1
|
Weissenberger M, Weissenberger MH, Gilbert F, Groll J, Evans CH, Steinert AF. Reduced hypertrophy in vitro after chondrogenic differentiation of adult human mesenchymal stem cells following adenoviral SOX9 gene delivery. BMC Musculoskelet Disord 2020; 21:109. [PMID: 32066427 PMCID: PMC7026978 DOI: 10.1186/s12891-020-3137-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/12/2020] [Indexed: 01/03/2023] Open
Abstract
Background Mesenchymal stem cell (MSC) based-treatments of cartilage injury are promising but impaired by high levels of hypertrophy after chondrogenic induction with several bone morphogenetic protein superfamily members (BMPs). As an alternative, this study investigates the chondrogenic induction of MSCs via adenoviral gene-delivery of the transcription factor SOX9 alone or in combination with other inducers, and comparatively explores the levels of hypertrophy and end stage differentiation in a pellet culture system in vitro. Methods First generation adenoviral vectors encoding SOX9, TGFB1 or IGF1 were used alone or in combination to transduce human bone marrow-derived MSCs at 5 × 102 infectious particles/cell. Thereafter cells were placed in aggregates and maintained for three weeks in chondrogenic medium. Transgene expression was determined at the protein level (ELISA/Western blot), and aggregates were analysed histologically, immunohistochemically, biochemically and by RT-PCR for chondrogenesis and hypertrophy. Results SOX9 cDNA was superior to that encoding TGFB1, the typical gold standard, as an inducer of chondrogenesis in primary MSCs as evidenced by improved lacuna formation, proteoglycan and collagen type II staining, increased levels of GAG synthesis, and expression of mRNAs associated with chondrogenesis. Moreover, SOX9 modified aggregates showed a markedly lower tendency to progress towards hypertrophy, as judged by expression of the hypertrophy markers alkaline phosphatase, and collagen type X at the mRNA and protein levels. Conclusion Adenoviral SOX9 gene transfer induces chondrogenic differentiation of human primary MSCs in pellet culture more effectively than TGFB1 gene transfer with lower levels of chondrocyte hypertrophy after 3 weeks of in vitro culture. Such technology might enable the formation of more stable hyaline cartilage repair tissues in vivo.
Collapse
Affiliation(s)
- M Weissenberger
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Center for Musculoskeletal Research, Julius-Maximilians-University, Brettreichstrasse 11, D-97074, Würzburg, Germany.
| | - M H Weissenberger
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Center for Musculoskeletal Research, Julius-Maximilians-University, Brettreichstrasse 11, D-97074, Würzburg, Germany.,Department of Pathology, Caritas-Hospital, Bad Mergentheim, Germany
| | - F Gilbert
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Center for Musculoskeletal Research, Julius-Maximilians-University, Brettreichstrasse 11, D-97074, Würzburg, Germany.,Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Würzburg, Germany
| | - J Groll
- Department of Functional Materials in Medicine and Dentistry, Julius-Maximilians-University, Würzburg, Germany
| | - C H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
| | - A F Steinert
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Center for Musculoskeletal Research, Julius-Maximilians-University, Brettreichstrasse 11, D-97074, Würzburg, Germany.,Present address: Department of Orthopaedic, Trauma, Shoulder and Arthroplasty Surgery, Rhön-Klinikum Campus Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| |
Collapse
|
2
|
Madry H, Gao L, Rey-Rico A, Venkatesan JK, Müller-Brandt K, Cai X, Goebel L, Schmitt G, Speicher-Mentges S, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M. Thermosensitive Hydrogel Based on PEO-PPO-PEO Poloxamers for a Controlled In Situ Release of Recombinant Adeno-Associated Viral Vectors for Effective Gene Therapy of Cartilage Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906508. [PMID: 31763733 DOI: 10.1002/adma.201906508] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Indexed: 05/06/2023]
Abstract
Advanced biomaterial-guided delivery of gene vectors is an emerging and highly attractive therapeutic solution for targeted articular cartilage repair, allowing for a controlled and minimally invasive delivery of gene vectors in a spatiotemporally precise manner, reducing intra-articular vector spread and possible loss of the therapeutic gene product. As far as it is known, the very first successful in vivo application of such a biomaterial-guided delivery of a potent gene vector in an orthotopic large animal model of cartilage damage is reported here. In detail, an injectable and thermosensitive hydrogel based on poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO poloxamers, capable of controlled release of a therapeutic recombinant adeno-associated virus (rAAV) vector overexpressing the chondrogenic sox9 transcription factor in full-thickness chondral defects, is applied in a clinically relevant minipig model in vivo. These comprehensive analyses of the entire osteochondral unit with multiple standardized evaluation methods indicate that rAAV-FLAG-hsox9/PEO-PPO-PEO hydrogel-augmented microfracture significantly improves cartilage repair with a collagen fiber orientation more similar to the normal cartilage and protects the subchondral bone plate from early bone loss.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Kathrin Müller-Brandt
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Lars Goebel
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - David Zurakowski
- Department of Anaesthesia, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, D-66421, Homburg, Saarland, Germany
| |
Collapse
|
3
|
Raghuram A, Singh A, Chang DK, Nunez M, Reece EM, Schultz BE. The Evolving Landscape of Gene Therapy in Plastic Surgery. Semin Plast Surg 2019; 33:167-172. [PMID: 31384232 DOI: 10.1055/s-0039-1693131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
With the rapid rise of personalized genomic sequencing and clustered regularly interspaced short palindromic repeat (CRISPR) technology, previous gaps in gene therapy are beginning to be bridged, paving the way for increasing clinical applicability. This article aims to provide an overview of the fundamentals of gene therapy and discuss future potential interventions relevant to plastic surgeons. These interventions include enhancing tissue regeneration and healing, as well as modifying disease processes in congenital anomalies. Though clinical applications are still on the horizon, a deeper understanding of these new advances will help plastic surgeons understand the current landscape of gene therapy and stay abreast of future opportunities.
Collapse
Affiliation(s)
| | - Aspinder Singh
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Daniel K Chang
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Mervin Nunez
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Edward M Reece
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
4
|
Nepomnyashchikh TS, Antonets DV, Shchelkunov SN. Gene therapy of arthritis. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416050094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
|
6
|
Kay JD, Gouze E, Oligino TJ, Gouze JN, Watson RS, Levings PP, Bush ML, Dacanay A, Nickerson DM, Robbins PD, Evans CH, Ghivizzani SC. Intra-articular gene delivery and expression of interleukin-1Ra mediated by self-complementary adeno-associated virus. J Gene Med 2009; 11:605-14. [PMID: 19384892 DOI: 10.1002/jgm.1334] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The adeno-associated virus (AAV) has many safety features that favor its use in the treatment of arthritic conditions; however, the conventional, single-stranded vector is inefficient for gene delivery to fibroblastic cells that primarily populate articular tissues. This has been attributed to the inability of these cells to convert the vector to a double-stranded form. To overcome this, we evaluated double-stranded self-complementary (sc) AAV as a vehicle for intra-articular gene delivery. METHODS Conventional and scAAV vectors were used to infect lapine articular fibroblasts in culture to determine transduction efficiency, transgene expression levels, and nuclear trafficking. scAAV containing the cDNA for interleukin (IL)-1 receptor antagonist (Ra) was delivered to the joints of naïve rabbits and those with IL-1beta-induced arthritis. From lavage of the joint space, levels of transgenic expression and persistence were measured by enzyme-linked immunosorbent assay. Infiltrating leukocytes were quantified using a hemocytometer. RESULTS Transgene expression from scAAV had an earlier onset and was approximately 25-fold greater than conventional AAV despite the presence of similar numbers of viral genomes in the nuclei of infected cells. Fibroblasts transduced with scAAV produced amounts of IL1-Ra comparable to those transduced with adenoviral and lentiviral vectors. IL1-Ra was present in lavage fluid of most animals for 2 weeks in sufficient quantities to inhibit inflammation of the IL-1beta-driven model. Once lost, neither subsequent inflammatory events, nor re-administration of the virus could re-establish transgene expression. CONCLUSIONS scAAV-mediated intra-articular gene transfer is robust and similarly efficient in both normal and inflamed joints; the resulting transgenic expression is sufficient to achieve biological relevance in joints of human proportion.
Collapse
Affiliation(s)
- Jesse D Kay
- Department of Orthopaedics and Rehabilitation, University of Florida College of Medicine, Gainesville, 32610-0137, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ghivizzani SC, Gouze E, Gouze JN, Kay JD, Bush ML, Watson RS, Levings PP, Nickerson DM, Colahan PT, Robbins PD, Evans CH. Perspectives on the use of gene therapy for chronic joint diseases. Curr Gene Ther 2008; 8:273-86. [PMID: 18691023 DOI: 10.2174/156652308785160638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advances in molecular and cellular biology have identified a wide variety of proteins including targeted cytokine inhibitors, immunomodulatory proteins, cytotoxic mediators, angiogenesis inhibitors, and intracellular signalling molecules that could be of great benefit in the treatment of chronic joint diseases, such as osteo- and rheumatoid arthritis. Unfortunately, protein-based drugs are difficult to administer effectively. They have a high rate of turnover, requiring frequent readministration, and exposure in non-diseased tissue can lead to serious side effects. Gene transfer technologies offer methods to enhance the efficacy of protein-based therapies, enabling the body to produce these molecules locally at elevated levels for extended periods. The proof of concept of gene therapies for arthritis has been exhaustively demonstrated in multiple laboratories and in numerous animal models. This review attempts to condense these studies and to discuss the relative benefits and limitations of the methods proposed and to discuss the challenges toward translating these technologies into clinical realities.
Collapse
Affiliation(s)
- Steven C Ghivizzani
- Gene Therapy Laboratory, Department of Orthopaedics & Rehabilitation, University of Florida College of Medicine, Gainesville FL 32610, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Nakajima A. Application of cellular gene therapy for rheumatoid arthritis. Mod Rheumatol 2007; 16:269-75. [PMID: 17039306 PMCID: PMC2780633 DOI: 10.1007/s10165-006-0501-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 06/05/2006] [Indexed: 01/15/2023]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by persistent inflammation of joints resulting in progressive destruction of cartilage and bone. Recently, biological agents that suppress the activities of proinflammatory cytokines have shown efficacy as antirheumatic drugs, but require frequent administration, and often result in systemic immune suppression. Thus, gene transfer approaches are being developed as an alternative approach for targeted, more efficient, and sustained delivery of inhibitors of inflammatory cytokines as well as other therapeutic agents. Several gene therapy approaches have been established in preclinical animal models. In these models, autoantigen-specific T cells have been demonstrated to be ideal gene delivery vehicles for the local delivery of “immunoregulatory molecules” because these cells have tissue-specific homing and retention properties. Indeed, bioluminescence studies in an animal model of inflammatory arthritis revealed that these cells accumulated in and remained in inflamed joints. Transfer of genetically modified dendritic cells (DCs) may also have interesting effects. We conclude that modifying antigen-specific T cells or autologous DCs by retroviral transduction for local expression of regulatory proteins is a promising therapeutic strategy for the treatment of RA.
Collapse
Affiliation(s)
- Atsuo Nakajima
- Department of Joint Disease and Rheumatism, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| |
Collapse
|
10
|
de Poorter JJ, Obermann WR, Huizinga TWJ, Nelissen RGHH. Arthrography in loosened hip prostheses. Assessment of possibilities for intra-articular therapy. Joint Bone Spine 2006; 73:684-90. [PMID: 16997604 DOI: 10.1016/j.jbspin.2005.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 11/09/2005] [Indexed: 11/23/2022]
Abstract
BACKGROUND Loosening is a major complication in prosthesis surgery. Less invasive alternatives to revision surgery are required to prevent and treat prosthesis loosening. Some experimental therapies investigating alternative treatments exploit the intra-articular space as a route of administration. For efficient, local delivery of therapeutic agents a contained joint space is required. Furthermore, the volume of the joint space determines the concentration of the therapeutic ingredient in the joint. METHODS A retrospective analysis of 221 hip arthrograms performed between 1994 and 2004 for diagnosis of prosthesis loosening was performed. All arthrograms were studied for leakage of contrast medium and the volume of injected contrast medium. RESULTS There was a contained joint in 164 arthrograms (74%). The volume in these hips was 31+/-12.7 ml. Male patients had a larger joint volume than female patients (P=0.019). There was no difference in containment and joint volume between hips with a primary and with a revised prosthesis. CONCLUSIONS For successful intra-articular therapy it is necessary that the injected agent remains in the jointspace. As leakage of contrast medium was shown in about a quarter of hips, this study shows that an arthrogram may be useful in the inclusion procedure for intra-articular studies to determine containment of the joint and also the volume that can be injected.
Collapse
Affiliation(s)
- Jolanda J de Poorter
- Department of Orthopaedics, J11-S, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
11
|
|
12
|
Bessis N, Boissier MC. Gene therapy for patients with rheumatoid arthritis. Joint Bone Spine 2006; 73:169-76. [PMID: 16226478 DOI: 10.1016/j.jbspin.2005.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
Gene therapy seeks either to supply a missing or dysfunctional gene or to ensure continuous long-lasting production of a therapeutic protein. Rheumatoid arthritis is a candidate for gene therapy, as the mechanisms leading to joint inflammation and destruction have been partly elucidated. Nevertheless, several crucial questions need to be addressed. Knowledge of the underlying pathophysiological mechanisms is needed to guide selection of the candidate gene. In the light of current data, TNF and IL-1 antagonists are generating interest. A choice must be made between a viral vector (adenovirus, retrovirus, adeno-associated virus) and a nonviral vector (naked DNA, administered by electrotransfer or in liposomes). Finally, the relative merits of intraarticular and systemic administration need to be considered. Safety is a primary concern. The transgene and/or vector may induce adverse effects. For instance, a transgene inserted within the host genome (when a retroviral vector is used) may induce a mutation. A number of vectors and transgenes induce immune responses. Numerous studies are ongoing to investigate the safety and efficacy of gene therapy strategies in experimental models of rheumatoid arthritis. These studies will have to be completed before further clinical trials of gene therapy in rheumatoid arthritis are considered.
Collapse
Affiliation(s)
- Natacha Bessis
- Service de rhumatologie, UPRES EA-3408, immunologie, université Paris 13, CHU d'Avicenne, AP-HP, 74, rue Marcel-Cachin, Bobigny cedex, France.
| | | |
Collapse
|
13
|
Adriaansen J, Vervoordeldonk MJBM, Tak PP. Gene therapy as a therapeutic approach for the treatment of rheumatoid arthritis: innovative vectors and therapeutic genes. Rheumatology (Oxford) 2006; 45:656-68. [PMID: 16510530 DOI: 10.1093/rheumatology/kel047] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In recent years, significant progress has been made in the treatment of rheumatoid arthritis (RA). In addition to conventional therapy, novel biologicals targeting tumour necrosis factor-alpha have successfully entered the clinic. However, the majority of the patients still has some actively inflamed joints and some patients suffer from side-effects associated with the high systemic dosages needed to achieve therapeutic levels in the joints. In addition, due to of the short half-life of these proteins there is a need for continuous, multiple injections of the recombinant protein. An alternative approach might be the use of gene transfer to deliver therapeutic genes locally at the site of inflammation. Several viral and non-viral vectors are being used in animal models of RA. The first gene therapy trials for RA have already entered the clinic. New vectors inducing long-term and regulated gene expression in specific tissue are under development, resulting in more efficient gene transfer, for example by using distinct serotypes of viral vectors such as adeno-associated virus. This review gives an overview of some promising vectors used in RA research. Furthermore, several therapeutic genes are discussed that could be used for gene therapy in RA patients.
Collapse
Affiliation(s)
- J Adriaansen
- Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
14
|
Cucchiarini M, Madry H, Ma C, Thurn T, Zurakowski D, Menger MD, Kohn D, Trippel SB, Terwilliger EF. Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther 2005; 12:229-38. [PMID: 16043094 DOI: 10.1016/j.ymthe.2005.03.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 02/16/2005] [Accepted: 03/01/2005] [Indexed: 11/25/2022] Open
Abstract
Therapeutic gene transfer into articular cartilage is a potential means to stimulate reparative activities in tissue lesions. We previously demonstrated that direct application of recombinant adeno-associated virus (rAAV) vectors to articular chondrocytes in their native matrix in situ as well as sites of tissue damage allowed for efficient and sustained reporter gene expression. Here we test the hypothesis that rAAV-mediated overexpression of fibroblast growth factor 2 (FGF-2), one candidate for enhancing the repair of cartilage lesions, would lead to the production of a biologically active factor that would facilitate the healing of articular cartilage defects. In vitro, FGF-2 production from an rAAV-delivered transgene was sufficient to stimulate chondrocyte proliferation over a prolonged period of time. In vivo, application of the therapeutic vector significantly improved the overall repair, filling, architecture, and cell morphology of osteochondral defects in rabbit knee joints. Differences in matrix synthesis were also observed, although not to the point of statistical significance. This process may further benefit from cosupplementation with other factors. These results provide a basis for rAAV application to sites of articular cartilage damage to deliver agents that promote tissue repair.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics and Orthopaedic Surgery, Saarland University Medical Center, D-66421 Homburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lu FZ, Kitazawa Y, Hara Y, Jiang JY, Li XK. Long-term gene expression using the lentiviral vector in rat chondrocytes. Clin Orthop Relat Res 2005; 439:243-52. [PMID: 16205166 DOI: 10.1097/00003086-200510000-00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The optimal approach to a long-term stable transgene expression in chondrocytes has not been established. Recently, lentiviral vectors have been used for transfection of some cultured cell lines. Our study tests the hypothesis that lentiviral vectors lead to longer gene expression in primary chondrocytes. We transfected lentiviral and adenoviral vectors carrying the green fluorescence protein gene to chondrocytes at different infection rates and cultured them in collagen Type I gel for up to 6 weeks. We also transplanted the cells of gel-suspended chondrocytes into the backs of nude mice. The mRNA expression of collagen Type II and aggrecan core protein was tested by real time polymerase chain reaction. The morphologic features and proliferation of chondrocytes were observed. Lentiviral vectors could transfect the green fluorescence protein gene to chondrocytes and the adenoviral vector, and there was no influence on the proliferation and phenotype of the chondrocytes. The percentage of lentiviral green fluorescence protein positive cells was much greater than the adenoviral green fluorescence protein at the end of 6 weeks. Stable green fluorescence protein expression was observed only in the lentivirus-transfected implants. The gene transfected by the lentiviral vector can be expressed efficiently for a long time and may be useful for gene transfer in cartilage defect repair.
Collapse
Affiliation(s)
- Fei-Zhou Lu
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
16
|
Abstract
The first successful gene therapy trial was reported in 1991. Since then, successful gene transfer in cultured cells and small animals has been reported by many studies, with achievement of at least transitory high levels of exogenous gene expression. Over 400 clinical protocols for gene therapy have been approved, involving over 4000 patients. However, publication of the results of these gene therapy trials has been limited, with only 80 published reports as of 2002. The majority of clinical gene therapy trials reported so far have been phase I or phase II trials, which are concerned mainly with safety issues and have focused on the treatment of malignancies and other potentially fatal conditions. The death of a patient in 1999 from systemic administration of an adenoviral vector and recent reports of leukaemia in two patients in a clinical gene therapy trial have led to a further re-evaluation of the safety of gene therapy and the role for gene therapy in clinical practice. This review outlines the current status of gene therapy as it relates to orthopaedic diseases and highlights the areas where progress is still to be made.
Collapse
Affiliation(s)
- Mia Jüllig
- Orthopaedic Research Laboratory, Division of Surgery, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
17
|
Chuang IC, Jhao CM, Yang CH, Chang HC, Wang CW, Lu CY, Chang YJ, Lin SH, Huang PL, Yang LC. Intramuscular electroporation with the pro-opiomelanocortin gene in rat adjuvant arthritis. Arthritis Res Ther 2003; 6:R7-R14. [PMID: 14979933 PMCID: PMC400409 DOI: 10.1186/ar1014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 09/18/2003] [Accepted: 09/30/2003] [Indexed: 11/10/2022] Open
Abstract
Endogenous opioid peptides have an essential role in the intrinsic modulation and control of inflammatory pain, which could be therapeutically useful. In this study, we established a muscular electroporation method for the gene transfer of pro-opiomelanocortin (POMC) in vivo and investigated its effect on inflammatory pain in a rat model of rheumatoid arthritis. The gene encoding human POMC was inserted into a modified pCMV plasmid, and 0-200 microg of the plasmid-POMC DNA construct was transferred into the tibialis anterior muscle of rats treated with complete Freund's adjuvant (CFA) with or without POMC gene transfer by the electroporation method. The safety and efficiency of the gene transfer was assessed with the following parameters: thermal hyperalgesia, serum adrenocorticotropic hormone (ACTH) and endorphin levels, paw swelling and muscle endorphin levels at 1, 2 and 3 weeks after electroporation. Serum ACTH and endorphin levels of the group into which the gene encoding POMC had been transferred were increased to about 13-14-fold those of the normal control. These levels peaked 1 week after electroporation and significantly decreased 2 weeks after electroporation. Rats that had received the gene encoding POMC had less thermal hypersensitivity and paw swelling than the non-gene-transferred group at days 3, 5 and 7 after injection with CFA. Our promising results showed that transfer of the gene encoding POMC by electroporation is a new and effective method for its expression in vivo, and the analgesic effects of POMC cDNA with electroporation in a rat model of rheumatoid arthritis are reversed by naloxone.
Collapse
Affiliation(s)
- I-Chuan Chuang
- Gene Therapy Laboratory, Tajen Institute of Technology, Pingtung, 907, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tarner IH, Slavin AJ, McBride J, Levicnik A, Smith R, Nolan GP, Contag CH, Fathman CG. Treatment of Autoimmune Disease by Adoptive Cellular Gene Therapy. Ann N Y Acad Sci 2003; 998:512-9. [PMID: 14592922 DOI: 10.1196/annals.1254.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Autoimmune disorders represent inappropriate immune responses directed at self-tissue. Antigen-specific CD4+ T cells and antigen-presenting dendritic cells (DCs) are important mediators in the pathogenesis of auto-immune disease and thus are ideal candidates for adoptive cellular gene therapy, an ex vivo approach to therapeutic gene transfer. Using retrovirally transduced cells and luciferase bioluminescence, we have demonstrated that primary T cells, T cell hybridomas, and DCs rapidly and preferentially home to the sites of inflammation in animal models of multiple sclerosis, arthritis, and diabetes. These cells, transduced with retroviral vectors to drive expression of various "regulatory proteins" such as IL-4, IL-10, IL-12p40, and anti-TNF scFv, deliver these immunoregulatory proteins to the inflamed lesions, providing therapy for experimental autoimmune encephalitis (EAE), collagen-induced arthritis (CIA), and nonobese diabetic mice (NOD).
Collapse
Affiliation(s)
- Ingo H Tarner
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
de Hooge ASK, van de Loo FAJ, Bennink MB, Arntz OJ, Fiselier TJW, Franssen MJAM, Joosten LAB, Van Lent PLEM, Richards CD, van den Berg WB. Growth plate damage, a feature of juvenile idiopathic arthritis, can be induced by adenoviral gene transfer of oncostatin M: a comparative study in gene-deficient mice. ARTHRITIS AND RHEUMATISM 2003; 48:1750-61. [PMID: 12794844 DOI: 10.1002/art.10972] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To investigate the involvement of proinflammatory and destructive mediators in oncostatin M (OSM)-induced joint pathology, using gene-deficient mice. METHODS An adenoviral vector expressing murine OSM was injected into the joints of naive wild-type mice and mice deficient for interleukin-1 (IL-1), IL-6, tumor necrosis factor alpha (TNFalpha), or inducible nitric oxide synthase (iNOS). Reverse transcription-polymerase chain reaction was used to study gene expression. Inflammation and cartilage proteoglycan (PG) depletion were assessed by histology. OSM and IL-1 levels in synovial fluid from patients with juvenile idiopathic arthritis (JIA) were measured by enzyme-linked immunosorbent assay. RESULTS Adenoviral expression of murine OSM led to joint inflammation, bone apposition, chondrophyte formation, articular cartilage PG depletion, and VDIPEN neoepitope expression in wild-type mice. A unique and consistent observation was the focal PG depletion and disorganization of the growth plate cartilage during the first week of inflammation. Synovial IL-1beta, IL-6, TNFalpha, and iNOS gene expression was strongly induced. Of these factors, only deficiency in IL-1 markedly reduced inflammation and PG depletion and completely prevented growth plate damage. In addition, this is the first study in which OSM was detected in JIA synovial fluid. Most samples were also IL-1beta positive. CONCLUSION IL-1, but not IL-6, TNFalpha, or iNOS, plays an important role in joint disease induced by intraarticular gene transfer of OSM in mice. The effect of OSM on murine connective tissue and the presence of OSM in human synovial fluid make involvement of OSM in human arthropathies very likely.
Collapse
Affiliation(s)
- Alfons S K de Hooge
- Rheumatology Research Laboratory, University Medical Center Nijmegen, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bessis N, Doucet C, Cottard V, Douar AM, Firat H, Jorgensen C, Mezzina M, Boissier MC. Gene therapy for rheumatoid arthritis. J Gene Med 2002; 4:581-91. [PMID: 12439850 DOI: 10.1002/jgm.325] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a severe autoimmune systemic disease. Chronic synovial inflammation results in destruction of the joints. No conventional treatment is efficient in RA. Gene therapy of RA targets mainly the players of inflammation or articular destruction: TNF-alpha or IL-1 blocking agents (such as anti-TNF-alpha monoclonal antibodies, soluble TNF-alpha receptor, type II soluble receptor of IL-1, IL-1 receptor antagonist), antiinflammatory cytokines (such as IL-4, IL-10, IL-1), and growth factors. In this polyarticular disease, the vector expressing the therapeutic protein can be administered as a local (intra-articular injection) or a systemic treatment (extra-articular injection). All the main vectors have been used in experimental models, including the more recent lentivirus and adeno-associated virus. Ex vivo gene transfer was performed with synovial cells, fibroblasts, T cells, dendritic cells, and different cells from xenogeneic origin. In vivo gene therapy is simpler, although a less controlled method. Clinical trials in human RA have started with ex vivo retrovirus-expressing IL-1 receptor antagonists and have demonstrated the feasibility of the strategy of gene therapy. The best target remains to be determined and extensive research has to be conducted in preclinical studies.
Collapse
Affiliation(s)
- Natacha Bessis
- UPRES EA-3408 (Université Paris 13) and Service de Rhumatologie (CHU Avicenne, AP-HP), Bobigny, France.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tarner IH, Fathman CG. The potential for gene therapy in the treatment of autoimmune disease. Clin Immunol 2002; 104:204-16. [PMID: 12217329 DOI: 10.1006/clim.2002.5235] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ingo H Tarner
- Department of Rheumatology, Stanford University School of Medicine, California 94305-5166, USA
| | | |
Collapse
|
22
|
Carmody EE, Schwarz EM, Puzas JE, Rosier RN, O'Keefe RJ. Viral interleukin-10 gene inhibition of inflammation, osteoclastogenesis, and bone resorption in response to titanium particles. ARTHRITIS AND RHEUMATISM 2002; 46:1298-308. [PMID: 12115237 DOI: 10.1002/art.10227] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate the potential of viral interleukin-10 (vIL-10) gene therapy as an approach to prevent wear debris-induced inflammation, osteoclastogenesis, and bone resorption as it relates to periprosthetic osteolysis in patients with total joint replacements. METHODS Replication-defective adenovirus vectors expressing vIL-10 (AdvIL-10) or LacZ (AdLacZ) target genes were used to transduce fibroblast-like synoviocytes (FLS) in vitro, and the effects of these cells on wear debris-induced proinflammatory cytokine production and receptor activator of nuclear factor kappaB ligand + macrophage colony-stimulating factor splenocyte osteoclastogenesis were assessed by enzyme-linked immunosorbent assay and tartrate-resistant acid phosphatase assay. The effects of AdvIL-10 administration on wear debris-induced osteolysis in vivo were analyzed using the mouse calvaria model, in which AdLacZ was used as the control. RESULTS In the presence of AdLacZ-infected FLS, titanium particle-stimulated macrophages exhibited a marked increase in secretion of tumor necrosis factor alpha (TNFalpha) (6.5-fold), IL-6 (13-fold), and IL-1 (5-fold). Coculture with AdvIL-10-transduced FLS suppressed cytokine secretion to basal levels, while addition of an anti-IL-10 neutralizing antibody completely blocked this effect. The vIL-10-transduced FLS also inhibited osteoclastogenesis 10-fold in an anti-IL-10-sensitive manner. In vivo, titanium implantation resulted in a 2-fold increase in osteoclasts (P < 0.05) and in a 2-fold increase in sagittal suture area (P < 0.05). This increase over control levels was completely blocked in mice receiving intraperitoneal injections of AdvIL-10, all of whom had measurable serum vIL-10 levels for the duration of the experiment. Immunohistochemistry demonstrated reduced cyclooxygenase 2 and TNFalpha expression in AdvIL-10-infected animals. CONCLUSION This study demonstrates that gene delivery of vIL-10 inhibits 3 processes critically involved in periprosthetic osteolysis: 1) wear debris-induced proinflammatory cytokine production, 2) osteoclastogenesis, and 3) osteolysis.
Collapse
Affiliation(s)
- Emily E Carmody
- University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
23
|
Gouze E, Pawliuk R, Pilapil C, Gouze JN, Fleet C, Palmer GD, Evans CH, Leboulch P, Ghivizzani SC. In vivo gene delivery to synovium by lentiviral vectors. Mol Ther 2002; 5:397-404. [PMID: 11945066 DOI: 10.1006/mthe.2002.0562] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The delivery of anti-arthritic genes to the synovial lining of joints is being explored as a strategy for the treatment of rheumatoid arthritis. In this study, we have investigated the use of VSV-G pseudotyped, HIV-1-based lentiviral vectors for gene delivery to articular tissues. Recombinant lentivirus containing a beta-galactosidase/neomycin resistance fusion gene under control of the elongation factor (EF) 1alpha promoter efficiently transduced human and rat synoviocytes and chondrocytes in cell culture. When directly injected into the knees of rats, this vector transduced synovial lining cells, but not other articular tissues such as cartilage. We also constructed a lentiviral vector containing the human interleukin-1 receptor antagonist (IL1RA) cDNA and examined transgene expression in vitro and in vivo following injection into the knee joints of rats. In immunocompetent animals, intra-articular IL1RA expression was high and persisted, at a sharply declining rate, for approximately 20 days. In immunocompromised rats, however, lentivirus-mediated intra-articular expression of human IL1RA was found to persist for at least 6 weeks. Extra-articular expression of the transgene was minimal. These results indicate that lentiviral vectors are capable of efficient in vivo gene transfer to synovium and merit further investigation as a means of providing long-term expression for gene-based treatments of arthritis.
Collapse
Affiliation(s)
- Elvire Gouze
- Center for Molecular Orthopaedics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Luyten FP, Dell'Accio F, De Bari C. Skeletal tissue engineering: opportunities and challenges. Best Pract Res Clin Rheumatol 2001; 15:759-69. [PMID: 11812020 DOI: 10.1053/berh.2001.0192] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tissue engineering is a field of biomedicine that is growing rapidly and is critically driven by scientific advances in the areas of developmental and cell biology and biomaterial sciences. Regeneration of skeletal tissues is among the most promising areas of biological tissue repair and is providing a broad spectrum of potential clinical applications, including joint resurfacing. The availability of novel tools such as pluripotent stem cells, morphogens, smart biomaterials and gene transfer technologies, makes us dream of many exciting novel therapeutic approaches. Despite these opportunities in regenerative medicine, good clinical practice requires the clinician to question the consistency, reproducibility, validation and appropriate regulation of these new biological treatments.
Collapse
Affiliation(s)
- F P Luyten
- Laboratory for Skeletal Development and Joint Disorders, Onderwijs & Navorsing, Department of Rheumatology, University Hospitals, Herestraat 49, KU, Leuven, Belgium
| | | | | |
Collapse
|
25
|
Whalen JD, Thomson AW, Lu L, Robbins PD, Evans CH. Viral IL-10 gene transfer inhibits DTH responses to soluble antigens: evidence for involvement of genetically modified dendritic cells and macrophages. Mol Ther 2001; 4:543-50. [PMID: 11735338 DOI: 10.1006/mthe.2001.0492] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of the viral interleukin-10 (vIL-10) gene within one joint of an animal with polyarticular, inflammatory arthritis suppresses disease in both treated and untreated joints (the "contralateral effect"). We used a mouse delayed-type hypersensitivity (DTH) model to investigate this phenomenon. Adenoviral delivery of the vIL-10 gene suppressed DTH reactions in injected and contralateral paws. T lymphocytes recovered from immunized mice injected with the adenoviral vector (ad-vIL-10) were unable to transfer the DTH response, but were not inhibitory. Peritoneal exudate cells recovered from mice injected intraperitoneally with ad-vIL-10 inhibited DTH reactions in recipient mice, but only when the donor mice had been sensitized to the antigen used to incite the DTH response. Dendritic cells (DCs) recovered from the draining lymph nodes of mice injected with ad-vIL-10 behaved similarly. Bone-marrow-derived DCs cultured ex vivo with ad-vIL-10 or recombinant mouse IL-10 also suppressed DTH reactions by adoptive transfer when pulsed with the inciting antigen. Collectively, these data suggest a mechanism for the contralateral effect in which genetically modified macrophages and DCs present antigen in the context of high, local concentrations of vIL-10, thereby generating unresponsive T lymphocytes. These findings suggest new ways in which to treat immune-driven diseases by gene and cell therapy.
Collapse
Affiliation(s)
- J D Whalen
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15312, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint inflammation as well as progressive cartilage and bone destruction. Advances in the understanding of the pathophysiology of RA have led to the development of new therapeutic strategies, including gene therapy. Gene therapy offers a new approach to deliver therapeutic proteins to the joints of arthritis patients. Local as well as systemic gene therapy can be envisaged for the treatment of arthritis. Several viral and non-viral vectors have been used in animal models for rheumatoid arthritis for ex vivo and in vivo delivery of therapeutic genes. Promising pre-clinical data have resulted from the application of these strategies. Using ex vivo gene delivery, successful and safe gene transfer has been demonstrated in the joints of RA patients. Although new insights into the role of cytokines and other mediators of chronic inflammation have provided novel targets for therapeutic intervention, the development of vectors that induce long-term and regulated gene expression remains a challenge.
Collapse
Affiliation(s)
- M J Vervoordeldonk
- Division of Clinical Immunology and Rheumatology, Department of Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, 1100 DD, The Netherlands
| | | |
Collapse
|
27
|
Gouze E, Ghivizzani SC, Palmer GD, Gouze JN, Robbins PD, Evans CH. Gene therapy for rheumatoid arthritis. Expert Opin Biol Ther 2001; 1:971-8. [PMID: 11728228 DOI: 10.1517/14712598.1.6.971] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rheumatoid arthritis (RA) is a disabling, painful disorder affecting 1% of the world's population. Although the aetiology of RA remains unknown, recent advances in understanding its pathophysiology have led to the characterisation of several proteins whose activities may be anti-arthritic. Clinical application of such proteins has greatly improved the treatment of RA, but the disease remains incurable and difficult to manage in a substantial number of patients. Thus, there are continued efforts to develop new therapeutic strategies. Because RA is a chronic condition, effective treatment will probably require the presence of therapeutic agents for extended periods of time. In the case of proteins, this is problematic. Gene therapy may offer a solution to this problem. Experimental studies have confirmed the feasibility, efficacy and safety of gene therapy for the treatment of animal models of arthritis. Several different approaches have shown promise in this regard, including gene transfer to the synovial lining cells of individual joints and the systemic delivery of genes to extra-articular locations. One unexpected finding has been the 'contralateral effect' in which gene delivery to one joint of an animal with polyarticular disease leads to improvement of multiple joints. Investigation of this phenomenon has led to interest in cell trafficking and the genetic modification of antigen-presenting cells (APC). The first Phase I clinical trial tested the feasibility and safety of ex vivo gene transfer to the synovial lining of human joints. This clinical trial has been successfully completed and two other Phase I trials are in progress. A Phase II study is now being planned to investigate the efficacy of gene transfer to the joints of patients with early stage RA.
Collapse
Affiliation(s)
- E Gouze
- Center for Molecular Orthopaedics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|