1
|
Zhao X, Liu S, Yang Z, Li Y. Molecular mechanisms and genetic factors contributing to the developmental dysplasia of the hip. Front Genet 2024; 15:1413500. [PMID: 39156961 PMCID: PMC11327038 DOI: 10.3389/fgene.2024.1413500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
The most prevalent hip disease in neonates is developmental dysplasia of the hip (DDH). A timely and accurate diagnosis is required to provide the most effective treatment for pediatric patients with DDH. Heredity and gene variation have been the subject of increased attention and research worldwide as one of the factors contributing to the pathogenesis of DDH. Genome-wide association studies (GWAS), genome-wide linkage analyses (GWLA), and exome sequencing (ES) have identified variants in numerous genes and single-nucleotide polymorphisms (SNPs) as being associated with susceptibility to DDH in sporadic and DDH family patients. Furthermore, the DDH phenotype can be observed in animal models that exhibit susceptibility genes or loci, including variants in CX3CR1, KANSL1, and GDF5. The dentification of noncoding RNAs and de novo gene variants in patients with DDH-related syndrome has enhanced our understanding of the genes implicated in DDH. This article reviews the most recent molecular mechanisms and genetic factors that contribute to DDH.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Department of Pediatric Orthopaedics, Shenyang Orthopaedic Hospital, Shenyang, China
| | - Shuai Liu
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Gkiatas I, Boptsi A, Tserga D, Gelalis I, Kosmas D, Pakos E. Developmental dysplasia of the hip: a systematic literature review of the genes related with its occurrence. EFORT Open Rev 2019; 4:595-601. [PMID: 31754465 PMCID: PMC6836073 DOI: 10.1302/2058-5241.4.190006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Developmental dysplasia of the hip (DDH) is one of the most prevalent congenital malformations. It has a wide spectrum of anatomical abnormalities of the hip joint and is characterized by mild or incomplete formation of the acetabulum leading to laxity of the joint capsule, secondary deformity of the proximal femur and irreducible hip dislocation. It is the leading cause of early hip osteoarthritis in young individuals. Both genetic and environmental factors have been proposed to play an important role in the pathogenesis of DDH. A high prevalence is present in Asian, Caucasian, Mediterranean and American populations, with females being more frequently affected. We evaluated a variety of genetic studies indexed in the PubMed database. Several susceptive genes, including WISP3, PAPPA2, HOXB9, HOXD9, GDF5, TGF Beta 1, CX3CR1, UQCC, COL1A1, TbX4 and ASPN have been identified as being associated with the development of DDH. Moreover, genetic association has also been reported between hip dysplasia and other comorbidities. Even though genetic components are a crucial part in the aetiology of DDH, several DDH susceptibility genes need further investigation. The purpose of this review is to present current literature evidence regarding genes responsible for DDH development.
Cite this article: EFORT Open Rev 2019;4:595-601. DOI: 10.1302/2058-5241.4.190006
Collapse
Affiliation(s)
- Ioannis Gkiatas
- Orthopaedic Department, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Anastasia Boptsi
- Orthopaedic Department, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitra Tserga
- Orthopaedic Department, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Ioannis Gelalis
- Orthopaedic Department, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitrios Kosmas
- Orthopaedic Department, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Emilios Pakos
- Orthopaedic Department, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
3
|
Genome-wide analysis of DNA methylation profile identifies differentially methylated loci associated with human intervertebral disc degeneration. PLoS One 2019; 14:e0222188. [PMID: 31513634 PMCID: PMC6742346 DOI: 10.1371/journal.pone.0222188] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Environmental and endogenous factors under genetic predisposition are considered to initiate the human intervertebral disc (IVD) degeneration. DNA methylation is an essential mechanism to ensure cell-specific gene expression for normal development and tissue stability. Aberrant epigenetic alterations play a pivotal role in several diseases, including osteoarthritis. However, epigenetic alternations, including DNA methylation, in IVD degeneration have not been evaluated. The purpose of this study was to comprehensively compare the genome-wide DNA methylation profiles of human IVD tissues, specifically nucleus pulpous (NP) tissues, with early and advanced stages of disc degeneration. METHODS Human NP tissues were used in this study. The samples were divided into two groups: early stage degeneration (n = 8, Pfirrmann's MRI grade: I-III) and advanced stage degeneration (n = 8, grade: IV). Genomic DNA was processed for genome-wide DNA methylation profiling using the Infinium MethylationEPIC BeadChip array. Extraction of raw methylation data, clustering and scatter plot of each group values of each sample were performed using a methylation module in GenomeStudio software. The identification of differentially methylated loci (DMLs) and the Gene Ontology (GO) analysis were performed using R software with the ChAMP package. RESULTS Unsupervised hierarchical clustering revealed that early and advanced stage degenerated IVD samples segregated into two main clusters by their DNA methylome. A total of 220 DMLs were identified between early and advanced disc degeneration stages. Among these, four loci were hypomethylated and 216 loci were hypermethylated in the advanced disc degeneration stage. The GO enrichment analysis of genes containing DMLs identified two significant GO terms for biological processes, hemophilic cell adhesion and cell-cell adhesion. CONCLUSIONS We conducted a genome-wide DNA methylation profile comparative study and observed significant differences in DNA methylation profiles between early and advanced stages of human IVD degeneration. These results implicate DNA methylation in the process of human IVD degeneration.
Collapse
|
4
|
Zhu Y, Li S, Sun Y, Wu J, Xiong Z, Jin T, Jia H, Yang X. IL1R1 Polymorphisms are Associated with Lumbar Disc Herniation Risk in the Northwestern Chinese Han Population. Med Sci Monit 2019; 25:3728-3738. [PMID: 31104063 PMCID: PMC6540620 DOI: 10.12659/msm.913563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background The aim of this study was to assess the association of single-nucleotide polymorphisms (SNPs) in IL1R1 with the risk of lumbar disc herniation (LDH) in the Han population in northwest China. Material/Methods To estimate the association of IL1R1 polymorphisms with LDH risk, Agena MassARRAY was used to determine the genotypes of 498 LDH patients and 463 controls. The association between IL1R1 variants and LDH risk was examined by logistic regression analysis with adjustments for age and gender. Stratification analysis was observed between gender and age with polymorphisms of IL1R1. Haplotype construction and analysis in IL1R1 were also applied to detect the potential association. Results The mutant homozygous genotype in codominant model (AA versus GG, OR=2.37, 95% CI: 1.08–5.21, P=0.001) and in recessive model (AA versus GG/GA, OR=2.82, 95% CI: 1.30–6.12, P=0.005) of rs956730 were associated with an increased LDH risk in males, while rs956730 heterozygous genotype under codominant model (AG versus GG, OR=0.65, 95% CI: 0.46–0.92, P=0.001) was a protective genotype in males. In addition, the recessive model (CT/CC versus TT, OR=3.43, 95% CI: 1.11–10.57, P=0.020) of rs10490571 was associated with an increased LDH risk among people older than 50 years of age. Conclusions This study demonstrated that genetic variants in the IL1R1 genes were associated with LDH risk in the Han population of northwestern China.
Collapse
Affiliation(s)
- Yong Zhu
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Shunan Li
- The Hohhot First Hospital, Hohhot, Inner Mongolia, China (mainland)
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi, China (mainland)
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi, China (mainland)
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi, China (mainland)
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi, China (mainland)
| | - Haiyu Jia
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Xuejun Yang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| |
Collapse
|
5
|
Rustenburg CM, Emanuel KS, Peeters M, Lems WF, Vergroesen PA, Smit TH. Osteoarthritis and intervertebral disc degeneration: Quite different, quite similar. JOR Spine 2018; 1:e1033. [PMID: 31463450 PMCID: PMC6686805 DOI: 10.1002/jsp2.1033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration describes the vicious cycle of the deterioration of intervertebral discs and can eventually result in degenerative disc disease (DDD), which is accompanied by low-back pain, the musculoskeletal disorder with the largest socioeconomic impact world-wide. In more severe stages, intervertebral disc degeneration is accompanied by loss of joint space, subchondral sclerosis, and osteophytes, similar to osteoarthritis (OA) in the articular joint. Inspired by this resemblance, we investigated the analogy between human intervertebral discs and articular joints. Although embryonic origin and anatomy suggest substantial differences between the two types of joint, some features of cell physiology and extracellular matrix in the nucleus pulposus and articular cartilage share numerous parallels. Moreover, there are great similarities in the response to mechanical loading and the matrix-degrading factors involved in the cascade of degeneration in both tissues. This suggests that the local environment of the cell is more important to its behavior than embryonic origin. Nevertheless, OA is widely regarded as a true disease, while intervertebral disc degeneration is often regarded as a radiological finding and DDD is undervalued as a cause of chronic low-back pain by clinicians, patients and society. Emphasizing the similarities rather than the differences between the two diseases may create more awareness in the clinic, improve diagnostics in DDD, and provide cross-fertilization of clinicians and scientists involved in both intervertebral disc degeneration and OA.
Collapse
Affiliation(s)
- Christine M.E. Rustenburg
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Kaj S. Emanuel
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Mirte Peeters
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Willem F. Lems
- Department of RheumatologyAmsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Theodoor H. Smit
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Medical BiologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
6
|
Zhou X, Cheung CL, Karasugi T, Karppinen J, Samartzis D, Hsu YH, Mak TSH, Song YQ, Chiba K, Kawaguchi Y, Li Y, Chan D, Cheung KMC, Ikegawa S, Cheah KSE, Sham PC. Trans-Ethnic Polygenic Analysis Supports Genetic Overlaps of Lumbar Disc Degeneration With Height, Body Mass Index, and Bone Mineral Density. Front Genet 2018; 9:267. [PMID: 30127800 PMCID: PMC6088183 DOI: 10.3389/fgene.2018.00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023] Open
Abstract
Lumbar disc degeneration (LDD) is age-related break-down in the fibrocartilaginous joints between lumbar vertebrae. It is a major cause of low back pain and is conventionally assessed by magnetic resonance imaging (MRI). Like most other complex traits, LDD is likely polygenic and influenced by both genetic and environmental factors. However, genome-wide association studies (GWASs) of LDD have uncovered few susceptibility loci due to the limited sample size. Previous epidemiology studies of LDD also reported multiple heritable risk factors, including height, body mass index (BMI), bone mineral density (BMD), lipid levels, etc. Genetics can help elucidate causality between traits and suggest loci with pleiotropic effects. One such approach is polygenic score (PGS) which summarizes the effect of multiple variants by the summation of alleles weighted by estimated effects from GWAS. To investigate genetic overlaps of LDD and related heritable risk factors, we calculated the PGS of height, BMI, BMD and lipid levels in a Chinese population-based cohort with spine MRI examination and a Japanese case-control cohort of lumbar disc herniation (LDH) requiring surgery. Because most large-scale GWASs were done in European populations, PGS of corresponding traits were created using weights from European GWASs. We calibrated their prediction performance in independent Chinese samples, then tested associations with MRI-derived LDD scores and LDH affection status. The PGS of height, BMI, BMD and lipid levels were strongly associated with respective phenotypes in Chinese, but phenotype variances explained were lower than in Europeans which would reduce the power to detect genetic overlaps. Despite of this, the PGS of BMI and lumbar spine BMD were significantly associated with LDD scores; and the PGS of height was associated with the increased the liability of LDH. Furthermore, linkage disequilibrium score regression suggested that, osteoarthritis, another degenerative disorder that shares common features with LDD, also showed genetic correlations with height, BMI and BMD. The findings suggest a common key contribution of biomechanical stress to the pathogenesis of LDD and will direct the future search for pleiotropic genes.
Collapse
Affiliation(s)
- Xueya Zhou
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Systems Biology, Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Faculty of Medicine, Center for Genomic Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tatsuki Karasugi
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto City, Japan
| | - Jaro Karppinen
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife, Institute for Aging Research, Roslindale, MA, United States.,Harvard Medical School, Boston, MA, United States.,Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, United States
| | - Timothy Shin-Heng Mak
- Li Ka Shing Faculty of Medicine, Center for Genomic Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - You-Qiang Song
- Li Ka Shing Faculty of Medicine, Center for Genomic Sciences, The University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Faculty of Medicine, School of Biomedical Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoshiharu Kawaguchi
- Department of Orthopaedic Surgery, Toyama University, Toyama Prefecture, Japan
| | - Yan Li
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Danny Chan
- Li Ka Shing Faculty of Medicine, School of Biomedical Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kenneth Man-Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Kathryn Song-Eng Cheah
- Li Ka Shing Faculty of Medicine, School of Biomedical Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Faculty of Medicine, Center for Genomic Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
7
|
Kawaguchi Y. Genetic background of degenerative disc disease in the lumbar spine. Spine Surg Relat Res 2018; 2:98-112. [PMID: 31440655 PMCID: PMC6698496 DOI: 10.22603/ssrr.2017-0007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
This is a review paper on the topic of genetic background of degenerative disc diseases in the lumbar spine. Lumbar disc diseases (LDDs), such as lumbar disc degeneration and lumbar disc herniation, are the main cause of low back pain. There are a lot of studies that tried to identify the causes of LDDs. The causes have been categorized into environmental factors and genetic factors. Recent studies revealed that LDDs are mainly caused by genetic factors. Numerous studies have been carried out using the genetic approach for LDDs. The history of these studies is divided into three periods: (1) era of epidemiological research using familial background and twins, (2) era of genomic research using DNA polymorphisms to identify susceptible genes for LDDs, and (3) era of functional research to determine how the genes cause LDDs. This review article was undertaken to present the history of genetic approach to LDDs and to discuss the current issues and future perspectives.
Collapse
|
8
|
The Involvement of Protease Nexin-1 (PN1) in the Pathogenesis of Intervertebral Disc (IVD) Degeneration. Sci Rep 2016; 6:30563. [PMID: 27460424 PMCID: PMC4962060 DOI: 10.1038/srep30563] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
Protease nexin-1 (PN-1) is a serine protease inhibitor belonging to the serpin superfamily. This study was undertaken to investigate the regulatory role of PN-1 in the pathogenesis of intervertebral disk (IVD) degeneration. Expression of PN-1 was detected in human IVD tissue of varying grades. Expression of both PN-1 mRNA and protein was significantly decreased in degenerated IVD, and the expression levels of PN-1 were correlated with the grade of disc degeneration. Moreover, a decrease in PN-1 expression in primary NP cells was confirmed. On induction by IL-1β, the expression of PN-1 in NP cells was decreased at day 7, 14, and 21, as shown by western blot analysis and immunofluorescence staining. PN-1 administration decreased IL-1β-induced MMPs and ADAMTS production and the loss of Agg and Col II in NP cell cultures through the ERK1/2/NF-kB signaling pathway. The changes in PN-1 expression are involved in the pathogenesis of IVD degeneration. Our findings indicate that PN-1 administration could antagonize IL-1β-induced MMPs and ADAMTS, potentially preventing degeneration of IVD tissue. This study also revealed new insights into the regulation of PN-1 expression via the ERK1/2/NF-kB signaling pathway and the role of PN-1 in the pathogenesis of IVD degeneration.
Collapse
|
9
|
Akeda K, Yamada T, Inoue N, Nishimura A, Sudo A. Risk factors for lumbar intervertebral disc height narrowing: a population-based longitudinal study in the elderly. BMC Musculoskelet Disord 2015; 16:344. [PMID: 26552449 PMCID: PMC4640385 DOI: 10.1186/s12891-015-0798-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 10/31/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The progression of disc degeneration is generally believed to be associated with low back pain and/or degenerative lumbar diseases, especially in the elderly. The purpose of this study was to quantitatively evaluate changes in lumbar disc height using radiographic measurements and to investigate risk factors for development of disc height narrowing of the elderly. METHODS From 1997 to 2007, 197 village inhabitants at least 65 years-old who participated in baseline examinations and more than four follow-up examinations conducted every second year were chosen as subjects for this study. Using lateral lumbar spine radiographs of each subject, L1-L2 to L5-S1 disc heights were measured. The subjects were divided into two groups according to the rate of change in disc height: mildly decreased (≤20 % decrease) and severely decreased (>20 % decrease). A stepwise multiple logistic regression analysis was used to select those factors significantly associated with disc height narrowing. RESULTS Disc height at each intervertebral disc (IVD) level decreased gradually over ten years (p < 0.01, an average 5.8 % decrease of all disc levels). There was no significant difference in the rate of change in disc height among the IVD levels. Female gender, radiographic knee osteoarthritis and low back pain at baseline were associated with increased risk for disc height narrowing. CONCLUSIONS We conducted the first population-based cohort study of the elderly that quantitatively evaluated lumbar disc height using radiographic measurements. The risk factors identified in this study would contribute to a further understanding the pathology of disc degeneration.
Collapse
Affiliation(s)
- Koji Akeda
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan.
| | - Tomomi Yamada
- Department of Clinical Epidemiology and Biostatistics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| | - Nozomu Inoue
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 West Harrison Street, Orthopedic Building 205 J, Chicago, 60612, Illinois, USA.
| | - Akinobu Nishimura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan.
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan.
| |
Collapse
|
10
|
Leung VY, Aladin DM, Lv F, Tam V, Sun Y, Lau RY, Hung SC, Ngan AH, Tang B, Lim CT, Wu EX, Luk KD, Lu WW, Masuda K, Chan D, Cheung KM. Mesenchymal Stem Cells Reduce Intervertebral Disc Fibrosis and Facilitate Repair. Stem Cells 2014; 32:2164-77. [DOI: 10.1002/stem.1717] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/01/2014] [Accepted: 03/20/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Victor Y.L. Leung
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
- Department of Biochemistry; The University of Hong Kong; Hong Kong SAR People's Republic of China
- Centre for Reproduction, Development, and Growth; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Darwesh M.K. Aladin
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
- Mechanobiology Institute; National University of Singapore; Singapore
| | - Fengjuan Lv
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Vivian Tam
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Yi Sun
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Roy Y.C. Lau
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Siu-Chun Hung
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Alfonso H.W. Ngan
- Department of Mechanical Engineering; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Bin Tang
- Department of Micro-nano Materials and Devices; South University of Science and Technology of China; Guangzhou People's Republic of China
| | - Chwee Teck Lim
- Mechanobiology Institute; National University of Singapore; Singapore
- Department of Bioengineering; National University of Singapore; Singapore
- Department of Mechanical Engineering; National University of Singapore; Singapore
| | - Ed X. Wu
- Department of Electrical & Electronic Engineering; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Keith D.K. Luk
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - William W. Lu
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Koichi Masuda
- Department of Orthopaedic Surgery; University of California; San Diego California USA
| | - Danny Chan
- Department of Biochemistry; The University of Hong Kong; Hong Kong SAR People's Republic of China
- Centre for Reproduction, Development, and Growth; The University of Hong Kong; Hong Kong SAR People's Republic of China
| | - Kenneth M.C. Cheung
- Department of Orthopaedics & Traumatology; The University of Hong Kong; Hong Kong SAR People's Republic of China
- Centre for Reproduction, Development, and Growth; The University of Hong Kong; Hong Kong SAR People's Republic of China
| |
Collapse
|
11
|
Houari S, Wurtz T, Ferbus D, Chateau D, Dessombz A, Berdal A, Babajko S. Asporin and the mineralization process in fluoride-treated rats. J Bone Miner Res 2014; 29:1446-55. [PMID: 24967458 DOI: 10.1002/jbmr.2153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microarray analysis of odontoblastic cells treated with sodium fluoride has identified the asporin gene as a fluoride target. Asporin is a member of the small leucine-rich repeat proteoglycan/protein (SLRP) family that is believed to be important in the mineralization process. In this study, asporin expression and distribution were investigated by systematic analysis of dentin and enamel, with and without fluoride treatment. Specific attention was focused on a major difference between the two mineralized tissues: the presence of a collagenous scaffold in dentin, and its absence in enamel. Normal and fluorotic, continually growing incisors from Wistar rats treated with 2.5 to 7.5 mM sodium fluoride (NaF) were studied by immunochemistry, in situ hybridization, Western blotting, and RT-qPCR. Asporin was continuously expressed in odontoblasts throughout dentin formation as expected. Asporin was also found, for the first time, in dental epithelial cells, particularly in maturation-stage ameloblasts. NaF decreased asporin expression in odontoblasts and enhanced it in ameloblasts, both in vivo and in vitro. The inverse response in the two cell types suggests that the effector, fluoride, is a trigger that elicits a cell-type-specific reaction. Confocal and ultrastructural immunohistochemistry evidenced an association between asporin and type 1 collagen in the pericellular nonmineralized compartments of both bone and dentin. In addition, transmission electron microscopy revealed asporin in the microenvironment of all cells observed. Thus, asporin is produced by collagen-matrix-forming and non-collagen-matrix-forming cells but may have different effects on the mineralization process. A model is proposed that predicts impaired mineral formation associated with the deficiency and excess of asporin.
Collapse
Affiliation(s)
- Sophia Houari
- Centre de Recherche des Cordeliers; French National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche en Santé (UMRS) 1138, Laboratory of Molecular Oral Pathophysiology; Paris France
- Université Paris-Descartes; Paris France
- Université Pierre et Marie Curie-Paris; Paris France
- Université Paris-Diderot, Unité Fédérative de Recherche (UFR) d'Odontologie; Paris France
| | - Tilmann Wurtz
- Centre de Recherche des Cordeliers; French National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche en Santé (UMRS) 1138, Laboratory of Molecular Oral Pathophysiology; Paris France
- Université Paris-Descartes; Paris France
- Université Pierre et Marie Curie-Paris; Paris France
- Université Paris-Diderot, Unité Fédérative de Recherche (UFR) d'Odontologie; Paris France
| | - Didier Ferbus
- Centre de Recherche des Cordeliers; French National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche en Santé (UMRS) 1138, Laboratory of Molecular Oral Pathophysiology; Paris France
- Université Paris-Descartes; Paris France
- Université Pierre et Marie Curie-Paris; Paris France
- Université Paris-Diderot, Unité Fédérative de Recherche (UFR) d'Odontologie; Paris France
| | - Danielle Chateau
- Centre de Recherche des Cordeliers; French National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche en Santé (UMRS) 1138, Laboratory of Molecular Oral Pathophysiology; Paris France
- Université Paris-Descartes; Paris France
- Université Pierre et Marie Curie-Paris; Paris France
- Centre de Recherche des Cordeliers; INSERM UMRS 1138 Intestine: nutrition, barrier and diseases; Paris France
| | - Arnaud Dessombz
- Centre de Recherche des Cordeliers; French National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche en Santé (UMRS) 1138, Laboratory of Molecular Oral Pathophysiology; Paris France
- Université Paris-Descartes; Paris France
- Université Pierre et Marie Curie-Paris; Paris France
- Université Paris-Diderot, Unité Fédérative de Recherche (UFR) d'Odontologie; Paris France
| | - Ariane Berdal
- Centre de Recherche des Cordeliers; French National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche en Santé (UMRS) 1138, Laboratory of Molecular Oral Pathophysiology; Paris France
- Université Paris-Descartes; Paris France
- Université Pierre et Marie Curie-Paris; Paris France
- Université Paris-Diderot, Unité Fédérative de Recherche (UFR) d'Odontologie; Paris France
- Hôpital Rothschild; Paris France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers; French National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche en Santé (UMRS) 1138, Laboratory of Molecular Oral Pathophysiology; Paris France
- Université Paris-Descartes; Paris France
- Université Pierre et Marie Curie-Paris; Paris France
- Université Paris-Diderot, Unité Fédérative de Recherche (UFR) d'Odontologie; Paris France
| |
Collapse
|
12
|
Ikegawa S. The Genetics of Common Degenerative Skeletal Disorders: Osteoarthritis and Degenerative Disc Disease. Annu Rev Genomics Hum Genet 2013; 14:245-56. [DOI: 10.1146/annurev-genom-091212-153427] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Genomic Medicine, RIKEN, Tokyo 108-8639, Japan;
| |
Collapse
|
13
|
Abstract
Osteoarthritis (OA) has a considerable hereditary component and is considered to be a polygenic disease. Data derived from genetic analyses and genome-wide screening of individuals with this disease have revealed a surprising trend: genes associated with OA tend to be related to the process of synovial joint development. Mutations in these genes might directly cause OA. In addition, they could also determine the age at which OA becomes apparent, the joint sites involved, the severity of the disease and how rapidly it progresses. In this Review, I propose that genetic mutations associated with OA can be placed on a continuum. Early-onset OA is caused by mutations in matrix molecules often associated with chondrodysplasias, whereas less destructive structural abnormalities or mutations confer increased susceptibility to injury or malalignment that can result in middle-age onset. Finally, mutations in molecules that regulate subtle aspects of joint development and structure lead to late-onset OA. In this Review, I discuss the genetics of OA in general, but focus on the potential effect of genetic mutations associated with OA on joint structure, the role of joint structure in the development of OA--using hip abnormalities as a model--and how understanding the etiology of the disease could influence treatment.
Collapse
|
14
|
Leung VYL, Tam V, Chan D, Chan BP, Cheung KMC. Tissue engineering for intervertebral disk degeneration. Orthop Clin North Am 2011; 42:575-83, ix. [PMID: 21944593 DOI: 10.1016/j.ocl.2011.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many challenges confront intervertebral disk engineering owing to complexity and the presence of extraordinary stresses. Rebuilding a disk of native function could be useful for removal of the symptoms and correction of altered spine kinematics. Improvement in understanding of disk properties and techniques for disk engineering brings promise to the fabrication of a functional motion segment for the treatment of disk degeneration. Increasing sophistication of techniques available in biomedical sciences will bring its application into clinics. This review provides an account of current progress and challenges of intervertebral disk bioengineering and discusses means to move forward and toward bedside translation.
Collapse
Affiliation(s)
- Victor Y L Leung
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|