Labulo AH, Adesuji ET, Dedeke OA, Bodede OS, Oseghale CO, Moodley R, Nyamori VO, Dare EO, Adegoke OA. A dual-purpose silver nanoparticles biosynthesized using aqueous leaf extract of Detarium microcarpum: An under-utilized species.
Talanta 2016;
160:735-744. [PMID:
27591670 DOI:
10.1016/j.talanta.2016.07.066]
[Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 11/26/2022]
Abstract
The need for green synthesis of emerging industrial materials has led to the biosynthesis of nanoparticles from plants to circumvent the adverse by-products of chemical synthesis. In this study, the leaf extract of Detarium mirocarpum Guill & Perr, a small tree belonging to the family Fabaceae (Legume), was used to synthesize silver nanoparticles (DAgNPs). DAgNPs were characterized using spectroscopic techniques (Ultraviolet-Visible spectroscopy and Fourier Transform Infrared spectroscopy) which showed hydroxyl and carbonyl functional groups to be responsible for their synthesis. DAgNPs were observed to be crystalline and spherical. The average size, determined by transmission electron microscopy (TEM) was 17.05nm. The antioxidant activity of DAgNPs ranked from moderate to good. The ability of DAgNPs to sense Hg(2+) and Fe(3+) ions in aqueous medium was also investigated. The quenching of the SPR peak at 430nm was used to monitor the toxic and heavy metal ions with linear ranges of 20-70µgmL(-1) and 10-40µgmL(-1) for Hg(2+) and Fe(3+), respectively. The limit of detection (LOD) and limit of quantification (LOQ) obtained for Hg(2+) was 2.05µgmL(-1) and 6.21µgmL(-1), respectively and for Fe(3+) was 5.01µgmL(-1) and 15.21µgmL(-1), respectively. The intra- and inter-day assessments of accuracy and repeatability gave relative errors less than 1% in all instances. DAgNPs can therefore provide a convenient method of sensing the toxic metals easily.
Collapse