1
|
Vaiciuleviciute R, Uzieliene I, Bernotas P, Novickij V, Alaburda A, Bernotiene E. Electrical Stimulation in Cartilage Tissue Engineering. Bioengineering (Basel) 2023; 10:bioengineering10040454. [PMID: 37106641 PMCID: PMC10135934 DOI: 10.3390/bioengineering10040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Electrical stimulation (ES) has been frequently used in different biomedical applications both in vitro and in vivo. Numerous studies have demonstrated positive effects of ES on cellular functions, including metabolism, proliferation, and differentiation. The application of ES to cartilage tissue for increasing extracellular matrix formation is of interest, as cartilage is not able to restore its lesions owing to its avascular nature and lack of cells. Various ES approaches have been used to stimulate chondrogenic differentiation in chondrocytes and stem cells; however, there is a huge gap in systematizing ES protocols used for chondrogenic differentiation of cells. This review focuses on the application of ES for chondrocyte and mesenchymal stem cell chondrogenesis for cartilage tissue regeneration. The effects of different types of ES on cellular functions and chondrogenic differentiation are reviewed, systematically providing ES protocols and their advantageous effects. Moreover, cartilage 3D modeling using cells in scaffolds/hydrogels under ES are observed, and recommendations on reporting about the use of ES in different studies are provided to ensure adequate consolidation of knowledge in the area of ES. This review brings novel insights into the further application of ES in in vitro studies, which are promising for further cartilage repair techniques.
Collapse
Affiliation(s)
- Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
| | - Paulius Bernotas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
| | - Vitalij Novickij
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, 08410 Vilnius, Lithuania
- Faculty of Electronics, High Magnetic Field Institute, Vilnius Gediminas Technical University, Plytines g. 27, 10105 Vilnius, Lithuania
| | - Aidas Alaburda
- Life Sciences Center, Institute of Biosciences, Vilnius University, Sauletekio al. 7, 10257 Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
- VilniusTech, Faculty of Fundamental Sciences, Sauletekio al. 11, 10223 Vilnius, Lithuania
| |
Collapse
|
2
|
Zhang H, Chen C, Song J. microRNA-4701-5p protects against interleukin-1β induced human chondrocyte CHON-001 cells injury via modulating HMGA1. J Orthop Surg Res 2022; 17:246. [PMID: 35459188 PMCID: PMC9034483 DOI: 10.1186/s13018-022-03083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background miRNA-4701-5p has been reported to be a vital regulator in many diseases, including rheumatoid arthritis, and miRNA-4701-5p is evidenced to be participated in synovial invasion and joint destruction. In our report, we investigated the roles of miRNA-4701-5p in osteoarthritis (OA) and analyzed the molecular mechanism. Methods Interleukin-1β (IL-1β) was applied for stimulating human chondrocyte CHON-001 cells to establish an OA injury model. mRNA levels and protein expression were measured using qRT-PCR and western blot assay, respectively. The proliferation ability and cytotoxicity of CHON-001 cells were checked using MTT assay and lactate dehydrogenase activity. The inflammation of chondrocytes was accessed by the secretion levels of interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor (TNF)-α. The apoptosis of chondrocytes was determined by flow cytometry assay. Bioinformatics software Starbase v2.0 analyzed the functional binding sites between miRNA-4701-5p and HMGA1 and the interaction was further confirmed using dual luciferase reporter analysis. Results: miRNA-4701-5p was down-regulated in the IL-1β-stimulated chondrocytes and HMGA1 directly targeted miRNA-4701-5p. Up-regulation of miRNA-4701-5p could alleviate IL-1β-treated CHON-001 cells inflammation and apoptosis, and reversed the cell proliferation decrease and cytotoxicity increase after IL-1β treatment. Nevertheless, all the roles of miRNA-4701-5p overexpression in CHON-001 cells could be reversed by HMGA1 up-regulation. Conclusions miRNA-4701-5p could alleviate the inflammatory injury of IL-1β-treated CHON-001 cells via down-regulating HMGA1, indicating that miRNA-4701-5p/HMGA1 is a promising therapeutic target for OA.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Orthopedics, Huangshi Central Hospital, Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, China
| | - Cheng Chen
- Department of Geriatrics, Huangshi Central Hospital, Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435000, China.
| | - Jie Song
- Department of Geriatrics, Huangshi Central Hospital, Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435000, China
| |
Collapse
|
3
|
Maqbool M, Fekadu G, Jiang X, Bekele F, Tolossa T, Turi E, Fetensa G, Fanta K. An up to date on clinical prospects and management of osteoarthritis. Ann Med Surg (Lond) 2021; 72:103077. [PMID: 34868573 PMCID: PMC8626656 DOI: 10.1016/j.amsu.2021.103077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
The rising prevalence of osteoarthritis (OA) in the general population has necessitated the development of novel treatment options. It is critical to recognize the joint as a separate entity participating in degenerative processes, as well as the multifaceted nature of OA. OA is incurable because there is currently no medication that can stop or reverse cartilage or bone loss. As this point of view has attracted attention, more research is being directed toward determining how the various joint components are impacted and how they contribute to OA pathogenesis. Over the next few years, several prospective therapies focusing on inflammation, cartilage metabolism, subchondral bone remodelling, cellular senescence, and the peripheral nociceptive pathway are predicted to transform the OA therapy landscape. Stem cell therapies and the use of various biomaterials to target articular cartilage (AC) and osteochondral tissues are now being investigated in considerable detail. Currently, laboratory-made cartilage tissues are on the verge of being used in clinical settings. This review focuses on the update of clinical prospects and management of osteoarthritis, as well as future possibilities for the treatment of OA. Osteoarthritis (OA) is a general term that incorporates several different joint diseases. The exact pathophysiology of OA remains unclear. OA is incurable because there is currently no medication that can stop or reverse cartilage or bone loss. Nonsteroidal anti-inflammatory drugs are the most frequently prescribed medications to alleviate arthritic discomfort. Stem cell therapies to target articular cartilage and osteochondral tissues are now under investigation.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal Srinagar, 190006, Jammu and Kashmir, India
| | - Ginenus Fekadu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong.,School of Pharmacy, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Xinchan Jiang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong
| | - Firomsa Bekele
- Department of Pharmacy, College of Health Science, Mettu University, Mettu, Ethiopia
| | - Tadesse Tolossa
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Ebisa Turi
- Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Getahun Fetensa
- School of Nursing and Midwifery, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Korinan Fanta
- School of Pharmacy, Institute of Health Science, Jimma University, Jimma, Ethiopia
| |
Collapse
|
4
|
Zhou Z, Yao B, Zhao D. Runx3 regulates chondrocyte phenotype by controlling multiple genes involved in chondrocyte proliferation and differentiation. Mol Biol Rep 2020; 47:5773-5792. [PMID: 32661874 DOI: 10.1007/s11033-020-05646-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
Chondrocytes are the sole cell type present within cartilage, and play pivotal roles in controlling the formation and composition of health cartilage. Chondrocytes maintain cartilage homeostasis through proliferating, differentiating and synthesizing different types of extracellular matrices. Thus, the coordinated proliferation and differentiation of chondrocytes are essential for cartilage growth, repair and the conversion from cartilage to bone during the processes of bone formation and fracture healing. Runx3, a transcription factor that belongs to the Runx family, is significantly upregulated at the onset of cartilage mineralization and regulates both early and late markers of chondrocyte maturation. Therefore, Runx3 may serve as an accelerator of chondrocyte differentiation and maturation. However, the underlying molecular mechanism of Runx3 in regulating chondrocyte proliferation and differentiation remains largely to be elucidated. In the present study, we used state-of-the-art RNA-seq technology combined with validation methods to investigate the effect of Runx3 overexpression or silencing on primary chondrocyte proliferation and differentiation, and demonstrated that Runx3 overexpression possibly inhibited chondrocyte proliferation but accelerated differentiation, whereas Runx3 silencing possibly promoted chondrocyte proliferation but suppressed differentiation. Furthermore, Runx3 overexpression possibly decreased the expression levels of Sox9 and its downstream genes via Sox9 cartilage-specific enhancers, and vice versa for Runx3 silencing.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
5
|
HMGA Genes and Proteins in Development and Evolution. Int J Mol Sci 2020; 21:ijms21020654. [PMID: 31963852 PMCID: PMC7013770 DOI: 10.3390/ijms21020654] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
HMGA (high mobility group A) (HMGA1 and HMGA2) are small non-histone proteins that can bind DNA and modify chromatin state, thus modulating the accessibility of regulatory factors to the DNA and contributing to the overall panorama of gene expression tuning. In general, they are abundantly expressed during embryogenesis, but are downregulated in the adult differentiated tissues. In the present review, we summarize some aspects of their role during development, also dealing with relevant studies that have shed light on their functioning in cell biology and with emerging possible involvement of HMGA1 and HMGA2 in evolutionary biology.
Collapse
|
6
|
Chiefari E, Foti DP, Sgarra R, Pegoraro S, Arcidiacono B, Brunetti FS, Greco M, Manfioletti G, Brunetti A. Transcriptional Regulation of Glucose Metabolism: The Emerging Role of the HMGA1 Chromatin Factor. Front Endocrinol (Lausanne) 2018; 9:357. [PMID: 30034366 PMCID: PMC6043803 DOI: 10.3389/fendo.2018.00357] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
HMGA1 (high mobility group A1) is a nonhistone architectural chromosomal protein that functions mainly as a dynamic regulator of chromatin structure and gene transcription. As such, HMGA1 is involved in a variety of fundamental cellular processes, including gene expression, epigenetic regulation, cell differentiation and proliferation, as well as DNA repair. In the last years, many reports have demonstrated a role of HMGA1 in the transcriptional regulation of several genes implicated in glucose homeostasis. Initially, it was proved that HMGA1 is essential for normal expression of the insulin receptor (INSR), a critical link in insulin action and glucose homeostasis. Later, it was demonstrated that HMGA1 is also a downstream nuclear target of the INSR signaling pathway, representing a novel mediator of insulin action and function at this level. Moreover, other observations have indicated the role of HMGA1 as a positive modulator of the Forkhead box protein O1 (FoxO1), a master regulatory factor for gluconeogenesis and glycogenolysis, as well as a positive regulator of the expression of insulin and of a series of circulating proteins that are involved in glucose counterregulation, such as the insulin growth factor binding protein 1 (IGFBP1), and the retinol binding protein 4 (RBP4). Thus, several lines of evidence underscore the importance of HMGA1 in the regulation of glucose production and disposal. Consistently, lack of HMGA1 causes insulin resistance and diabetes in humans and mice, while variations in the HMGA1 gene are associated with the risk of type 2 diabetes and metabolic syndrome, two highly prevalent diseases that share insulin resistance as a common pathogenetic mechanism. This review intends to give an overview about our current knowledge on the role of HMGA1 in glucose metabolism. Although research in this field is ongoing, many aspects still remain elusive. Future directions to improve our insights into the pathophysiology of glucose homeostasis may include epigenetic studies and the use of "omics" strategies. We believe that a more comprehensive understanding of HMGA1 and its networks may reveal interesting molecular links between glucose metabolism and other biological processes, such as cell proliferation and differentiation.
Collapse
Affiliation(s)
- Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Daniela P. Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Manfredi Greco
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | | | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti
| |
Collapse
|
7
|
Schwarz S, Mrosewski I, Silawal S, Schulze-Tanzil G. The interrelation of osteoarthritis and diabetes mellitus: considering the potential role of interleukin-10 and in vitro models for further analysis. Inflamm Res 2017; 67:285-300. [PMID: 29196771 DOI: 10.1007/s00011-017-1121-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 11/12/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Today, not only the existence of an interrelation between obesity/adipositas and osteoarthritis (OA) but also the association of OA and diabetes mellitus (DM) are widely recognized. Nevertheless, shared influence factors facilitating OA development in DM patients still remain speculative up until now. To supplement the analysis of clinical data, appropriate in vitro models could help to identify shared pathogenetic pathways. Informative in vitro studies could later be complemented by in vivo data obtained from suitable animal models. MATERIALS AND METHODS Therefore, this detailed review of available literature was undertaken to discuss and compare the results of currently published in vitro studies focusing on the interrelation between OA, the metabolic syndrome and DM and to propose models to further study the molecular pathways. RESULTS The survey of literature presented here supports the hypothesis that the pathogenesis of OA in DM is based on imbalanced molecular pathways with a putative crucial role of antiinflammatory cytokines such as IL-10. CONCLUSION Future development of versatile micro-scaled in vitro models such as combining DM and OA on chip could allow the identification of common pathogenetic pathways and might help to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Silke Schwarz
- Department of Anatomy, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.,Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Ingo Mrosewski
- MVZ Limbach Laboratories, Aroser Allee 84, 13407, Berlin, Germany
| | - Sandeep Silawal
- Department of Anatomy, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.,Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Gundula Schulze-Tanzil
- Department of Anatomy, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany. .,Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
8
|
Li B, Bai L, Shen P, Sun Y, Chen Z, Wen Y. Identification of differentially expressed microRNAs in knee anterior cruciate ligament tissues surgically removed from patients with osteoarthritis. Int J Mol Med 2017; 40:1105-1113. [PMID: 28765881 PMCID: PMC5593459 DOI: 10.3892/ijmm.2017.3086] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 07/17/2017] [Indexed: 01/12/2023] Open
Abstract
The degradation of cruciate ligaments is frequently observed in degenerative joint diseases, such as osteoarthritis (OA). The present study aimed to identify the differentially expressed microRNAs (miRNAs or miRs) in knee anterior cruciate ligament (ACL) tissues derived from patients with OA and in health subjects (non-OA). By using Affymetrix miRNA 4.0 microarrays, a total of 22 miRNAs (including let-7f-5p, miR-26b-5p and miR-146a-5p) were found to be upregulated, while 17 (including miR-18a-3p, miR-138-5p and miR-485-3p) were downregulated in the osteoarthritic ACL tissues (fold change ≥2, P-value <0.05). The expression levels of 12 miRNAs were validated by quantitative PCR, and the corresponding results revealed an excellent correlation with the microarray data (R2=0.889). Genes (such as a disintegrin and metalloproteinase domain with thrombospondin type-1 motifs, bone morphogenetic protein-2, runt related transcription factor-2, collagen-1A1 and 2, interleukin-6 and transforming growth factor-β) involved in cartilage development and remodeling, collagen biosynthesis and degradation, inflammatory response and extracellular matrix homeostasis were predicted as potential targets of the dysregulated miRNAs. Moreover, a large set of putative genes were enriched in OA pathogenesis-associated pathways (such as mitogen-activated protein kinase and vascular endothelial growth factor signaling pathway). Collectively, the data from our study provides novel insight into the ligament injury-related miRNA dysregulation in patients with OA.
Collapse
Affiliation(s)
- Bin Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lunhao Bai
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Peng Shen
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yue Sun
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhizuo Chen
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yu Wen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
9
|
Li T, Liu H, Li X. Chemical Synthesis of HMGA1a Proteins with Post-translational Modifications via Ser/Thr Ligation. Org Lett 2016; 18:5944-5947. [DOI: 10.1021/acs.orglett.6b03056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tianlu Li
- Department of Chemistry,
State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Heng Liu
- Department of Chemistry,
State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xuechen Li
- Department of Chemistry,
State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
10
|
Taipale M, Jakkula E, Kämäräinen OP, Gao P, Skarp S, Barral S, Kiviranta I, Kröger H, Ott J, Wei GH, Ala-Kokko L, Männikkö M. Targeted re-sequencing of linkage region on 2q21 identifies a novel functional variant for hip and knee osteoarthritis. Osteoarthritis Cartilage 2016; 24:655-63. [PMID: 26603474 DOI: 10.1016/j.joca.2015.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/24/2015] [Accepted: 10/21/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of the study was to identify genetic variants predisposing to primary hip and knee osteoarthritis (OA) in a sample of Finnish families. METHODS Genome wide analysis was performed using 15 independent families (279 individuals) originating from Central Finland identified as having multiple individuals with primary hip and/or knee OA. Targeted re-sequencing was performed for three samples from one 33-member, four-generation family contributing most significantly to the LOD score. In addition, exome sequencing was performed in three family members from the same family. RESULTS Genome wide linkage analysis identified a susceptibility locus on chromosome 2q21 with a multipoint LOD score of 3.91. Targeted re-sequencing and subsequent linkage analysis revealed a susceptibility insertion variant rs11446594. It locates in a predicted strong enhancer element region with maximum LOD score 3.42 under dominant model of inheritance. Insertion creates a recognition sequence for ELF3 and HMGA1 transcription factors. Their DNA-binding affinity is highly increased in the presence of A-allele compared to wild type null allele. CONCLUSION A potentially novel functional OA susceptibility variant was identified by targeted re-sequencing. This variant locates in a predicted regulatory site and creates a recognition sequence for ELF3 and HMGA1 transcription factors that are predicted to play a significant role in articular cartilage homeostasis.
Collapse
Affiliation(s)
- M Taipale
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Center for Life Course Epidemiology and Systems Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - E Jakkula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - O-P Kämäräinen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - P Gao
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - S Skarp
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Center for Life Course Epidemiology and Systems Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - S Barral
- Gertrude H. Sergievsky Center, College for Physicians and Surgeons, Columbia University, New York, USA
| | - I Kiviranta
- Department of Orthopaedics and Traumatology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - H Kröger
- Department of Orthopaedics and Traumatology, Kuopio University Hospital, Kuopio, Finland; Bone and Cartilage Research Unit, University of Eastern Finland, Kuopio, Finland
| | - J Ott
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - G-H Wei
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - L Ala-Kokko
- Connective Tissue Gene Tests, Allentown, PA, USA
| | - M Männikkö
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Center for Life Course Epidemiology and Systems Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
11
|
Evans DS, Cailotto F, Parimi N, Valdes AM, Castaño-Betancourt MC, Liu Y, Kaplan RC, Bidlingmaier M, Vasan RS, Teumer A, Tranah GJ, Nevitt MC, Cummings SR, Orwoll ES, Barrett-Connor E, Renner JB, Jordan JM, Doherty M, Doherty SA, Uitterlinden AG, van Meurs JBJ, Spector TD, Lories RJ, Lane NE. Genome-wide association and functional studies identify a role for IGFBP3 in hip osteoarthritis. Ann Rheum Dis 2014; 74:1861-7. [PMID: 24928840 DOI: 10.1136/annrheumdis-2013-205020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/22/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To identify genetic associations with hip osteoarthritis (HOA), we performed a meta-analysis of genome-wide association studies (GWAS) of HOA. METHODS The GWAS meta-analysis included approximately 2.5 million imputed HapMap single nucleotide polymorphisms (SNPs). HOA cases and controls defined radiographically and by total hip replacement were selected from the Osteoporotic Fractures in Men (MrOS) Study and the Study of Osteoporotic Fractures (SOF) (654 cases and 4697 controls, combined). Replication of genome-wide significant SNP associations (p ≤5×10(-8)) was examined in five studies (3243 cases and 6891 controls, combined). Functional studies were performed using in vitro models of chondrogenesis and osteogenesis. RESULTS The A allele of rs788748, located 65 kb upstream of the IGFBP3 gene, was associated with lower HOA odds at the genome-wide significance level in the discovery stage (OR 0.71, p=2×10(-8)). The association replicated in five studies (OR 0.92, p=0.020), but the joint analysis of discovery and replication results was not genome-wide significant (p=1×10(-6)). In separate study populations, the rs788748 A allele was also associated with lower circulating IGFBP3 protein levels (p=4×10(-13)), suggesting that this SNP or a variant in linkage disequilibrium could be an IGFBP3 regulatory variant. Results from functional studies were consistent with association results. Chondrocyte hypertrophy, a deleterious event in OA pathogenesis, was largely prevented upon IGFBP3 knockdown in chondrocytes. Furthermore, IGFBP3 overexpression induced cartilage catabolism and osteogenic differentiation. CONCLUSIONS Results from GWAS and functional studies provided suggestive links between IGFBP3 and HOA.
Collapse
Affiliation(s)
- Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Frederic Cailotto
- Laboratory of Tissue Homeostasis and Disease, Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Ana M Valdes
- Department of Academic Rheumatology, University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Martha C Castaño-Betancourt
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands The Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Rotterdam/Leiden, The Netherlands
| | - Youfang Liu
- Departments of Medicine and Orthopedics, Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ramachandran S Vasan
- California Pacific Medical Center Research Institute, San Francisco, California, USA Laboratory of Tissue Homeostasis and Disease, Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium Department of Academic Rheumatology, University of Nottingham, Nottingham City Hospital, Nottingham, UK Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands The Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Rotterdam/Leiden, The Netherlands Departments of Medicine and Orthopedics, Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Albert Einstein College of Medicine, Bronx, New York, USA Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, Massachusetts, USA Institute of Functional Genomics, Ernst Moritz Arndt University, University of Greifswald, Greifswald, Germany Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA School of Medicine, Oregon Health & Science University, Portland, Oregon, USA Division of Epidemiology, Departments of Family and Preventive Medicine and Medicine, University of California San Diego, La Jolla, California, USA Departments of Medicine and Radiology, Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands Department of Twin Research and Genetic Epidemiology Unit, King's College London, London, UK Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium University of California at Davis, Sacramento, California, USA
| | - Alexander Teumer
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, Massachusetts, USA Institute of Functional Genomics, Ernst Moritz Arndt University, University of Greifswald, Greifswald, Germany
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, California, USA Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Michael C Nevitt
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Eric S Orwoll
- School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elizabeth Barrett-Connor
- Division of Epidemiology, Departments of Family and Preventive Medicine and Medicine, University of California San Diego, La Jolla, California, USA
| | - Jordan B Renner
- Departments of Medicine and Radiology, Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joanne M Jordan
- Departments of Medicine and Orthopedics, Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael Doherty
- Department of Academic Rheumatology, University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Sally A Doherty
- Department of Academic Rheumatology, University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands The Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Rotterdam/Leiden, The Netherlands Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology Unit, King's College London, London, UK
| | - Rik J Lories
- Laboratory of Tissue Homeostasis and Disease, Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Nancy E Lane
- University of California at Davis, Sacramento, California, USA
| |
Collapse
|
12
|
Expression profiling and functional implications of a set of zinc finger proteins, ZNF423, ZNF470, ZNF521, and ZNF780B, in primary osteoarthritic articular chondrocytes. Mediators Inflamm 2014; 2014:318793. [PMID: 24976683 PMCID: PMC4058293 DOI: 10.1155/2014/318793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/27/2023] Open
Abstract
Articular chondrocytes are responsible for the maintenance of healthy articulations; indeed, dysregulation of their functions, including the production of matrix proteins and matrix-remodeling proteases, may result in fraying of the tissue and development of osteoarthritis (OA). To explore transcriptional mechanisms that contribute to the regulation of chondrocyte homeostasis and may be implicated in OA development, we compared the gene expression profile of a set of zinc finger proteins potentially linked to the control of chondrocyte differentiation and/or functions (ZNF423, ZNF470, ZNF521, and ZNF780B) in chondrocytes from patients affected by OA and from subjects not affected by OA. This analysis highlighted a significantly lower expression of the transcript encoding ZNF423 in chondrocytes from OA, particularly in elderly patients. Interestingly, this decrease was mirrored by the similarly reduced expression of PPARγ, a known target of ZNF423 with anti-inflammatory and chondroprotective properties. The ZNF521 mRNA instead was abundant in all primary chondrocytes studied; the RNAi-mediated silencing of this gene significantly altered the COL2A/COL1 expression ratio, associated with the maintenance of the differentiated phenotype, in chondrocytes cultivated in alginate beads. These results suggest a role for ZNF423 and ZNF521 in the regulation of chondrocyte homeostasis and warrant further investigations to elucidate their mechanism of action.
Collapse
|