1
|
Celik B, Leal AF, Tomatsu S. Potential Targeting Mechanisms for Bone-Directed Therapies. Int J Mol Sci 2024; 25:8339. [PMID: 39125906 PMCID: PMC11312506 DOI: 10.3390/ijms25158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Bone development is characterized by complex regulation mechanisms, including signal transduction and transcription factor-related pathways, glycobiological processes, cellular interactions, transportation mechanisms, and, importantly, chemical formation resulting from hydroxyapatite. Any abnormal regulation in the bone development processes causes skeletal system-related problems. To some extent, the avascularity of cartilage and bone makes drug delivery more challenging than that of soft tissues. Recent studies have implemented many novel bone-targeting approaches to overcome drawbacks. However, none of these strategies fully corrects skeletal dysfunction, particularly in growth plate-related ones. Although direct recombinant enzymes (e.g., Vimizim for Morquio, Cerezyme for Gaucher, Elaprase for Hunter, Mepsevii for Sly diseases) or hormone infusions (estrogen for osteoporosis and osteoarthritis), traditional gene delivery (e.g., direct infusion of viral or non-viral vectors with no modifications on capsid, envelope, or nanoparticles), and cell therapy strategies (healthy bone marrow or hematopoietic stem cell transplantation) partially improve bone lesions, novel delivery methods must be addressed regarding target specificity, less immunogenicity, and duration in circulation. In addition to improvements in bone delivery, potential regulation of bone development mechanisms involving receptor-regulated pathways has also been utilized. Targeted drug delivery using organic and inorganic compounds is a promising approach in mostly preclinical settings and future clinical translation. This review comprehensively summarizes the current bone-targeting strategies based on bone structure and remodeling concepts while emphasizing potential approaches for future bone-targeting systems.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
| | - Andrés Felipe Leal
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
2
|
Gou Y, Li H, Sun X, Chen D, Tian F. Parathyroid hormone (1-34) retards the lumbar facet joint degeneration and activates Wnt/β-catenin signaling pathway in ovariectomized rats. J Orthop Surg Res 2024; 19:352. [PMID: 38877549 PMCID: PMC11177467 DOI: 10.1186/s13018-024-04817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
PURPOSE Facet joint degeneration (FJD) is a major cause of low back pain. Parathyroid hormone (PTH) (1-34) is commonly used to treat osteoporosis. However, little is known about its effects on FJD induced by estrogen deficiency. This study aims to investigate the effects of PTH (1-34) on FJD induced by estrogen deficiency and the underlying pathogenesis of the disease. METHODS Forty 3-month-old female Sprague-Dawley rats were randomly divided into four groups: 30 received bilateral ovariectomy (OVX) followed by 12 weeks of treatment with normal saline, PTH (1-34) or 17β-estradiol (E2), and 10 received sham surgery followed by administration of normal saline. Status and Wnt/β-catenin signaling activity in the cartilage and subchondral bone of the L4-L5 FJs and serum biomarkers were analyzed. RESULTS Administration of PTH (1-34) and E2 ameliorated cartilage lesions, and significantly decreased MMP-13 and caspase-3 levels and chondrocyte apoptosis. PTH (1-34) but not E2 significantly increased cartilage thickness, number of chondrocytes, and the expression of aggrecan. PTH (1-34) significantly improved microarchitecture parameters of subchondral bone, increased the expression of collagen I and osteocalcin, and decreased RANKL/OPG ratio. E2 treatment significantly increased the OPG level and decreased the RANKL/OPG ratio in the subchondral bone of ovariectomized rats, but it did not significantly improve the microarchitecture parameters of subchondral bone. Wnt3a and β-catenin expression was significantly reduced in the articular cartilage and subchondral bone in OVX rats, but PTH (1-34) could increase the expression of these proteins. E2 significantly increased the activity of Wnt/β-catenin pathway only in cartilage, but not in subchondral bone. The restoration of Wnt/β-catenin signaling had an obvious correlation with the improvement of some parameters associated with the FJs status. CONCLUSION Wnt/β-catenin signaling may be a potential therapeutic target for FJD induced by estrogen deficiency. PTH (1-34) is effective in treating this disease with better efficacy than 17β-estradiol, and the efficacy may be attributed to its restoration of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Hetong Li
- Department of Orthopaedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xun Sun
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Desheng Chen
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China.
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
3
|
Guo D, Pan H, Lu X, Chen Z, Zhou L, Chen S, Huang J, Liang X, Xiao Z, Zeng H, Shao Y, Qi W, Xie D, Lin C. Rspo2 exacerbates rheumatoid arthritis by targeting aggressive phenotype of fibroblast-like synoviocytes and disrupting chondrocyte homeostasis via Wnt/β-catenin pathway. Arthritis Res Ther 2023; 25:217. [PMID: 37946278 PMCID: PMC10634117 DOI: 10.1186/s13075-023-03198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The aggressive phenotype of fibroblast-like synoviocytes (FLS) has been identified as a contributing factor to the exacerbation of rheumatoid arthritis (RA) through the promotion of synovitis and cartilage damage. Regrettably, there is currently no effective therapeutic intervention available to address this issue. Recent research has shed light on the crucial regulatory role of R-spondin-2 (Rspo2) in cellular proliferation, cartilage degradation, and tumorigenesis. However, the specific impact of Rspo2 on RA remains poorly understood. We aim to investigate the function and mechanism of Rspo2 in regulating the aggressive phenotype of FLS and maintaining chondrocyte homeostasis in the context of RA. METHODS The expression of Rspo2 in knee joint synovium and cartilage were detected in RA mice with antigen-induced arthritis (AIA) and RA patients. Recombinant mouse Rspo2 (rmRspo2), Rspo2 neutralizing antibody (Rspo2-NAb), and recombinant mouse DKK1 (rmDKK1, a potent inhibitor of Wnt signaling pathway) were used to explore the role and mechanism of Rspo2 in the progression of RA, specifically in relation to the aggressive phenotype of FLS and chondrocyte homeostasis, both in vivo and in vitro. RESULTS We indicated that Rspo2 expression was upregulated both in synovium and articular cartilage as RA progressed in RA mice and RA patients. Increased Rspo2 upregulated the expression of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), as the ligand for Rspo2, and β-catenin in FLS and chondrocytes. Subsequent investigations revealed that intra-articular administration of rmRspo2 caused striking progressive synovitis and articular cartilage destruction to exacerbate RA progress in mice. Conversely, neutralization of Rspo2 or inhibition of the Wnt/β-catenin pathway effectively alleviated experimental RA development. Moreover, Rspo2 facilitated FLS aggressive phenotype and disrupted chondrocyte homeostasis primarily through activating Wnt/β-catenin pathway, which were effectively alleviated by Rspo2-NAb or rmDKK1. CONCLUSIONS Our data confirmed a critical role of Rspo2 in enhancing the aggressive phenotype of FLS and disrupting chondrocyte homeostasis through the Wnt/β-catenin pathway in the context of RA. Furthermore, the results indicated that intra-articular administration of Rspo2 neutralizing antibody or recombinant DKK1 might represent a promising therapeutic strategy for the treatment of RA.
Collapse
Affiliation(s)
- Dong Guo
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Haoyan Pan
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Xueying Lu
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen, 518100, People's Republic of China
| | - Zhong Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Laixi Zhou
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Shuxin Chen
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Jin Huang
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Xinzhi Liang
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Zhisheng Xiao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Hua Zeng
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Yan Shao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Weizhong Qi
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China.
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China.
| | - Chuangxin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China.
| |
Collapse
|
4
|
Sampath SJP, Venkatesan V, Ghosh S, Kotikalapudi N. Obesity, Metabolic Syndrome, and Osteoarthritis-An Updated Review. Curr Obes Rep 2023; 12:308-331. [PMID: 37578613 DOI: 10.1007/s13679-023-00520-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MetS), also called the 'deadly quartet' comprising obesity, diabetes, dyslipidemia, and hypertension, has been ascertained to have a causal role in the pathogenesis of osteoarthritis (OA). This review is aimed at discussing the current knowledge on the contribution of metabolic syndrome and its various components to OA pathogenesis and progression. RECENT FINDINGS Lately, an increased association identified between the various components of metabolic syndrome (obesity, diabetes, dyslipidemia, and hypertension) with OA has led to the identification of the 'metabolic phenotype' of OA. These metabolic perturbations alongside low-grade systemic inflammation have been identified to inflict detrimental effects upon multiple tissues of the joint including cartilage, bone, and synovium leading to complete joint failure in OA. Recent epidemiological and clinical findings affirm that adipokines significantly contribute to inflammation, tissue degradation, and OA pathogenesis mediated through multiple signaling pathways. OA is no longer perceived as just a 'wear and tear' disease and the involvement of the metabolic components in OA pathogenesis adds up to the complexity of the disease. Given the global surge in obesity and its allied metabolic perturbations, this review aims to throw light on the current knowledge on the pathophysiology of MetS-associated OA and the need to address MetS in the context of metabolic OA management. Better regulation of the constituent factors of MetS could be profitable in preventing MetS-associated OA. The identification of key roles for several metabolic regulators in OA pathogenesis has also opened up newer avenues in the recognition and development of novel therapeutic agents.
Collapse
Affiliation(s)
- Samuel Joshua Pragasam Sampath
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India.
| | | | - Sudip Ghosh
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India
| | - Nagasuryaprasad Kotikalapudi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School Teaching Hospital, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Gill AK, McCormick PJ, Sochart D, Nalesso G. Wnt signalling in the articular cartilage: A matter of balance. Int J Exp Pathol 2023; 104:56-63. [PMID: 36843204 PMCID: PMC10009303 DOI: 10.1111/iep.12472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/28/2023] Open
Abstract
Degradation of the articular cartilage is a hallmark of osteoarthritis, a progressive and chronic musculoskeletal condition, affecting millions of people worldwide. The activation of several signalling cascades is altered during disease development: among them, the Wnt signalling plays a pivotal role in the maintenance of tissue homeostasis. Increasing evidence is showing that its activation needs to be maintained within a certain range to avoid the triggering of degenerative mechanisms. In this review, we summarise our current knowledge about how a balanced activation of the Wnt signalling is maintained in the articular cartilage, with a particular focus on receptor-mediated mechanisms.
Collapse
Affiliation(s)
- Amandeep Kaur Gill
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, London, UK
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, London, UK
| | - David Sochart
- South West London Elective Orthopaedic Centre, Epsom, UK
| | - Giovanna Nalesso
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
6
|
Cholesterol-induced LRP3 downregulation promotes cartilage degeneration in osteoarthritis by targeting Syndecan-4. Nat Commun 2022; 13:7139. [PMID: 36414669 PMCID: PMC9681739 DOI: 10.1038/s41467-022-34830-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging evidence suggests that osteoarthritis is associated with high cholesterol levels in some osteoarthritis patients. However, the specific mechanism under this metabolic osteoarthritis phenotype remains unclear. We find that cholesterol metabolism-related gene, LRP3 (low-density lipoprotein receptor-related protein 3) is significantly reduced in high-cholesterol diet mouse's cartilage. By using Lrp3-/- mice in vivo and LRP3 lentiviral-transduced chondrocytes in vitro, we identify that LRP3 positively regulate chondrocyte extracellular matrix metabolism, and its deficiency aggravate the degeneration of cartilage. Regardless of diet, LRP3 overexpression in cartilage attenuate anterior cruciate ligament transection induced osteoarthritis progression in rats and Lrp3 knockout-induced osteoarthritis progression in mice. LRP3 knockdown upregulate syndecan-4 by activating the Ras signaling pathway. We identify syndecan-4 as a downstream molecular target of LRP3 in osteoarthritis pathogenesis. These findings suggest that cholesterol-LRP3- syndecan-4 axis plays critical roles in osteoarthritis development, and LRP3 gene therapy may provide a therapeutic regimen for osteoarthritis treatment.
Collapse
|
7
|
Heterozygous LRP1 deficiency causes developmental dysplasia of the hip by impairing triradiate chondrocytes differentiation due to inhibition of autophagy. Proc Natl Acad Sci U S A 2022; 119:e2203557119. [PMID: 36067312 PMCID: PMC9477389 DOI: 10.1073/pnas.2203557119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developmental dysplasia of the hip (DDH) is one of the most common congenital skeletal malformations; however, its etiology remains unclear. Here, we conducted whole-exome sequencing and identified likely pathogenic variants in the LRP1 (low-density lipoprotein receptor-related protein 1) gene in two families and seven unrelated patients. We found that the timing of triradiate cartilage development was brought forward 1 or 2 wk earlier in the LRP-deficient mice, which leads to malformation of the acetabulum and femoral head. Furthermore, Lrp1 deficiency caused a significant decrease of chondrogenic ability in vitro. Our study reveals a critical role of LRP1 in the etiology and pathogenesis of DDH, opening an avenue for its treatment. Developmental dysplasia of the hip (DDH) is one of the most common congenital skeletal malformations; however, its etiology remains unclear. Here, we conducted whole-exome sequencing in eight DDH families followed by targeted sequencing of 68 sporadic DDH patients. We identified likely pathogenic variants in the LRP1 (low-density lipoprotein receptor-related protein 1) gene in two families and seven unrelated patients. All patients harboring the LRP1 variants presented a typical DDH phenotype. The heterozygous Lrp1 knockout (KO) mouse (Lrp1+/−) showed phenotypes recapitulating the human DDH phenotypes, indicating Lrp1 loss of function causes DDH. Lrp1 knockin mice with a missense variant corresponding to a human variant identified in DDH (Lrp1R1783W) also presented DDH phenotypes, which were milder in heterozygotes and severer in homozygotes than those of the Lrp1 KO mouse. The timing of triradiate cartilage development was brought forward 1 or 2 wk earlier in the LRP-deficient mice, which leads to malformation of the acetabulum and femoral head. Furthermore, Lrp1 deficiency caused a significant decrease of chondrogenic ability in vitro. During the chondrogenic induction of mice bone marrow stem cells and ATDC5 (an inducible chondrogenic cell line), Lrp1 deficiency caused decreased autophagy levels with significant β-catenin up-regulation and suppression of chondrocyte marker genes. The expression of chondrocyte markers was rescued by PNU-74654 (a β-catenin antagonist) in an shRNA-Lrp1–expressed ATDC5 cell. Our study reveals a critical role of LRP1 in the etiology and pathogenesis of DDH, opening an avenue for its treatment.
Collapse
|
8
|
Wang KD, Ding X, Jiang N, Zeng C, Wu J, Cai XY, Hettinghouse A, Khleborodova A, Lei ZN, Chen ZS, Lei GH, Liu CJ. Digoxin targets low density lipoprotein receptor-related protein 4 and protects against osteoarthritis. Ann Rheum Dis 2021; 81:544-555. [PMID: 34853001 DOI: 10.1136/annrheumdis-2021-221380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/12/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Dysregulated chondrocyte metabolism is closely associated with the pathogenesis of osteoarthritis (OA). Suppressing chondrocyte catabolism to restore cartilage homeostasis has been extensively explored, whereas far less effort has been invested toward enhancing chondrocyte anabolism. This study aimed to repurpose clinically approved drugs as potential stimulators of chondrocyte anabolism in treating OA. METHODS Screening of a Food and Drug Administration-approved drug library; Assays for examining the chondroprotective effects of digoxin in vitro; Assays for defining the therapeutic effects of digoxin using a surgically-induced OA model; A propensity-score matched cohort study using The Health Improvement Network to examine the relationship between digoxin use and the risk of joint OA-associated replacement among patients with atrial fibrillation; identification and characterisation of the binding of digoxin to low-density lipoprotein receptor-related protein 4 (LRP4); various assays, including use of CRISPR-Cas9 genome editing to delete LRP4 in human chondrocytes, for examining the dependence on LRP4 of digoxin regulation of chondrocytes. RESULTS Serial screenings led to the identification of ouabain and digoxin as stimulators of chondrocyte differentiation and anabolism. Ouabain and digoxin protected against OA and relieved OA-associated pain. The cohort study of 56 794 patients revealed that digoxin use was associated with reduced risk of OA-associated joint replacement. LRP4 was isolated as a novel target of digoxin, and deletion of LRP4 abolished digoxin's regulations of chondrocytes. CONCLUSIONS These findings not only provide new insights into the understanding of digoxin's chondroprotective action and underlying mechanisms, but also present new evidence for repurposing digoxin for OA.
Collapse
Affiliation(s)
- Kai-di Wang
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Xiang Ding
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA.,Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Jiang
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Wu
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xian-Yi Cai
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Aubryanna Hettinghouse
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Asya Khleborodova
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, New York, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, New York, USA
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China .,Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuan-Ju Liu
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA .,Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
9
|
Utreja A, Motevasel H, Bain C, Holland R, Robling A. The Effect of Overexpression of Lrp5 on the Temporomandibular Joint. Cartilage 2021; 13:419S-426S. [PMID: 33124433 PMCID: PMC8804854 DOI: 10.1177/1947603520968875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The temporomandibular joint (TMJ) is a unique fibrocartilaginous joint that adapts to mechanical loading through cell signaling pathways such as the Wnt pathway. Increased expression of low-density lipoprotein receptor-related protein 5 (Lrp5), a co-receptor of the Wnt pathway, is associated with a high bone mass (HBM) phenotype. The objective of this study was to analyze the effect of overexpression of Lrp5 on the subchondral bone and cartilage of the TMJ in mice exhibiting the HBM phenotype. DESIGN Sixteen-week-old Lrp5 knock-in transgenic mice carrying either the A214V (EXP-A) or G171V (EXP-G) missense mutations, and wildtype controls (CTRL) were included in this study. Fluorescent bone labels, calcein, alizarin complexone, and demeclocycline were injected at 3.5, 7.5, and 11.5 weeks of age, respectively. The left mandibular condyle was used to compare the subchondral bone micro-computed tomography parameters and the right TMJ was used for histological analyses. Cartilage thickness, matrix proteoglycan accumulation, and immunohistochemical localization of Lrp5 and sclerostin were compared between the groups. RESULTS Subchondral bone volume (BV) and percent bone volume (BV/TV) were significantly increased in both EXP-A and EXP-G compared with CTRL (P < 0.05) whereas trabecular spacing (Tb.Sp) was decreased. Cartilage thickness, extracellular matrix production, and expression of Lrp5 and Sost were all increased in the experimental groups. The separation between the fluorescent bone labels indicated increased endochondral maturation between 3.5 and 7.5 weeks. CONCLUSIONS These data demonstrate that Lrp5 overexpression leads to adaptation changes in the mandibular condylar cartilage of the TMJ to prevent cartilage degradation.
Collapse
Affiliation(s)
- Achint Utreja
- Section of Orthodontics, Department of
Growth, Development and Structure, Southern Illinois University School of Dental
Medicine, Alton, IL, USA,Department of Orthodontics and Oral
Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA,Achint Utreja, Section of Orthodontics,
Department of Growth, Development and Structure, Southern Illinois University
School of Dental Medicine, 2800 College Avenue, Alton, IL 62002, USA.
| | - Hengameh Motevasel
- Department of Orthodontics and Oral
Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Carol Bain
- Histotechnology Program, Indiana
University School of Medicine, Indianapolis, IN, USA
| | - Robert Holland
- Department of Orthodontics and Oral
Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Alexander Robling
- Department of Anatomy and Cell Biology,
Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Shi T, Fu X, Wang F, Zhang X, Cai Y, Wu X, Sun L. The WNT/β-catenin signalling pathway induces chondrocyte apoptosis in the cartilage injury caused by T-2 toxin in rats. Toxicon 2021; 204:14-20. [PMID: 34742779 DOI: 10.1016/j.toxicon.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
We investigated whether the WNT/β-catenin signalling pathway is involved in paediatric Kashin-Beck disease (KBD) and T-2-toxin-induced cartilage injury in rats to better understand the mechanism of KBD. One hundred twenty-two children were selected and assigned to the case (31), internal control (41), and external control (50) groups. The serum β-catenin and bone morphogenetic protein 2(BMP2)levels in each group were measured and compared. Thirty-six rats were randomly assigned to three groups, which received no intervention, T-2 toxin, or solvent. After 18 weeks, the expression of LDL receptor related proteins 5 (LRP5), β-catenin, BMP2, BAX, BCL2, APAF1, and caspase 9 was measured and compared. The serum BMP2 levels were significantly elevated in the children with KBD and in the rats treated with T-2 toxin. In the T-2 toxin group, LRP5 and β-catenin expression was reduced, whereas BAX, APAF1, and caspase 9 expression was increased. In conclusion, the WNT/β-catenin signalling pathway is suppressed in KBD, which induces chondrocyte apoptosis, leading to cartilage injury. Therefore, BMP2 may play a role in the pathogenesis of KBD.
Collapse
Affiliation(s)
- Tongkun Shi
- School of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Xiaoyan Fu
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Fenghua Wang
- School of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Yun Cai
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Xianhao Wu
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang Province, 315010, China
| | - Liyan Sun
- School of Medicine, Jiaxing University, Jiaxing, 314001, China; Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China.
| |
Collapse
|
11
|
Hartley A, Gregson CL, Paternoster L, Tobias JH. Osteoarthritis: Insights Offered by the Study of Bone Mass Genetics. Curr Osteoporos Rep 2021; 19:115-122. [PMID: 33538965 PMCID: PMC8016765 DOI: 10.1007/s11914-021-00655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE OF REVIEW This paper reviews how bone genetics has contributed to our understanding of the pathogenesis of osteoarthritis. As well as identifying specific genetic mechanisms involved in osteoporosis which also contribute to osteoarthritis, we review whether bone mineral density (BMD) plays a causal role in OA development. RECENT FINDINGS We examined whether those genetically predisposed to elevated BMD are at increased risk of developing OA, using our high bone mass (HBM) cohort. HBM individuals were found to have a greater prevalence of OA compared with family controls and greater development of radiographic features of OA over 8 years, with predominantly osteophytic OA. Initial Mendelian randomisation analysis provided additional support for a causal effect of increased BMD on increased OA risk. In contrast, more recent investigation estimates this relationship to be bi-directional. However, both these findings could be explained instead by shared biological pathways. Pathways which contribute to BMD appear to play an important role in OA development, likely reflecting shared common mechanisms as opposed to a causal effect of raised BMD on OA. Studies in HBM individuals suggest this reflects an important role of mechanisms involved in bone formation in OA development; however further work is required to establish whether the same applies to more common forms of OA within the general population.
Collapse
Affiliation(s)
- A Hartley
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrated Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - C L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrated Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - L Paternoster
- MRC Integrated Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - J H Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- MRC Integrated Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
12
|
From Pathogenesis to Therapy in Knee Osteoarthritis: Bench-to-Bedside. Int J Mol Sci 2021; 22:ijms22052697. [PMID: 33800057 PMCID: PMC7962130 DOI: 10.3390/ijms22052697] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is currently the most widespread musculoskeletal condition and primarily affects weight-bearing joints such as the knees and hips. Importantly, knee OA remains a multifactorial whole-joint disease, the appearance and progression of which involves the alteration of articular cartilage as well as the synovium, subchondral bone, ligaments, and muscles through intricate pathomechanisms. Whereas it was initially depicted as a predominantly aging-related and mechanically driven condition given its clear association with old age, high body mass index (BMI), and joint malalignment, more recent research identified and described a plethora of further factors contributing to knee OA pathogenesis. However, the pathogenic intricacies between the molecular pathways involved in OA prompted the study of certain drugs for more than one therapeutic target (amelioration of cartilage and bone changes, and synovial inflammation). Most clinical studies regarding knee OA focus mainly on improvement in pain and joint function and thus do not provide sufficient evidence on the possible disease-modifying properties of the tested drugs. Currently, there is an unmet need for further research regarding OA pathogenesis as well as the introduction and exhaustive testing of potential disease-modifying pharmacotherapies in order to structure an effective treatment plan for these patients.
Collapse
|
13
|
Törnqvist AE, Grahnemo L, Nilsson KH, Funck-Brentano T, Ohlsson C, Movérare-Skrtic S. Wnt16 Overexpression in Osteoblasts Increases the Subchondral Bone Mass but has no Impact on Osteoarthritis in Young Adult Female Mice. Calcif Tissue Int 2020; 107:31-40. [PMID: 32140758 PMCID: PMC7270053 DOI: 10.1007/s00223-020-00682-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022]
Abstract
Epidemiological studies have shown that high bone mineral density (BMD) is associated with an increased risk of osteoarthritis (OA), but the causality of this relationship remains unclear. Both bone mass and OA have been associated with the WNT signaling pathway in genetic studies, there is thus an interest in studying molecular partners of the WNT signaling pathway and OA. Female mice overexpressing WNT16 in osteoblasts (Obl-Wnt16 mice) have an increased bone mass. We aimed to evaluate if the high bone mass in Obl-Wnt16 mice leads to a more severe experimental OA development than in WT control mice. We induced experimental OA in female Obl-Wnt16 and WT control mice by destabilizing the medial meniscus (DMM). The Obl-Wnt16 mice displayed thicker medial and lateral subchondral bone plates as well as increased subchondral trabecular bone volume/tissue volume (BV/TV) but un-altered thickness of articular cartilage compared to WT mice. After DMM surgery, there was no difference in OA severity in the articular cartilage in the knee joint between the Obl-Wnt16 and WT mice. Both the Obl-Wnt16 and WT mice developed osteophytes in the DMM-operated tibia to a similar extent. We conclude that although the Obl-Wnt16 female mice have a high subchondral bone mass due to increased WNT signaling, they do not exhibit a more severe OA phenotype than their WT controls. This demonstrates that high bone mass does not result in an increased risk of OA per se.
Collapse
Affiliation(s)
- Anna E Törnqvist
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden.
- Klin Farm Lab, Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Sahlgrenska University Hospital, Vita Stråket 11, 41345, Gothenburg, Sweden.
| | - Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Karin H Nilsson
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Thomas Funck-Brentano
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- BIOSCAR, Inserm, Université de Paris, 75010, Paris, France
- Department of Rheumatology, AP-HP, Hopital Lariboisière, 75010, Paris, France
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| |
Collapse
|
14
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
15
|
Cheung K, Barter MJ, Falk J, Proctor CJ, Reynard LN, Young DA. Histone ChIP-Seq identifies differential enhancer usage during chondrogenesis as critical for defining cell-type specificity. FASEB J 2020; 34:5317-5331. [PMID: 32058623 PMCID: PMC7187454 DOI: 10.1096/fj.201902061rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms are known to regulate gene expression during chondrogenesis. In this study, we have characterized the epigenome during the in vitro differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes. Chromatin immunoprecipitation followed by next‐generation sequencing (ChIP‐seq) was used to assess a range of N‐terminal posttranscriptional modifications (marks) to histone H3 lysines (H3K4me3, H3K4me1, H3K27ac, H3K27me3, and H3K36me3) in both hMSCs and differentiated chondrocytes. Chromatin states were characterized using histone ChIP‐seq and cis‐regulatory elements were identified in chondrocytes. Chondrocyte enhancers were associated with chondrogenesis‐related gene ontology (GO) terms. In silico analysis and integration of DNA methylation data with chondrogenesis chromatin states revealed that enhancers marked by histone marks H3K4me1 and H3K27ac were de‐methylated during in vitro chondrogenesis. Similarity analysis between hMSC and chondrocyte chromatin states defined in this study with epigenomes of cell‐types defined by the Roadmap Epigenomics project revealed that enhancers are more distinct between cell‐types compared to other chromatin states. Motif analysis revealed that the transcription factor SOX9 is enriched in chondrocyte enhancers. Luciferase reporter assays confirmed that chondrocyte enhancers characterized in this study exhibited enhancer activity which may be modulated by DNA methylation and SOX9 overexpression. Altogether, these integrated data illustrate the cross‐talk between different epigenetic mechanisms during chondrocyte differentiation.
Collapse
Affiliation(s)
- Kathleen Cheung
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK.,Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J Barter
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Julia Falk
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Carole J Proctor
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Louise N Reynard
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - David A Young
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Xiao L, Williams D, Hurley MM. Inhibition of FGFR Signaling Partially Rescues Osteoarthritis in Mice Overexpressing High Molecular Weight FGF2 Isoforms. Endocrinology 2020; 161:5696655. [PMID: 31901095 PMCID: PMC6959088 DOI: 10.1210/endocr/bqz016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/02/2020] [Indexed: 12/29/2022]
Abstract
Fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptors (FGFRs) are key regulatory factors in osteoarthritis (OA). HMWTg mice overexpress the high molecular weight FGF2 isoforms (HMWFGF2) in osteoblast lineage and phenocopy both Hyp mice (which overexpress the HMWFGF2 isoforms in osteoblasts and osteocytes) and humans with X-linked hypophosphatemia (XLH). We previously reported that, similar to Hyp mice and XLH subjects who develop OA, HMWTg mice also develop an OA phenotype associated with increased degradative enzymes and increased FGFR1 compared with VectorTg mice. Therefore, in this study, we examined whether in vivo treatment with the FGFR tyrosine kinase inhibitor NVP-BGJ398 (BGJ) would modulate development of the OA phenotype in knee joints of HMWTg mice. VectorTg and HMWTg mice (21 days of age) were treated with vehicle or BGJ for 13 weeks. Micro-computed tomography images revealed irregular shape and thinning of the subchondral bone with decreased trabecular number and thickness within the epiphyses of vehicle-treated HMWTg knees, which was partially rescued following BGJ treatment. Articular cartilage thickness was decreased in vehicle-treated HMWTg mice, and was restored to the cartilage thickness of VectorTg mice in the BGJ-treated HMWTg group. Increased OA degradative enzymes present in HMWTg vehicle-treated joints decreased after BGJ treatment. OA in HMWTg mice was associated with increased Wnt signaling that was rescued by BGJ treatment. This study demonstrates that overexpression of the HMWFGF2 isoforms in preosteoblasts results in osteoarthropathy that can be partially rescued by FGFR inhibitor via reduction in activated Wnt signaling.
Collapse
Affiliation(s)
- Liping Xiao
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, UConn Health, Farmington, CT
| | - Donyell Williams
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, UConn Health, Farmington, CT
| | - Marja M Hurley
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, UConn Health, Farmington, CT
- Correspondence: Marja Hurley, MD, Department of Medicine MC-3023, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3105. E-mail:
| |
Collapse
|
17
|
Lehtovirta S, Mäkitie RE, Casula V, Haapea M, Niinimäki J, Niinimäki T, Peuna A, Lammentausta E, Mäkitie O, Nieminen MT. Defective WNT signaling may protect from articular cartilage deterioration - a quantitative MRI study on subjects with a heterozygous WNT1 mutation. Osteoarthritis Cartilage 2019; 27:1636-1646. [PMID: 31299386 DOI: 10.1016/j.joca.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/01/2019] [Accepted: 07/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE WNT signaling is of key importance in chondrogenesis and defective WNT signaling may contribute to the pathogenesis of osteoarthritis and other cartilage diseases. Biochemical composition of articular cartilage in patients with aberrant WNT signaling has not been studied. Our objective was to assess the knee articular cartilage in WNT1 mutation-positive individuals using a 3.0T MRI unit to measure cartilage thickness, relaxation times, and texture features. DESIGN Cohort comprised mutation-positive (N = 13; age 17-76 years) and mutation-negative (N = 13; 16-77 years) subjects from two Finnish families with autosomal dominant WNT1 osteoporosis due to a heterozygous missense mutation c.652T>G (p.C218G) in WNT1. All subjects were imaged with a 3.0T MRI unit and assessed for cartilage thickness, T2 and T1ρ relaxation times, and T2 texture features contrast, dissimilarity and homogeneity of T2 relaxation time maps in six regions of interest (ROIs) in the tibiofemoral cartilage. RESULTS All three texture features showed opposing trends with age between the groups in the medial tibiofemoral cartilage (P = 0.020-0.085 for the difference of the regression coefficients), the mutation-positive individuals showing signs of cartilage preservation. No significant differences were observed in the lateral tibiofemoral cartilage. Cartilage thickness and means of T2 relaxation time did not differ between groups. Means of T1ρ relaxation time were significantly different in one ROI but the regression analysis displayed no differences. CONCLUSIONS Our results show less age-related cartilage deterioration in the WNT1 mutation-positive than the mutation-negative subjects. This suggests, that the WNT1 mutation may alter cartilage turnover and even have a potential cartilage-preserving effect.
Collapse
Affiliation(s)
- S Lehtovirta
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, FI-90014, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland
| | - R E Mäkitie
- Folkhälsan Institute of Genetics and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, FI-00290, Finland.
| | - V Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, FI-90014, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland
| | - M Haapea
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, FI-90220, Finland
| | - J Niinimäki
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, FI-90014, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, FI-90220, Finland
| | - T Niinimäki
- Department of Orthopedics, Oulu University Hospital, Oulu, FI-90220, Finland
| | - A Peuna
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, FI-90220, Finland
| | - E Lammentausta
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, FI-90220, Finland
| | - O Mäkitie
- Folkhälsan Institute of Genetics and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, FI-00290, Finland; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00290, Finland; Center for Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - M T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, FI-90014, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, FI-90220, Finland
| |
Collapse
|
18
|
Nordberg RC, Mellor LF, Krause AR, Donahue HJ, Loboa EG. LRP receptors in chondrocytes are modulated by simulated microgravity and cyclic hydrostatic pressure. PLoS One 2019; 14:e0223245. [PMID: 31584963 PMCID: PMC6777824 DOI: 10.1371/journal.pone.0223245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/17/2019] [Indexed: 01/16/2023] Open
Abstract
Mechanical loading is essential for the maintenance of musculoskeletal homeostasis. Cartilage has been demonstrated to be highly mechanoresponsive, but the mechanisms by which chondrocytes respond to mechanical stimuli are not clearly understood. The goal of the study was to determine how LRP4, LRP5, and LRP6 within canonical Wnt-signaling are regulated in simulated microgravity and cyclic hydrostatic pressure, and to investigate the potential role of LRP 4/5/6 in cartilage degeneration. Rat chondrosacroma cell (RCS) pellets were stimulated using either cyclic hydrostatic pressure (1Hz, 7.5 MPa, 4hr/day) or simulated microgravity in a rotating wall vessel (RWV) bioreactor (11RPM, 24hr/day). LRP4/5/6 mRNA expression was assessed by RT-qPCR and LRP5 protein expression was determined by fluorescent immunostaining. To further evaluate our in vitro findings in vivo, mice were subjected to hindlimb suspension for 14 days and the femoral heads stained for LRP5 expression. We found that, in vitro, LRP4/5/6 mRNA expression is modulated in a time-dependent manner by mechanical stimulation. Additionally, LRP5 protein expression is upregulated in response to both simulated microgravity and cyclic hydrostatic pressure. LRP5 is also upregulated in vivo in the articular cartilage of hindlimb suspended mice. This is the first study to examine how LRP4/5/6, critical receptors within musculoskeletal biology, respond to mechanical stimulation. Further elucidation of this mechanism could provide significant clinical benefit for the identification of pharmaceutical targets for the maintenance of cartilage health.
Collapse
Affiliation(s)
- Rachel C. Nordberg
- College of Engineering, University of Missouri, Columbia, Missouri, United States of America
| | | | - Andrew R. Krause
- Sport Health and Physical Education, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Henry J. Donahue
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Elizabeth G. Loboa
- College of Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
19
|
Wang Y, Fan X, Xing L, Tian F. Wnt signaling: a promising target for osteoarthritis therapy. Cell Commun Signal 2019; 17:97. [PMID: 31420042 PMCID: PMC6697957 DOI: 10.1186/s12964-019-0411-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease worldwide and a leading cause of disability. Characterized by degradation of articular cartilage, synovial inflammation, and changes in periarticular and subchondral bone, OA can negatively impact an individual's physical and mental well-being. Recent studies have reported several critical signaling pathways as key regulators and activators of cellular and molecular processes during OA development. Wnt signaling is one such pathway whose signaling molecules and regulators were shown to be abnormally activated or suppressed. As such, agonists and antagonists of those molecules are potential candidates for OA treatment. Notably, a recent phase I clinical trial (NCT02095548) demonstrated the potential of SM04690, a small-molecule inhibitor of the Wnt signaling pathway, as a disease-modifying oseoarthritis drug (DMOAD). This review summarizes the role and mechanism of Wnt signaling and related molecules in regulating OA progression, with a view to accelerating the translation of such evidence into the development of strategies for OA treatment, particularly with respect to potential applications of molecules targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Yudan Wang
- Medical Research Center, North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, Hebei 063210 People’s Republic of China
| | - Xinhao Fan
- Department of Stomatology, Kailuan General Hospital, Tangshan, Hebei 063000 People’s Republic of China
| | - Lei Xing
- Department of Geriatrics, Affiliated hospital of North China University of Science and Technology, Jianshe South Road 57, Tangshan, Hebei 063000 People’s Republic of China
| | - Faming Tian
- Medical Research Center, North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, Hebei 063210 People’s Republic of China
| |
Collapse
|
20
|
Harasymowicz NS, Dicks A, Wu CL, Guilak F. Physiologic and pathologic effects of dietary free fatty acids on cells of the joint. Ann N Y Acad Sci 2019; 1440:36-53. [PMID: 30648276 DOI: 10.1111/nyas.13999] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
Fatty acids (FAs) are potent organic compounds that not only can be used as an energy source during nutrient deprivation but are also involved in several essential signaling cascades in cells. Therefore, a balanced intake of different dietary FAs is critical for the maintenance of cellular functions and tissue homeostasis. A diet with an imbalanced fat composition creates a risk for developing metabolic syndrome and various musculoskeletal diseases, including osteoarthritis (OA). In this review, we summarize the current state of knowledge and mechanistic insights regarding the role of dietary FAs, such as saturated FAs, omega-6 polyunsaturated FAs (PUFAs), and omega-3 PUFAs on joint inflammation and OA pathogeneses. In particular, we review how different types of dietary FAs and their derivatives distinctly affect a variety of cells within the joint, including chondrocytes, osteoblasts, osteoclasts, and synoviocytes. Understanding the molecular mechanisms underlying the effects of FAs on metabolic behavior, anabolic, and catabolic processes, as well as the inflammatory response of joint cells, may help identify therapeutic targets for the prevention of metabolic joint diseases.
Collapse
Affiliation(s)
- Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri
| | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| |
Collapse
|
21
|
Meo Burt P, Xiao L, Hurley MM. FGF23 Regulates Wnt/β-Catenin Signaling-Mediated Osteoarthritis in Mice Overexpressing High-Molecular-Weight FGF2. Endocrinology 2018; 159:2386-2396. [PMID: 29718273 PMCID: PMC6457004 DOI: 10.1210/en.2018-00184] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/21/2018] [Indexed: 12/23/2022]
Abstract
Although humans with X-linked hypophosphatemia (XLH) and the Hyp mouse, a murine homolog of XLH, are known to develop degenerative joint disease, the exact mechanism that drives the osteoarthritis (OA) phenotype remains unclear. Mice that overexpress high-molecular-weight fibroblast growth factor (FGF) 2 isoforms (HMWTg mice) phenocopy both XLH and Hyp, including OA with increased FGF23 production in bone and serum. Because HMWTg cartilage also has increased FGF23 and there is cross-talk between FGF23-Wnt/β-catenin signaling, the purpose of this study was to determine if OA observed in HMWTg mice is due to FGF23-mediated canonical Wnt signaling in chondrocytes, given that both pathways are implicated in OA pathogenesis. HMWTg OA joints had decreased Dkk1, Sost, and Lrp6 expression with increased Wnt5a, Wnt7b, Lrp5, Axin2, phospho-GSK3β, Lef1, and nuclear β-catenin, as indicated by immunohistochemistry or quantitative PCR analysis. Chondrocytes from HMWTg mice had enhanced alcian blue and alkaline phosphatase staining as well as increased FGF23, Adamts5, Il-1β, Wnt7b, Wnt16, and Wisp1 gene expression and phospho-GSK3β protein expression as indicated by Western blot, compared with chondrocytes of vector control and chondrocytes from mice overexpressing the low-molecular-weight isoform, which were protected from OA. Canonical Wnt inhibitor treatment rescued some of those parameters in HMWTg chondrocytes, seemingly delaying the initially accelerated chondrogenic differentiation. FGF23 neutralizing antibody treatment was able to partly ameliorate OA abnormalities in subchondral bone and reduce degradative/hypertrophic chondrogenic marker expression in HMWTg joints in vivo. These results demonstrate that osteoarthropathy of HMWTg is at least partially due to FGF23-modulated Wnt/β-catenin signaling in chondrocytes.
Collapse
Affiliation(s)
- Patience Meo Burt
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, UConn Health, Farmington, Connecticut
| | - Liping Xiao
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, UConn Health, Farmington, Connecticut
| | - Marja M Hurley
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, UConn Health, Farmington, Connecticut
- Correspondence: Marja M. Hurley, MD, Department of Medicine MC-3023, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030. E-mail:
| |
Collapse
|
22
|
Burr DB, Utreja A. Editorial: Wnt Signaling Related to Subchondral Bone Density and Cartilage Degradation in Osteoarthritis. Arthritis Rheumatol 2018; 70:157-161. [DOI: 10.1002/art.40382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Affiliation(s)
- David B. Burr
- Indiana University School of Medicine and Indiana University‐Purdue University–Indianapolis Indianapolis Indiana
| | - Achint Utreja
- Indiana University School of Dentistry Indianapolis Indiana
| |
Collapse
|
23
|
Wang W, Yu Y, Hao J, Wen Y, Han J, Hou W, Liu R, Zhao B, He A, Li P, Fan Q, Wu C, Wang S, Wang X, Ning Y, Guo X, Zhang F. Genome-wide DNA methylation profiling of articular cartilage reveals significant epigenetic alterations in Kashin-Beck disease and osteoarthritis. Osteoarthritis Cartilage 2017; 25:2127-2133. [PMID: 28818737 DOI: 10.1016/j.joca.2017.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/26/2017] [Accepted: 08/04/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine genome-wide DNA methylation profiles of knee cartilage from patients with Kashin-Beck disease (KBD) and osteoarthritis (OA). METHOD Knee cartilage was collected from 14 grade III KBD patients, 5 primary OA patients and 13 healthy subjects. The genome-wide methylation profiles of 5 KBD cartilage, 5 OA cartilage and 5 normal cartilage were determined by Illumina HumanMethylation450 array. Illumina Methylation Analyzer package was employed for identifying differentially methylated CpG sites. Functional annotation and enrichment analysis of differentially methylated genes (DMG) were conducted using GeneRIF database, Ingenuity Pathway Analysis (IPA) and The Database for Annotation, Visualization and Integrated Discovery (DAVID). Mass spectrometry (MS) and immunohistochemistry (IHC) were conducted to validate the functional relevance of identified KBD associated gene. RESULTS We identified a total of 1212 differentially methylated CpG sites in KBD vs Normal, annotated to 264 hypermethylated and 368 hypomethylated genes. Comparing the DNA methylation profiles of KBD vs Normal and OA vs Normal detected overlap of 367 differentially methylated CpG sites (annotated to 182 genes) as well as 845 KBD-specific differentially methylated CpG sites (annotated to 471 unique genes). MS and IHC confirmed the hypermethylation status and decreased protein expression of HAPLN1 gene in KBD cartilage. CONCLUSION Our data implicate epigenetic dysregulation of a host of genes in KBD and OA. Furthermore, we observed common causal epigenetic changes shared by KBD and OA.
Collapse
Affiliation(s)
- W Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Y Yu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China.
| | - J Hao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Y Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - J Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - W Hou
- Osteonecrosis and Joint Reconstruction Ward, Department of Joint Surgery, HongHui Hospital, Health Science Center, Xi'an Jiaotong University, PR China
| | - R Liu
- Department of Orthopedics, Second Affiliated Hospital of Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - B Zhao
- Department of Orthopedics, Second Affiliated Hospital of Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - A He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - P Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Q Fan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - C Wu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - S Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - X Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - Y Ning
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - X Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, PR China
| | - F Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
24
|
Monteagudo S, Lories RJ. Cushioning the cartilage: a canonical Wnt restricting matter. Nat Rev Rheumatol 2017; 13:670-681. [PMID: 29021569 DOI: 10.1038/nrrheum.2017.171] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wnt signalling pathways have key roles in joint development, homeostasis and disease, particularly in osteoarthritis. New data is starting to reveal the importance of tightly regulating canonical Wnt signalling pathway activation to maintain homeostasis and health in articular cartilage. In addition to the presence of different Wnt antagonists that limit pathway activation in articular cartilage, the reciprocal crosstalk between the canonical and non-canonical cascades and competitive antagonism between different Wnt ligands seem to be critical in restraining excessive Wnt pathway activation. Changes in transcriptional complex assembly upon Wnt pathway activation, epigenetic modulation of target gene transcription, in particular through histone modifications, and complex interactions between the Wnt signalling pathway and other signalling pathways, are also instrumental in adjusting Wnt signalling. In this Review, the cellular and molecular mechanisms involved in fine-tuning canonical Wnt signalling in the joint are updated, with a focus on the articular cartilage. The interventions for preventing or treating osteoarthritis are also discussed, which should aim to limit disease-associated excessive canonical Wnt activity to avoid joint damage.
Collapse
Affiliation(s)
- Silvia Monteagudo
- Laboratory for Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Rik J Lories
- Laboratory for Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
25
|
Yang T, Williams BO. Low-Density Lipoprotein Receptor-Related Proteins in Skeletal Development and Disease. Physiol Rev 2017; 97:1211-1228. [PMID: 28615463 DOI: 10.1152/physrev.00013.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
The identification of the low-density lipoprotein receptor (LDLR) provided a foundation for subsequent studies in lipoprotein metabolism, receptor-mediated endocytosis, and many other fundamental biological functions. The importance of the LDLR led to numerous studies that identified homologous molecules and ultimately resulted in the description of the LDL-receptor superfamily, a group of proteins that contain domains also found in the LDLR. Subsequent studies have revealed that members of the LDLR-related protein family play roles in regulating many aspects of signal transduction. This review is focused on the roles of selected members of this protein family in skeletal development and disease. We present background on the identification of this subgroup of receptors, discuss the phenotypes associated with alterations in their function in human patients and mouse models, and describe the current efforts to therapeutically target these proteins to treat human skeletal disease.
Collapse
Affiliation(s)
- Tao Yang
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Bart O Williams
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
26
|
Gibson AL, Hui Mingalone CK, Foote AT, Uchimura T, Zhang M, Zeng L. Wnt7a Inhibits IL-1β Induced Catabolic Gene Expression and Prevents Articular Cartilage Damage in Experimental Osteoarthritis. Sci Rep 2017; 7:41823. [PMID: 28165497 PMCID: PMC5292965 DOI: 10.1038/srep41823] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022] Open
Abstract
Wnt7a is a protein that plays a critical role in skeletal development. However, its effect on cartilage homeostasis under pathological conditions is not known. In this study, we found a unique inverse correlation between Wnt7a gene expression and that of MMP and IL-1β in individual human OA cartilage specimens. Upon ectopic expression in primary human articular chondrocytes, Wnt7a inhibited IL-1β-induced MMP and iNOS gene expression. Western blot analysis indicated that Wnt7a induced both canonical Wnt signaling and NFAT and Akt non-canonical signaling. Interestingly, inhibiting the canonical and Akt pathway did not affect Wnt7a activity. However, inhibiting the NFAT pathway impaired Wnt7a’s ability to inhibit MMP expression, suggesting that Wnt7a requires NFAT signaling to exert this function. In vivo, intraarticular injection of lentiviral Wnt7a strongly attenuated articular cartilage damage induced by destabilization of the medial meniscus (DMM) OA-inducing surgery in mice. Consistently, Wnt7a also inhibited the progressive increase of joint MMP activity in DMM animals. These results indicate that Wnt7a signaling inhibits inflammatory stimuli-induced catabolic gene expression in human articular chondrocytes and is sufficient to attenuate MMP activities and promote joint cartilage integrity in mouse experimental OA, demonstrating a novel effect of Wnt7a on regulating OA pathogenesis.
Collapse
Affiliation(s)
- Averi L Gibson
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Carrie K Hui Mingalone
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Andrea T Foote
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Tomoya Uchimura
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ming Zhang
- Department of Rheumatology, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Li Zeng
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA.,Department of Orthopedics, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
27
|
Wei Y, Bai L. Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis. Connect Tissue Res 2016; 57:245-61. [PMID: 27285430 DOI: 10.1080/03008207.2016.1177036] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA), the most common form of degenerative joint disease, is linked to high morbidity. It is predicted to be the single greatest cause of disability in the general population by 2030. The development of disease-modifying therapy for OA currently face great obstacle mainly because the onset and development of the disease involve complex molecular mechanisms. In this review, we will comprehensively summarize biological and pathological mechanisms of three key aspects: degeneration of articular cartilage, synovial immunopathogenesis, and changes in subchondral bone. For each tissue, we will focus on the molecular receptors, cytokines, peptidases, related cell, and signal pathways. Agents that specifically block mechanisms involved in synovial inflammation, degeneration of articular cartilage, and subchondral bone remodeling can potentially be exploited to produce targeted therapy for OA. Such new comprehensive agents will benefit affected patients and bring exciting new hope for the treatment of OA.
Collapse
Affiliation(s)
- Yingliang Wei
- a Department of Orthopedic Surgery, Sheng-Jing Hospital , China Medical University , ShenYang , China
| | - Lunhao Bai
- a Department of Orthopedic Surgery, Sheng-Jing Hospital , China Medical University , ShenYang , China
| |
Collapse
|
28
|
Schumacher CA, Joiner DM, Less KD, Drewry MO, Williams BO. Characterization of genetically engineered mouse models carrying Col2a1-cre-induced deletions of Lrp5 and/or Lrp6. Bone Res 2016; 4:15042. [PMID: 26962465 PMCID: PMC4772748 DOI: 10.1038/boneres.2015.42] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/18/2022] Open
Abstract
Mice carrying Collagen2a1-cre-mediated deletions of Lrp5 and/or Lrp6 were created and characterized. Mice lacking either gene alone were viable and fertile with normal knee morphology. Mice in which both Lrp5 and Lrp6 were conditionally ablated via Collagen2a1-cre-mediated deletion displayed severe defects in skeletal development during embryogenesis. In addition, adult mice carrying Collagen2a1-cre-mediated deletions of Lrp5 and/or Lrp6 displayed low bone mass suggesting that the Collagen2a1-cre transgene was active in cells that subsequently differentiated into osteoblasts. In both embryonic skeletal development and establishment of adult bone mass, Lrp5 and Lrp6 carry out redundant functions.
Collapse
Affiliation(s)
- Cassie A Schumacher
- Center for Cancer and Cell Biology, Program in Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute , Grand Rapids MI 49503, USA
| | - Danese M Joiner
- Center for Cancer and Cell Biology, Program in Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute , Grand Rapids MI 49503, USA
| | - Kennen D Less
- Center for Cancer and Cell Biology, Program in Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute , Grand Rapids MI 49503, USA
| | - Melissa Oosterhouse Drewry
- Center for Cancer and Cell Biology, Program in Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute , Grand Rapids MI 49503, USA
| | - Bart O Williams
- Center for Cancer and Cell Biology, Program in Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute , Grand Rapids MI 49503, USA
| |
Collapse
|
29
|
Ye H, Zhang J, Wang J, Gao Y, Du Y, Li C, Deng M, Guo J, Li Z. CD4 T-cell transcriptome analysis reveals aberrant regulation of STAT3 and Wnt signaling pathways in rheumatoid arthritis: evidence from a case-control study. Arthritis Res Ther 2015; 17:76. [PMID: 25880754 PMCID: PMC4392874 DOI: 10.1186/s13075-015-0590-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 02/25/2015] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a systemic autoimmune disease in which T cells play a pivotal role in the pathogenesis. Knowledge in terms of the CD4 T-cell transcriptome in RA is limited. The aim of this study was to examine the whole-genome transcription profile of CD4 T cells in RA by comparing patients with RA to healthy controls. METHODS Peripheral blood CD4 T cells were isolated from 53 RA patients with active disease and 45 healthy individuals; 13 cases and 10 controls were enrolled in microarray analysis. The remaining 40 cases and 35 controls were recruited as an independent cohort for the validation study. Bioinformatics was performed on Gene Ontology (GO), gene-gene interaction networks, and pathway analysis. The gene modules, by combining the results from GO, gene networks, and pathway analysis, were selected for further validation. RESULTS The CD4 T cells showed 1,496 differentially expressed (DE) genes in RA patients relative to healthy individuals. GO analysis revealed that the DE genes were enriched in immune response, T-cell response, apoptosis process, and Wnt receptor signaling. Pathway analysis also identified that 'Wnt signaling pathway' was differentially regulated between two groups (P=2.78×10(-10)). By gene-gene network analysis, we found that the DE genes were enriched in T-cell receptor (TCR), JAK-STAT signaling, and Wnt signaling pathway. By gene module analysis, we found that a number of DE genes overlapped in the three different analyses. In total, 23 genes were selected for further validation, and nine genes were confirmed. Of these, four genes (SOCS3, CBL, IFNAR1, and PIK3CA) were involved in STAT3 (signal transducer and activator of transcription 3) signaling, and three genes (CBL, KLF9, and CSNK2A1) were involved in the Wnt signaling pathway. Additionally, several zinc finger transcription factors (ZEB1, ZNF292, and ZNF644) were confirmed. CONCLUSIONS We report here the first case-control study of the CD4 T-cell transcriptome profile in RA. Our data provide evidence that CD4 T cells from patients with RA have abnormal functional networks in STAT3 signaling and Wnt signaling. Our results also suggest that the aberrant expression of several zinc finger transcription factors (ZEB1, ZNF292, and ZNF644) may be potential pathogenic factors for RA.
Collapse
Affiliation(s)
- Hua Ye
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| | - Jing Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| | - Jun Wang
- School of Mathematical Sciences, Center for Quantitative Biology, Peking University, 136 North Zhong-guan-cun Street, Beijing, 100871, China.
| | - Yanyan Gao
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| | - Yan Du
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| | - Minghua Deng
- School of Mathematical Sciences, Center for Quantitative Biology, Peking University, 136 North Zhong-guan-cun Street, Beijing, 100871, China.
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| |
Collapse
|