1
|
Samanta PN, Kar S, Leszczynski J. Recent Advances of In-Silico Modeling of Potent Antagonists for the Adenosine Receptors. Curr Pharm Des 2019; 25:750-773. [DOI: 10.2174/1381612825666190304123545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/26/2019] [Indexed: 11/22/2022]
Abstract
The rapid advancement of computer architectures and development of mathematical algorithms offer a
unique opportunity to leverage the simulation of macromolecular systems at physiologically relevant timescales.
Herein, we discuss the impact of diverse structure-based and ligand-based molecular modeling techniques in
designing potent and selective antagonists against each adenosine receptor (AR) subtype that constitutes multitude
of drug targets. The efficiency and robustness of high-throughput empirical scoring function-based approaches
for hit discovery and lead optimization in the AR family are assessed with the help of illustrative examples
that have led to nanomolar to sub-micromolar inhibition activities. Recent progress in computer-aided drug
discovery through homology modeling, quantitative structure-activity relation, pharmacophore models, and molecular
docking coupled with more accurate free energy calculation methods are reported and critically analyzed
within the framework of structure-based virtual screening of AR antagonists. Later, the potency and applicability
of integrated molecular dynamics (MD) methods are addressed in the context of diligent inspection of intricated
AR-antagonist binding processes. MD simulations are exposed to be competent for studying the role of the membrane
as well as the receptor flexibility toward the precise evaluation of the biological activities of antagonistbound
AR complexes such as ligand binding modes, inhibition affinity, and associated thermodynamic and kinetic
parameters.
Collapse
Affiliation(s)
- Pabitra Narayan Samanta
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, United States
| | - Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, United States
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, United States
| |
Collapse
|
2
|
Yau MQ, Emtage AL, Chan NJY, Doughty SW, Loo JSE. Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures. J Comput Aided Mol Des 2019; 33:487-496. [PMID: 30989574 DOI: 10.1007/s10822-019-00201-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/06/2019] [Indexed: 12/31/2022]
Abstract
The recent expansion of GPCR crystal structures provides the opportunity to assess the performance of structure-based drug design methods for the GPCR superfamily. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA)-based methods are commonly used for binding affinity prediction, as they provide an intermediate compromise of speed and accuracy between the empirical scoring functions used in docking and more robust free energy perturbation methods. In this study, we systematically assessed the performance of MM/PBSA in predicting experimental binding free energies using twenty Class A GPCR crystal structures and 934 known ligands. Correlations between predicted and experimental binding free energies varied significantly between individual targets, ranging from r = - 0.334 in the inactive-state CB1 cannabinoid receptor to r = 0.781 in the active-state CB1 cannabinoid receptor, while average correlation across all twenty targets was relatively poor (r = 0.183). MM/PBSA provided better predictions of binding free energies compared to docking scores in eight out of the twenty GPCR targets while performing worse for four targets. MM/PBSA binding affinity predictions calculated using a single, energy minimized structure provided comparable predictions to sampling from molecular dynamics simulations and may be more efficient when computational cost becomes restrictive. Additionally, we observed that restricting MM/PBSA calculations to ligands with a high degree of structural similarity to the crystal structure ligands improved performance in several cases. In conclusion, while MM/PBSA remains a valuable tool for GPCR structure-based drug design, its performance in predicting the binding free energies of GPCR ligands remains highly system-specific as demonstrated in a subset of twenty Class A GPCRs, and validation of MM/PBSA-based methods for each individual case is recommended before prospective use.
Collapse
Affiliation(s)
- Mei Qian Yau
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia
| | - Abigail L Emtage
- School of Pharmacy, The University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Nathaniel J Y Chan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia
| | - Stephen W Doughty
- RCSI and UCD Malaysia Campus, No. 4 Jalan Sepoy Lines, 10450, George Town, Penang, Malaysia
| | - Jason S E Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
3
|
Rouviere E, Arnarez C, Yang L, Lyman E. Identification of Two New Cholesterol Interaction Sites on the A 2A Adenosine Receptor. Biophys J 2018; 113:2415-2424. [PMID: 29211995 DOI: 10.1016/j.bpj.2017.09.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/04/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
By mole, cholesterol is the most abundant component of animal cell plasma membranes. Many membrane proteins have been shown to be functionally dependent on cholesterol, several of which have also been shown to bind cholesterol at well-defined locations on their membrane-facing surface. In this work, a combination of coarse-grained "Martini" and all-atom simulations are used to identify two, to our knowledge, new cholesterol-binding sites on the A2A adenosine receptor, a G-protein-coupled receptor that is a target for the treatment of Parkinson's disease. One of the sites is also observed to bind cholesterol in several recent, high-resolution crystal structures of the protein, and in the simulations, interacts with cholesterol only when bound to the inverse agonist ZM241385. Cataloguing cholesterol-binding sites is a vital step in the effort to understand cholesterol-dependent function of membrane proteins. Given that cholesterol content in plasma membranes varies with cell type and on administration of widely prescribed pharmaceuticals, such as statins, understanding cholesterol-dependent function is an important step toward exploiting membrane compositional variation for therapeutic purposes.
Collapse
Affiliation(s)
- Eric Rouviere
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware
| | - Clément Arnarez
- Instituto de Tecnologia Química e Biológica, António Xavier Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lewen Yang
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware; Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware.
| |
Collapse
|
4
|
Congreve M, Bortolato A, Brown G, Cooke R. Modeling and Design for Membrane Protein Targets. COMPREHENSIVE MEDICINAL CHEMISTRY III 2017:145-188. [DOI: 10.1016/b978-0-12-409547-2.12358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Guo D, Heitman LH, IJzerman AP. Kinetic Aspects of the Interaction between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine Receptors. Chem Rev 2016; 117:38-66. [DOI: 10.1021/acs.chemrev.6b00025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dong Guo
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Laura H. Heitman
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
6
|
Chen JF, Lee CF, Chern Y. Adenosine receptor neurobiology: overview. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 119:1-49. [PMID: 25175959 DOI: 10.1016/b978-0-12-801022-8.00001-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Chien-fei Lee
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Costanzi S. G protein-coupled receptors: computer-aided ligand discovery and computational structural analyses in the 2010s. In Silico Pharmacol 2013; 1:20. [PMID: 25505664 PMCID: PMC4215811 DOI: 10.1186/2193-9616-1-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 01/02/2023] Open
Abstract
G protein-coupled receptors, or GPCRs, are a large superfamily of proteins found on the plasma membrane of cells. They are involved in most physiological and pathophysiological functions and constitute the target of the majority of marketed drugs. Although these receptors have been historically elusive to attempts of structural determination, GPCR crystallography is now in full blossom, opening the way to structure-based drug discovery and enabling homology modeling. This thematic issue of the journal In Silico Pharmacology, which illustrates how the expanding body of structural knowledge is fostering complex computational analyses of the structure-function relationships of the receptors and their interactions with their ligands, stems from the 31st Camerino-Cyprus-Noordwijkerhout Symposium held in Italy, in May 2013, at the University of Camerino. Specifically, it originates from a session of the symposium entitled “Structure-Based Discovery of Ligands of G Protein-Coupled Receptors: Finally a Reality”, and features a mix of research articles and reviews on the application of computational modeling to the analysis of the structure of GPCRs and the interactions of the receptors with their ligands.
Collapse
Affiliation(s)
- Stefano Costanzi
- Department of Chemistry and Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, 20016 Washington, DC USA
| |
Collapse
|