1
|
Zhao Z, Deng J, Fan D. Green biomanufacturing in recombinant collagen biosynthesis: trends and selection in various expression systems. Biomater Sci 2023; 11:5439-5461. [PMID: 37401335 DOI: 10.1039/d3bm00724c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Collagen, classically derived from animal tissue, is an all-important protein material widely used in biomedical materials, cosmetics, fodder, food, etc. The production of recombinant collagen through different biological expression systems using bioengineering techniques has attracted significant interest in consideration of increasing market demand and the process complexity of extraction. Green biomanufacturing of recombinant collagen has become one of the focus topics. While the bioproduction of recombinant collagens (type I, II, III, etc.) has been commercialized in recent years, the biosynthesis of recombinant collagen is extremely challenging due to protein immunogenicity, yield, degradation, and other issues. The rapid development of synthetic biology allows us to perform a heterologous expression of proteins in diverse expression systems, thus optimizing the production and bioactivities of recombinant collagen. This review describes the research progress in the bioproduction of recombinant collagen over the past two decades, focusing on different expression systems (prokaryotic organisms, yeasts, plants, insects, mammalian and human cells, etc.). We also discuss the challenges and future trends in developing market-competitive recombinant collagens.
Collapse
Affiliation(s)
- Zilong Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
2
|
Page A, Fusil F, Cosset FL. Antigen-specific tolerance approach for rheumatoid arthritis: Past, present and future. Joint Bone Spine 2021; 88:105164. [PMID: 33618000 DOI: 10.1016/j.jbspin.2021.105164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis is a chronic systemic autoimmune disease, affecting mainly the joints. It is caused by an adaptive immune reaction against self-antigens, leading to the over production of inflammatory cytokines and autoantibodies, mainly mediated by autoreactive CD4+ T cells and pathological B cell clones. The treatment options currently available rely on palliative global immunosuppression and do not restore tolerance to self-components. Here, we review antigen-specific tolerance approaches that have been developed to inhibit or delete autoreactive clones, while maintaining a potent immune system for rheumatoid arthritis. The first attempts relied on the oral ingestion of self-reactive peptides, with lukewarm results in human clinical trials. To enhance treatment efficacy, self-peptides have been engineered and combined with immunosuppressive molecules. In addition, several routes of delivery have been tested, in particular, nanoparticles carrying self-antigens and immunomodulatory molecules. More recently, transfer of immune cells, such as tolerogenic dendritic cells or regulatory T cells, has been considered to restore tolerance. Although promising results have been obtained in mouse models, the translation to humans remains highly challenging, mainly because the disease is already well developed when treatments start and because patient's specific self-antigens are often unknown. Nevertheless, these approaches hold great promises for long-term RA treatment.
Collapse
Affiliation(s)
- Audrey Page
- CIRI - Centre international de recherche en infectiologie, Université de Lyon, Université Claude-Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46, allée d'Italie, 69007 Lyon, France
| | - Floriane Fusil
- CIRI - Centre international de recherche en infectiologie, Université de Lyon, Université Claude-Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46, allée d'Italie, 69007 Lyon, France
| | - François-Loïc Cosset
- CIRI - Centre international de recherche en infectiologie, Université de Lyon, Université Claude-Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46, allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
3
|
Castañeda-Lopez ME, Garza-Veloz I, Lopez-Hernandez Y, Barbosa-Cisneros OY, Martinez-Fierro ML. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested. Immunol Invest 2016; 45:450-70. [PMID: 27245510 DOI: 10.3109/08820139.2016.1168831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- M E Castañeda-Lopez
- a Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud de la Universidad Autonoma de Zacatecas , Zacatecas , Mexico.,b Centro de Innovacion Tecnologica e Industrial, Unidad Academica de Ingenieria Electrica , Universidad Autonoma de Zacatecas , Zacatecas , Mexico
| | - I Garza-Veloz
- a Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud de la Universidad Autonoma de Zacatecas , Zacatecas , Mexico.,b Centro de Innovacion Tecnologica e Industrial, Unidad Academica de Ingenieria Electrica , Universidad Autonoma de Zacatecas , Zacatecas , Mexico
| | - Y Lopez-Hernandez
- c CONACyT Research Fellow, Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud , Universidad Autonoma de Zacatecas , Mexico
| | - O Y Barbosa-Cisneros
- d Laboratory of Cell and Molecular Biology, Unidad Academica de Ciencias Quimicas de la Universidad Autonoma de Zacatecas , Zacatecas , Mexico
| | - M L Martinez-Fierro
- a Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud de la Universidad Autonoma de Zacatecas , Zacatecas , Mexico.,b Centro de Innovacion Tecnologica e Industrial, Unidad Academica de Ingenieria Electrica , Universidad Autonoma de Zacatecas , Zacatecas , Mexico
| |
Collapse
|
4
|
Herlihy SE, Brown ML, Pilling D, Weeks BR, Myers LK, Gomer RH. Role of the neutrophil chemorepellent soluble dipeptidyl peptidase IV in decreasing inflammation in a murine model of arthritis. Arthritis Rheumatol 2016; 67:2634-8. [PMID: 26138693 DOI: 10.1002/art.39250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 06/11/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To determine whether an intraarticular injection of the neutrophil chemorepellent dipeptidyl peptidase IV (DPPIV; CD26) can attenuate inflammation and decrease the severity of arthritis in a murine model. METHODS DBA/1 mice were immunized with type II collagen/Freund's complete adjuvant to produce collagen-induced arthritis (CIA). On day 25 postimmunization, recombinant human DPPIV (rhDPPIV) or phosphate buffered saline was injected intraarticularly, and arthritis severity scores were recorded 3 times per week. The hind legs of mice in both groups were fixed, decalcified, paraffin embedded, and sectioned. Pathologic scores for inflammation and neutrophil infiltration were recorded on a scale of 1-8, and the number of neutrophils was determined by morphometric cell counts. In addition, Mac-2-positive macrophages and articular damage were assessed using anti-Mac-2 antibodies and histologic staining, respectively. RESULTS Injection of rhDPPIV reduced the mean score of arthritis severity in mice with CIA. DPPIV treatment reduced the overall extent of inflammation and articular damage around the arthritic joint and periarticular tissue, and also decreased neutrophil and macrophage infiltration. CONCLUSION A localized injection of the neutrophil chemorepellent DPPIV reduces inflammation and the severity of the disease in a murine model of arthritis.
Collapse
Affiliation(s)
| | | | | | | | - Linda K Myers
- University of Tennessee Health Science Center, Memphis
| | | |
Collapse
|
5
|
Silencing of miR-101 Prevents Cartilage Degradation by Regulating Extracellular Matrix-related Genes in a Rat Model of Osteoarthritis. Mol Ther 2015; 23:1331-1340. [PMID: 25921548 PMCID: PMC4817865 DOI: 10.1038/mt.2015.61] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/24/2015] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a common, degenerative joint disease characterized by articular cartilage degradation. Currently, clinical trials based on microRNA therapy have been performed to treat various diseases. However, no treatment has been found for arthritis. This study investigated the functions of miR-101 in cartilage degradation in vivo and evaluated the feasibility of using miR-101 as a therapeutic agent for OA. Mono-iodoacetate-induced arthritis (MIA) rats were used as an animal model of OA. miR-101 mimic or miR-101 inhibitor was injected into the rats' knees to evaluate its effects on cartilage degradation. Cartilage degradation aggravated at 14 days after the injection of miR-101 mimic. By contrast, miR-101 silencing reduced cartilage degradation. Moreover, the administration of miR-101 mimic is sufficient to cause cartilage degradation in the normal cartilage of rats. By contrast, miR-101 inhibitor could prevent this change. Microarray and qPCR were used to investigate the different expressed genes after injecting miR-101 mimic and miR-101 inhibitor in the rats' articular cartilage. Several cartilage degradation-related genes were selected and validated to function in cartilage degradation with miR-101. Our results demonstrated the therapeutic effect of miR-101 inhibition on cartilage degradation in MIA rats by regulating several cartilage degradation-related genes.
Collapse
|
6
|
Yeremenko N, Härle P, Cantaert T, van Tok M, van Duivenvoorde LM, Bosserhoff A, Baeten D. The cartilage protein melanoma inhibitory activity contributes to inflammatory arthritis. Rheumatology (Oxford) 2013; 53:438-47. [PMID: 24287514 DOI: 10.1093/rheumatology/ket382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Melanoma inhibitory activity (MIA) is a small chondrocyte-specific protein with unknown function. MIA knockout mice (MIA(-/-)) have a normal phenotype with minor microarchitectural alterations of cartilage. Our previous study demonstrated that immunodominant epitopes of MIA are actively presented in an HLA-DR4-restricted manner in the inflamed RA joint. The objective of this study was to investigate the potential role of MIA as an autoantigen. METHODS Collagen-induced arthritis (CIA) and anti-collagen antibody-induced arthritis (CAIA) were induced in MIA(-/-) mice. Anti-type II collagen (anti-CII) antibodies were measured by ELISA. T cell proliferation and cytokine production were assessed by flow cytometry. RESULTS MIA(-/-) mice had a markedly reduced incidence and severity of CIA and CAIA compared with wild-type (WT) mice. Attenuation of disease was not related to defective binding of anti-CII antibodies to cartilage in the absence of MIA. However, MIA(-/-) mice had significantly reduced anti-CII IgG1 and IgG2a antibody levels accompanied by an increase in FoxP3-expressing CD25(+)CD4(+) regulatory T cells. This was paralleled by a significant reduction in CII-specific IFN-γ production by T cells in MIA(-/-) but not WT animals, suggesting a qualitative impact of MIA on the collagen-induced Th1 response. Furthermore, Ag-specific proliferation of T cells after restimulation with MIA in WT but not MIA(-/-) mice indicated the existence of MIA-specific T cells in the context of CIA. CONCLUSION These data support a role for MIA as an autoantigen during arthritis development. Whether MIA can influence the balance of pathogenic vs regulatory responses in human RA remains to be investigated.
Collapse
Affiliation(s)
- Nataliya Yeremenko
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
7
|
Antigen-specific gene therapy after immunisation reduces the severity of collagen-induced arthritis. Clin Dev Immunol 2013; 2013:345092. [PMID: 24371448 PMCID: PMC3858880 DOI: 10.1155/2013/345092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/25/2013] [Indexed: 12/02/2022]
Abstract
Reestablishment of tolerance induction in rheumatoid arthritis (RA) would be an optimal treatment with few, if any, side effects. However, to develop such a treatment further insights in the immunological mechanisms governing tolerance are needed. We have developed a model of antigen-specific tolerance in collagen type II (CII) induced arthritis (CIA) using lentivirus-based gene therapy. The immunodominant epitope of CII was inserted into a lentivirus vector to achieve expression on the MHC class II molecule and the lentiviral particles were subsequently intravenously injected at different time points during CIA. Injection of lentiviral particles in early phases of CIA, that is, at day 7 or day 26 after CII immunisation, partially prevented development of arthritis, decreased the serum levels of CII-specific IgG antibodies, and enhanced the suppressive function of CII-specific T regulatory cells. When lentiviral particles were injected during manifest arthritis, that is, at day 31 after CII immunisation, the severity of arthritis progression was ameliorated, the levels of CII-specific IgG antibodies decreased and the proportion of T regulatory cells increased. Thus, antigen-specific gene therapy is effective when administered throughout the inflammatory course of arthritis and offers a good model for investigation of the basic mechanisms during tolerance in CIA.
Collapse
|