and 48 h incubation. Under these optimum conditions, 14% (v/v) alcohol, 42 g L−1 actual ethanol concentration, 69% ethanol yield, 89% of theoretical yield, and productivity of 0.88 g L−1 h−1 were obtained.
Conclusion
These results indicated that M. caribbica MJTm3 should further be evaluated, optimized, and improved for industrial bioethanol production due to its fermentation potential.
Collapse
|
2
|
Phong HX, Klanrit P, Dung NTP, Thanonkeo S, Yamada M, Thanonkeo P. High-temperature ethanol fermentation from pineapple waste hydrolysate and gene expression analysis of thermotolerant yeast Saccharomyces cerevisiae. Sci Rep 2022; 12:13965. [PMID: 35978081 PMCID: PMC9385605 DOI: 10.1038/s41598-022-18212-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
High-temperature ethanol fermentation by thermotolerant yeast is considered a promising technology for ethanol production, especially in tropical and subtropical regions. In this study, optimization conditions for high-temperature ethanol fermentation of pineapple waste hydrolysate (PWH) using a newly isolated thermotolerant yeast, Saccharomyces cerevisiae HG1.1, and the expression of genes during ethanol fermentation at 40 °C were carried out. Three independent variables, including cell concentration, pH, and yeast extract, positively affected ethanol production from PWH at 40 °C. The optimum levels of these significant factors evaluated using response surface methodology (RSM) based on central composite design (CCD) were a cell concentration of 8.0 × 107 cells/mL, a pH of 5.5, and a yeast extract concentration of 4.95 g/L, yielding a maximum ethanol concentration of 36.85 g/L and productivity of 3.07 g/L. Gene expression analysis during high-temperature ethanol fermentation using RT-qPCR revealed that the acquisition of thermotolerance ability and ethanol fermentation efficiency of S. cerevisiae HG1.1 are associated with genes responsible for growth and ethanol stress, oxidative stress, acetic acid stress, DNA repair, the pyruvate-to-tricarboxylic acid (TCA) pathway, and the pyruvate-to-ethanol pathway.
Collapse
Affiliation(s)
- Huynh Xuan Phong
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Microbial Biotechnology, Biotechnology Research and Development Institute, Can Tho University, Can Tho, 900000, Vietnam
| | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ngo Thi Phuong Dung
- Department of Microbial Biotechnology, Biotechnology Research and Development Institute, Can Tho University, Can Tho, 900000, Vietnam
| | - Sudarat Thanonkeo
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8315, Japan
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Center for Alternative Energy Research and Development (AERD), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
3
|
Nieto-Sarabia VL, Ballinas-Cesatti CB, Melgar-Lalanne G, Cristiani-Urbina E, Morales-Barrera L. Isolation, identification, and kinetic and thermodynamic characterization of a Pichia kudriavzevii yeast strain capable of fermentation. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Schalck T, den Bergh BV, Michiels J. Increasing Solvent Tolerance to Improve Microbial Production of Alcohols, Terpenoids and Aromatics. Microorganisms 2021; 9:249. [PMID: 33530454 PMCID: PMC7912173 DOI: 10.3390/microorganisms9020249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Fuels and polymer precursors are widely used in daily life and in many industrial processes. Although these compounds are mainly derived from petrol, bacteria and yeast can produce them in an environment-friendly way. However, these molecules exhibit toxic solvent properties and reduce cell viability of the microbial producer which inevitably impedes high product titers. Hence, studying how product accumulation affects microbes and understanding how microbial adaptive responses counteract these harmful defects helps to maximize yields. Here, we specifically focus on the mode of toxicity of industry-relevant alcohols, terpenoids and aromatics and the associated stress-response mechanisms, encountered in several relevant bacterial and yeast producers. In practice, integrating heterologous defense mechanisms, overexpressing native stress responses or triggering multiple protection pathways by modifying the transcription machinery or small RNAs (sRNAs) are suitable strategies to improve solvent tolerance. Therefore, tolerance engineering, in combination with metabolic pathway optimization, shows high potential in developing superior microbial producers.
Collapse
Affiliation(s)
- Thomas Schalck
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
5
|
Prospects for the Improvement of Bioethanol and Biohydrogen Production from Mixed Starch-Based Agricultural Wastes. ENERGIES 2020. [DOI: 10.3390/en13246609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The need for fossil fuel alternatives keeps increasing. Bioethanol and biohydrogen have emerged as significant renewable options. However, these bioprocess routes have presented various challenges, which constantly impede commercialization. Most of these bottlenecks are hinged on feedstock logistics, low biofuel yield and enormous process costs. Meanwhile, a large output of renewable energy can be generated from mixed starch-based agricultural wastes due to their intrinsic bioenergy characteristics. This study, therefore, focuses on the production of bioethanol and biohydrogen from mixed starch-based agricultural wastes. The content further highlights the current challenges of their individual processes and elucidates the prospects for improvement, through an integrated biofuel approach. The use of mixed starch-based agricultural wastes as substrates for integrated bioethanol and biohydrogen production was proposed. Furthermore, the use of mixture-based experimental design for the determination of optimal values of critical factors influencing biofuel production emerges as a viable prospect for profitable bioethanol production from the starch-based biomass. Additionally, biohydrogen production from effluents of the mixed starch-based waste bioethanol looked promising. Thus, the study proposed valuable insights towards achieving a cost-effective biofuel technology.
Collapse
|
6
|
Zazulya A, Semkiv M, Dmytruk K, Sibirny A. Adaptive Evolution for the Improvement of Ethanol Production During Alcoholic Fermentation with the Industrial Strains of Yeast Saccharomyces Cerevisiae. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720050059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Sukwong P, Sunwoo IY, Jeong DY, Kim SR, Jeong GT, Kim SK. Improvement of bioethanol production by Saccharomyces cerevisiae through the deletion of GLK1, MIG1 and MIG2 and overexpression of PGM2 using the red seaweed Gracilaria verrucosa. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Assessment of microbial quality and health risks associated with traditional rice wine starter Xaj-pitha of Assam, India: a step towards defined and controlled fermentation. 3 Biotech 2020; 10:64. [PMID: 32030333 DOI: 10.1007/s13205-020-2059-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
This study reports the microbial quality of ethnic starter culture Xaj-pitha used for rice wine fermentation in Assam. Here, we collected 60 Xaj-pitha samples belonging to Ahom community of the state and enumerated the microorganisms using spread plate technique. Illumina-based whole genome shotgun sequencing detected the presence of microbial contaminants like Acidovorax, Herbaspirillum, Methylobacterium, Pantoea, Pseudomonas, Stenotrophomonas, Staphylococcus, Micrococcus, Acinetobacter, etc. Presence of major health hazards associated with spontaneous rice wine fermentation necessitated method optimization through the development of a defined mixed starter culture. For this, functionally important α-amylase producers viz., Penicillium sp. ABTSJ23, Rhizopus oryzae ABTSJ63, Mucor guilliermondii ABTSJ72 and Amylomyces rouxii ABTSJ82 and eight yeasts viz., Saccharomyces cerevisiae ABTY1J, ABTY1S, ADJ5 & ADJ1, Wickerhamomyces anomalus ADJ2, Saccharomycopsis malanga ADJ3, Saccharomycopsis fibuligera ADJ4 and Saccharomycopsis malanga ADJ6 were retrieved using appropriate media. All the mould cultures tested negative for aflotoxins production. Among the yeasts, Saccharomyces cerevisiae ABTY1S and ADJ1 decarboxylated lysine HCl and tyramine HCl, respectively, indicating their biogenic amine production ability. For defined mixed starter culture, Amylomyces rouxii ABT82 with α-amylase (5.92 U/ml) and glucoamylase (7.50 U/ml) activities was selected as fungal partner; while Saccharomycopsis fibuligera ADJ4 and Saccharomyces cerevisiae ABT-Y1J with high ethanol production (up to 10.11% and 9.88% v/v, respectively) were selected as yeast partners. The mixed culture was able to produce high amount of glucose, ethanol and liquid (glucose 10.91% w/v; ethanol 7.5% w/v; liquid 51.0% w/v). Therefore, this study demonstrated the efficiency of mixed starter cultures for safe and controlled rice wine production.
Collapse
|
9
|
Phukoetphim N, Khongsay N, Laopaiboon P, Laopaiboon L. A novel aeration strategy in repeated-batch fermentation for efficient ethanol production from sweet sorghum juice. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Pandey AK, Kumar M, Kumari S, Kumari P, Yusuf F, Jakeer S, Naz S, Chandna P, Bhatnagar I, Gaur NA. Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:40. [PMID: 30858877 PMCID: PMC6391804 DOI: 10.1186/s13068-019-1379-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lignocellulosic hydrolysates contain a mixture of hexose (C6)/pentose (C5) sugars and pretreatment-generated inhibitors (furans, weak acids and phenolics). Therefore, robust yeast isolates with characteristics of C6/C5 fermentation and tolerance to pretreatment-derived inhibitors are pre-requisite for efficient lignocellulosic material based biorefineries. Moreover, use of thermotolerant yeast isolates will further reduce cooling cost, contamination during fermentation, and required for developing simultaneous saccharification and fermentation (SSF), simultaneous saccharification and co-fermentation (SScF), and consolidated bio-processing (CBP) strategies. RESULTS In this study, we evaluated thirty-five yeast isolates (belonging to six genera including Saccharomyces, Kluyveromyces, Candida, Scheffersomyces, Ogatea and Wickerhamomyces) for pretreatment-generated inhibitors {furfural, 5-hydroxymethyl furfural (5-HMF) and acetic acid} and thermotolerant phenotypes along with the fermentation performances at 40 °C. Among them, a sugarcane distillery waste isolate, Saccharomyces cerevisiae NGY10 produced maximum 49.77 ± 0.34 g/l and 46.81 ± 21.98 g/l ethanol with the efficiency of 97.39% and 93.54% at 30 °C and 40 °C, respectively, in 24 h using glucose as a carbon source. Furthermore, isolate NGY10 produced 12.25 ± 0.09 g/l and 7.18 ± 0.14 g/l of ethanol with 92.81% and 91.58% efficiency via SHF, and 30.22 g/l and 25.77 g/l ethanol with 86.43% and 73.29% efficiency via SSF using acid- and alkali-pretreated rice straw as carbon sources, respectively, at 40 °C. In addition, isolate NGY10 also produced 92.31 ± 3.39 g/l (11.7% v/v) and 33.66 ± 1.04 g/l (4.26% v/v) ethanol at 40 °C with the yields of 81.49% and 73.87% in the presence of 30% w/v glucose or 4× concentrated acid-pretreated rice straw hydrolysate, respectively. Moreover, isolate NGY10 displayed furfural- (1.5 g/l), 5-HMF (3.0 g/l), acetic acid- (0.2% v/v) and ethanol-(10.0% v/v) tolerant phenotypes. CONCLUSION A sugarcane distillery waste isolate NGY10 demonstrated high potential for ethanol production, C5 metabolic engineering and developing strategies for SSF, SScF and CBP.
Collapse
Affiliation(s)
- Ajay Kumar Pandey
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Mohit Kumar
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Sonam Kumari
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Priya Kumari
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Farnaz Yusuf
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Shaik Jakeer
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Sumera Naz
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Piyush Chandna
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Ishita Bhatnagar
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Naseem A. Gaur
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| |
Collapse
|
11
|
Optimization of an Industrial Medium from Molasses for Bioethanol Production Using the Taguchi Statistical Experimental-Design Method. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5010014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The production of bioethanol as a clean liquid fuel in a cost-effective way is highly desired by global energetics. Sugar beet molasses is a renewable and cheap substrate for the production of biotechnological products. Therefore, the aim of the current study was the optimization of an industrial medium from molasses for bioethanol production using the Taguchi statistical experimental-design method. First, the growth rate of yeast cells and the amount of ethanol produced by the Saccharomyces cerevisiae strain sahand 101 were investigated in aerobic and aerobic–anaerobic conditions. The yeast strain produced 8% (v/v) bioethanol in a medium containing molasses with 18% Brix in aerobic–anaerobic conditions. The main factors of the medium, including molasses, ammonium sulfate, urea, and pH, were optimized for the increase of bioethanol production by the Taguchi method. Bioethanol production reached 10% (v/v) after optimization of the medium in flask culture. The yeast strain produced 11% (v/v) bioethanol in the bioreactor culture containing the optimized medium, which is an acceptable amount of bioethanol produced from molasses at the industrial scale. The results showed that the Taguchi method is an effective method for the design of experiments aiming to optimize the medium for bioethanol production by reducing the number of experiments and time.
Collapse
|
12
|
Liu CG, Li K, Wen Y, Geng BY, Liu Q, Lin YH. Bioethanol: New opportunities for an ancient product. ADVANCES IN BIOENERGY 2019. [DOI: 10.1016/bs.aibe.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Swings T, Weytjens B, Schalck T, Bonte C, Verstraeten N, Michiels J, Marchal K. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations. Mol Biol Evol 2018; 34:2927-2943. [PMID: 28961727 PMCID: PMC5850225 DOI: 10.1093/molbev/msx228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well.
Collapse
Affiliation(s)
- Toon Swings
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Bram Weytjens
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.,Department of Information Technology, IDLab, IMEC, Ghent University, Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.,Bioinformatics Institute Ghent, Gent, Belgium
| | - Thomas Schalck
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Camille Bonte
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | - Jan Michiels
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IDLab, IMEC, Ghent University, Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.,Bioinformatics Institute Ghent, Gent, Belgium.,Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
14
|
Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proc Natl Acad Sci U S A 2017; 114:11673-11678. [PMID: 29078278 DOI: 10.1073/pnas.1704652114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simultaneous saccharification and fermentation (SSF) of solid biomass can reduce the complexity and improve the economics of lignocellulosic ethanol production by consolidating process steps and reducing end-product inhibition of enzymes compared with separate hydrolysis and fermentation (SHF). However, a long-standing limitation of SSF has been too low ethanol yields at the high-solids loading of biomass needed during fermentation to realize sufficiently high ethanol titers favorable for more economical ethanol recovery. Here, we illustrate how competing factors that limit ethanol yields during high-solids fermentations are overcome by integrating newly developed cosolvent-enhanced lignocellulosic fractionation (CELF) pretreatment with SSF. First, fed-batch glucose fermentations by Saccharomyces cerevisiae D5A revealed that this strain, which has been favored for SSF, can produce ethanol at titers of up to 86 g⋅L-1 Then, optimizing SSF of CELF-pretreated corn stover achieved unprecedented ethanol titers of 79.2, 81.3, and 85.6 g⋅L-1 in batch shake flask, corresponding to ethanol yields of 90.5%, 86.1%, and 80.8% at solids loadings of 20.0 wt %, 21.5 wt %, and 23.0 wt %, respectively. Ethanol yields remained at over 90% despite reducing enzyme loading to only 10 mg protein⋅g glucan-1 [∼6.5 filter paper units (FPU)], revealing that the enduring factors limiting further ethanol production were reduced cell viability and glucose uptake by D5A and not loss of enzyme activity or mixing issues, thereby demonstrating an SSF-based process that was limited by a strain's metabolic capabilities and tolerance to ethanol.
Collapse
|
15
|
Arai S, Hayashihara K, Kanamoto Y, Shimizu K, Hirokawa Y, Hanai T, Murakami A, Honda H. Alcohol‐tolerant mutants of cyanobacterium
Synechococcus elongatus
PCC 7942 obtained by single‐cell mutant screening system. Biotechnol Bioeng 2017; 114:1771-1778. [DOI: 10.1002/bit.26307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/02/2017] [Accepted: 04/04/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Sayuri Arai
- Department of BiotechnologyGraduate School of EngineeringNagoya UniversityFuro‐choChikusa‐kuNagoyaAichi464‐8603Japan
| | | | - Yuki Kanamoto
- Kobe University Research Center for Inland SeasAwajiHyogoJapan
| | - Kazunori Shimizu
- Department of BiotechnologyGraduate School of EngineeringNagoya UniversityFuro‐choChikusa‐kuNagoyaAichi464‐8603Japan
| | - Yasutaka Hirokawa
- Laboratory for BioinformaticsGraduate School of Systems Life SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Taizo Hanai
- Laboratory for BioinformaticsGraduate School of Systems Life SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Akio Murakami
- Kobe University Research Center for Inland SeasAwajiHyogoJapan
| | - Hiroyuki Honda
- Department of BiotechnologyGraduate School of EngineeringNagoya UniversityFuro‐choChikusa‐kuNagoyaAichi464‐8603Japan
| |
Collapse
|
16
|
Qiu Z, Jiang R. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:125. [PMID: 28515784 PMCID: PMC5433082 DOI: 10.1186/s13068-017-0806-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 04/27/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND Classical strain engineering methods often have limitations in altering multigenetic cellular phenotypes. Here we try to improve Saccharomyces cerevisiae ethanol tolerance and productivity by reprogramming its transcription profile through rewiring its key transcription component RNA polymerase II (RNAP II), which plays a central role in synthesizing mRNAs. This is the first report on using directed evolution method to engineer RNAP II to alter S. cerevisiae strain phenotypes. RESULTS Error-prone PCR was employed to engineer the subunit Rpb7 of RNAP II to improve yeast ethanol tolerance and production. Based on previous studies and the presumption that improved ethanol resistance would lead to enhanced ethanol production, we first isolated variant M1 with much improved resistance towards 8 and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response, etc. CONCLUSIONS This is the first study to demonstrate the possibility of engineering eukaryotic RNAP to alter global transcription profile and improve strain phenotypes. Targeting subunit Rpb7 of RNAP II was able to bring differential expression in hundreds of genes in S. cerevisiae, which finally led to improvement in yeast ethanol tolerance and production.
Collapse
Affiliation(s)
- Zilong Qiu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Rongrong Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
17
|
Panda SK, Ray RC, Mishra SS, Kayitesi E. Microbial processing of fruit and vegetable wastes into potential biocommodities: a review. Crit Rev Biotechnol 2017; 38:1-16. [PMID: 28462596 DOI: 10.1080/07388551.2017.1311295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The review focuses on some of the high value-end biocommodities, such as fermented beverages, single-cell proteins, single-cell oils, biocolors, flavors, fragrances, polysaccharides, biopesticides, plant growth regulators, bioethanol, biogas and biohydrogen, developed from the microbial processing of fruit and vegetable wastes. Microbial detoxification of fruit and vegetable processing effluents is briefly described. The advances in genetic engineering of microorganisms for enhanced yield of the above-mentioned biocommodities are elucidated with selected examples. The bottleneck in commercialization, integrated approach for improved production, techno-economical feasibility and real-life uses of some of these biocommodities, as well as research gaps and future directions are discussed.
Collapse
Affiliation(s)
- Sandeep K Panda
- a Department of Biotechnology and Food Technology, Faculty of Science , University of Johannesburg , Johannesburg , South Africa
| | - Ramesh C Ray
- b Microbiology Research Laboratory, ICAR- Regional Centre of Central Tuber Crops Research Institute , Bhubaneswar , India
| | - Swati S Mishra
- c Department of Biodiversity and Conservation of Natural Resources , Central University of Orissa , Koraput , India
| | - Eugenie Kayitesi
- a Department of Biotechnology and Food Technology, Faculty of Science , University of Johannesburg , Johannesburg , South Africa
| |
Collapse
|
18
|
Techaparin A, Thanonkeo P, Klanrit P. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Braz J Microbiol 2017; 48:461-475. [PMID: 28365094 PMCID: PMC5498443 DOI: 10.1016/j.bjm.2017.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 11/24/2022] Open
Abstract
The application of high-potential thermotolerant yeasts is a key factor for successful ethanol production at high temperatures. Two hundred and thirty-four yeast isolates from Greater Mekong Subregion (GMS) countries, i.e., Thailand, The Lao People's Democratic Republic (Lao PDR) and Vietnam were obtained. Five thermotolerant yeasts, designated Saccharomyces cerevisiae KKU-VN8, KKU-VN20, and KKU-VN27, Pichia kudriavzevii KKU-TH33 and P. kudriavzevii KKU-TH43, demonstrated high temperature and ethanol tolerance levels up to 45 °C and 13% (v/v), respectively. All five strains produced higher ethanol concentrations and exhibited greater productivities and yields than the industrial strain S. cerevisiae TISTR5606 during high-temperature fermentation at 40 °C and 43 °C. S. cerevisiae KKU-VN8 demonstrated the best performance for ethanol production from glucose at 37 °C with an ethanol concentration of 72.69 g/L, a productivity of 1.59 g/L/h and a theoretical ethanol yield of 86.27%. The optimal conditions for ethanol production of S. cerevisiae KKU-VN8 from sweet sorghum juice (SSJ) at 40 °C were achieved using the Box–Behnken experimental design (BBD). The maximal ethanol concentration obtained during fermentation was 89.32 g/L, with a productivity of 2.48 g/L/h and a theoretical ethanol yield of 96.32%. Thus, the newly isolated thermotolerant S. cerevisiae KKU-VN8 exhibits a great potential for commercial-scale ethanol production in the future.
Collapse
Affiliation(s)
- Atiya Techaparin
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
19
|
Nasir A, Rahman SS, Hossain MM, Choudhury N. Isolation of Saccharomyces Cerevisiae from Pineapple and Orange and Study of Metal's Effectiveness on Ethanol Production. Eur J Microbiol Immunol (Bp) 2017; 7:76-91. [PMID: 28386473 PMCID: PMC5372483 DOI: 10.1556/1886.2016.00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/21/2016] [Indexed: 11/23/2022] Open
Abstract
In view of the anticipated shortage of the traditional supplies of fossil fuels, there is a great deal of interest in the production of ethanol as an alternative biofuel in recent years. The main objective of this research work was to isolate and characterize stress tolerant, high potential ethanol producing yeast strains from various fruit peel. Two yeast isolates from pineapple (Pa) and orange (Or) have been isolated, characterized on the basis of morphological and physic-chemical characters and optimized on ethanol producing capability using sugarcane molasses as substrate. Ethanol production percentage was estimated by Conway method. Isolates were thermotolerant, pH tolerant, ethanol tolerant as well as osmotolerant. They were resistant to Chloramphenicol (30 μg/disc) and Nalidixic acid (30 μg/disc). The isolates showed no killer toxin activity against E. coli. The highest production capacity of the yeasts was found to be 7.39% and 5.02% for Pa and Or, respectively, at pH 5.0, 30 °C temperature in media with an initial reducing sugar concentration of 6.5% for Pa and 5.5% for Or (shaking). Addition of metal ions increased the rate of ethanol production highest to 10.61% by KH2PO4. This study revealed that indigenous yeast isolates could be used to benefit the fuel demand and industrial alcohol industries.
Collapse
|
20
|
Senatham S, Chamduang T, Kaewchingduang Y, Thammasittirong A, Srisodsuk M, Elliston A, Roberts IN, Waldron KW, Thammasittirong SNR. Enhanced xylose fermentation and hydrolysate inhibitor tolerance of Scheffersomyces shehatae for efficient ethanol production from non-detoxified lignocellulosic hydrolysate. SPRINGERPLUS 2016; 5:1040. [PMID: 27462488 PMCID: PMC4940357 DOI: 10.1186/s40064-016-2713-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Abstract
Effective conversion of xylose into ethanol is important for lignocellulosic ethanol production. In the present study, UV-C mutagenesis was used to improve the efficiency of xylose fermentation. The mutated Scheffersomyces shehatae strain TTC79 fermented glucose as efficiently and xylose more efficiently, producing a higher ethanol concentration than the wild-type. A maximum ethanol concentration of 29.04 g/L was produced from 71.31 g/L xylose, which was 58.95 % higher than that of the wild-type. This mutant also displayed significantly improved hydrolysate inhibitors tolerance and increased ethanol production from non-detoxified lignocellulosic hydrolysates. The ethanol yield, productivity and theoretical yield by TTC79 from sugarcane bagasse hydrolysate were 0.46 g/g, 0.20 g/L/h and 90.61 %, respectively, while the corresponding values for the wild-type were 0.20 g/g, 0.04 g/L/h and 39.20 %, respectively. These results demonstrate that S. shehatae TTC79 is a useful non-recombinant strain, combining efficient xylose consumption and high inhibitor tolerance, with potential for application in ethanol production from lignocellulose hydrolysates.
Collapse
Affiliation(s)
- Srisuda Senatham
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Thada Chamduang
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Yotin Kaewchingduang
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Anon Thammasittirong
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand ; Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Malee Srisodsuk
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand ; Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Adam Elliston
- Biorefinery Center, Institute of Food Research, Norwich, NR4 7UA UK
| | - Ian N Roberts
- National Collection of Yeast Cultures, Institute of Food Research, Norwich, NR4 7UA UK
| | - Keith W Waldron
- Biorefinery Center, Institute of Food Research, Norwich, NR4 7UA UK
| | - Sutticha Na-Ranong Thammasittirong
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand ; Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| |
Collapse
|
21
|
Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess. Appl Biochem Biotechnol 2016; 179:1336-45. [DOI: 10.1007/s12010-016-2069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
|
22
|
Jayus, Nurhayati, Mayzuhroh A, Arindhani S, Caroenchai C. Studies on Bioethanol Production of Commercial Baker's and Alcohol Yeast under Aerated Culture Using Sugarcane Molasses as the Media. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aaspro.2016.02.168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
New sources and methods to isolate vinasse-tolerant wild yeasts efficient in ethanol production. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1095-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
24
|
Abd-Alla MH, Bagy MMK, Morsy FM, Hassan EA. Enhancement of biodiesel, hydrogen and methane generation from molasses by Cunninghamella echinulata and anaerobic bacteria through sequential three-stage fermentation. ENERGY 2014; 78:543-554. [DOI: 10.1016/j.energy.2014.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Kasavi C, Eraslan S, Arga KY, Oner ET, Kirdar B. A system based network approach to ethanol tolerance in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2014; 8:90. [PMID: 25103914 PMCID: PMC4236716 DOI: 10.1186/s12918-014-0090-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/15/2014] [Indexed: 01/23/2023]
Abstract
Background Saccharomyces cerevisiae has been widely used for bio-ethanol production and development of rational genetic engineering strategies leading both to the improvement of productivity and ethanol tolerance is very important for cost-effective bio-ethanol production. Studies on the identification of the genes that are up- or down-regulated in the presence of ethanol indicated that the genes may be involved to protect the cells against ethanol stress, but not necessarily required for ethanol tolerance. Results In the present study, a novel network based approach was developed to identify candidate genes involved in ethanol tolerance. Protein-protein interaction (PPI) network associated with ethanol tolerance (tETN) was reconstructed by integrating PPI data with Gene Ontology (GO) terms. Modular analysis of the constructed networks revealed genes with no previously reported experimental evidence related to ethanol tolerance and resulted in the identification of 17 genes with previously unknown biological functions. We have randomly selected four of these genes and deletion strains of two genes (YDR307W and YHL042W) were found to exhibit improved tolerance to ethanol when compared to wild type strain. The genome-wide transcriptomic response of yeast cells to the deletions of YDR307W and YHL042W in the absence of ethanol revealed that the deletion of YDR307W and YHL042W genes resulted in the transcriptional re-programming of the metabolism resulting from a mis-perception of the nutritional environment. Yeast cells perceived an excess amount of glucose and a deficiency of methionine or sulfur in the absence of YDR307W and YHL042W, respectively, possibly resulting from a defect in the nutritional sensing and signaling or transport mechanisms. Mutations leading to an increase in ribosome biogenesis were found to be important for the improvement of ethanol tolerance. Modulations of chronological life span were also identified to contribute to ethanol tolerance in yeast. Conclusions The system based network approach developed allows the identification of novel gene targets for improved ethanol tolerance and supports the highly complex nature of ethanol tolerance in yeast.
Collapse
Affiliation(s)
| | | | | | | | - Betul Kirdar
- Department of Chemical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|