1
|
Luo Y, Ye Y, Chen Y, Zhang C, Sun Y, Wang C, Ou J. A degradome-based prognostic signature that correlates with immune infiltration and tumor mutation burden in breast cancer. Front Immunol 2023; 14:1140993. [PMID: 36993976 PMCID: PMC10040797 DOI: 10.3389/fimmu.2023.1140993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionFemale breast cancer is the most common malignancy worldwide, with a high disease burden. The degradome is the most abundant class of cellular enzymes that play an essential role in regulating cellular activity. Dysregulation of the degradome may disrupt cellular homeostasis and trigger carcinogenesis. Thus we attempted to understand the prognostic role of degradome in breast cancer by means of establishing a prognostic signature based on degradome-related genes (DRGs) and assessed its clinical utility in multiple dimensions.MethodsA total of 625 DRGs were obtained for analysis. Transcriptome data and clinical information of patients with breast cancer from TCGA-BRCA, METABRIC and GSE96058 were collected. NetworkAnalyst and cBioPortal were also utilized for analysis. LASSO regression analysis was employed to construct the degradome signature. Investigations of the degradome signature concerning clinical association, functional characterization, mutation landscape, immune infiltration, immune checkpoint expression and drug priority were orchestrated. Cell phenotype assays including colony formation, CCK8, transwell and wound healing were conducted in MCF-7 and MDA-MB-435S breast cancer cell lines, respectively.ResultsA 10-gene signature was developed and verified as an independent prognostic predictor combined with other clinicopathological parameters in breast cancer. The prognostic nomogram based on risk score (calculated based on the degradome signature) showed favourable capability in survival prediction and advantage in clinical benefit. High risk scores were associated with a higher degree of clinicopathological events (T4 stage and HER2-positive) and mutation frequency. Regulation of toll-like receptors and several cell cycle promoting activities were upregulated in the high-risk group. PIK3CA and TP53 mutations were dominant in the low- and high-risk groups, respectively. A significantly positive correlation was observed between the risk score and tumor mutation burden. The infiltration levels of immune cells and the expressions of immune checkpoints were significantly influenced by the risk score. Additionally, the degradome signature adequately predicted the survival of patients undergoing endocrinotherapy or radiotherapy. Patients in the low-risk group may achieve complete response after the first round of chemotherapy with cyclophosphamide and docetaxel, whereas patients in the high-risk group may benefit from 5-flfluorouracil. Several regulators of the PI3K/AKT/mTOR signaling pathway and the CDK family/PARP family were identified as potential molecular targets in the low- and high-risk groups, respectively. In vitro experiments further revealed that the knockdown of ABHD12 and USP41 significantly inhibit the proliferation, invasion and migration of breast cancer cells.ConclusionMultidimensional evaluation verified the clinical utility of the degradome signature in predicting prognosis, risk stratification and guiding treatment for patients with breast cancer.
Collapse
Affiliation(s)
- Yulou Luo
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yinghui Ye
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Chenguang Zhang
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yutian Sun
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengwei Wang
- Cancer Research Institute of Xinjiang Uygur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chengwei Wang, ; Jianghua Ou,
| | - Jianghua Ou
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chengwei Wang, ; Jianghua Ou,
| |
Collapse
|
2
|
Goel P, Jumpertz T, Mikles DC, Tichá A, Nguyen MTN, Verhelst S, Hubalek M, Johnson DC, Bachovchin DA, Ogorek I, Pietrzik CU, Strisovsky K, Schmidt B, Weggen S. Discovery and Biological Evaluation of Potent and Selective N-Methylene Saccharin-Derived Inhibitors for Rhomboid Intramembrane Proteases. Biochemistry 2017; 56:6713-6725. [PMID: 29185711 DOI: 10.1021/acs.biochem.7b01066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhomboids are intramembrane serine proteases and belong to the group of structurally and biochemically most comprehensively characterized membrane proteins. They are highly conserved and ubiquitously distributed in all kingdoms of life and function in a wide range of biological processes, including epidermal growth factor signaling, mitochondrial dynamics, and apoptosis. Importantly, rhomboids have been associated with multiple diseases, including Parkinson's disease, type 2 diabetes, and malaria. However, despite a thorough understanding of many structural and functional aspects of rhomboids, potent and selective inhibitors of these intramembrane proteases are still not available. In this study, we describe the computer-based rational design, chemical synthesis, and biological evaluation of novel N-methylene saccharin-based rhomboid protease inhibitors. Saccharin inhibitors displayed inhibitory potency in the submicromolar range, effectiveness against rhomboids both in vitro and in live Escherichia coli cells, and substantially improved selectivity against human serine hydrolases compared to those of previously known rhomboid inhibitors. Consequently, N-methylene saccharins are promising new templates for the development of rhomboid inhibitors, providing novel tools for probing rhomboid functions in physiology and disease.
Collapse
Affiliation(s)
- Parul Goel
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany.,Clemens Schoepf Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt , Alarich-Weiss-Strasse 4-8, 64287 Darmstadt, Germany
| | - Thorsten Jumpertz
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - David C Mikles
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Anežka Tichá
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Minh T N Nguyen
- Chemical Proteomics Group, Leibnitz Institute for Analytical Sciences (ISAS) e.V. , Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Steven Verhelst
- Chemical Proteomics Group, Leibnitz Institute for Analytical Sciences (ISAS) e.V. , Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.,Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, University of Leuven , Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Darren C Johnson
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, Box 428, New York, New York 10065, United States
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, Box 428, New York, New York 10065, United States
| | - Isabella Ogorek
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz , Duesbergweg 6, 55128 Mainz, Germany
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Boris Schmidt
- Clemens Schoepf Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt , Alarich-Weiss-Strasse 4-8, 64287 Darmstadt, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine University Duesseldorf , Moorenstrasse 5, 40225 Duesseldorf, Germany
| |
Collapse
|
3
|
Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. Proteomics Clin Appl 2014; 8:427-37. [PMID: 24677670 PMCID: PMC4205946 DOI: 10.1002/prca.201300105] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Proteases, including intracellular proteases, play roles at many different stages of malignant progression. Our focus here is cathepsin B, a lysosomal cysteine cathepsin. High levels of cathepsin B are found in a wide variety of human cancers, levels that often induce secretion and association of cathepsin B with the tumor cell membrane. In experimental models, such as transgenic models of murine pancreatic and mammary carcinomas, causal roles for cathepsin B have been demonstrated in initiation, growth/tumor cell proliferation, angiogenesis, invasion, and metastasis. Tumor growth in transgenic models is promoted by cathepsin B in tumor-associated cells, for example, tumor-associated macrophages, as well as in tumor cells. In transgenic models, the absence of cathepsin B has been associated with enhanced apoptosis, yet cathepsin B also has been shown to contribute to apoptosis. Cathepsin B is part of a proteolytic pathway identified in xenograft models of human glioma; targeting only cathepsin B in these tumors is less effective than targeting cathepsin B in combination with other proteases or protease receptors. Understanding the mechanisms responsible for increased expression of cathepsin B in tumors and association of cathepsin B with tumor cell membranes is needed to determine whether targeting cathepsin B could be of therapeutic benefit.
Collapse
Affiliation(s)
- Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, Detroit, Ml, USA
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Ml, USA
| |
Collapse
|
4
|
Lee B, Park I, Jin S, Choi H, Kwon JT, Kim J, Jeong J, Cho BN, Eddy EM, Cho C. Impaired spermatogenesis and fertility in mice carrying a mutation in the Spink2 gene expressed predominantly in testes. J Biol Chem 2011; 286:29108-29117. [PMID: 21705336 DOI: 10.1074/jbc.m111.244905] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spermatogenesis is a complex process involving an intrinsic genetic program composed of germ cell-specific and -predominant genes. In this study, we investigated the mouse Spink2 (serine protease inhibitor Kazal-type 2) gene, which belongs to the SPINK family of proteins characterized by the presence of a Kazal-type serine protease inhibitor-pancreatic secretory trypsin inhibitor domain. We showed that recombinant mouse SPINK2 has trypsin-inhibitory activity. Distribution analyses revealed that Spink2 is transcribed strongly in the testis and weakly in the epididymis, but is not detected in other mouse tissues. Expression of Spink2 is specific to germ cells in the testis and is first evident at the pachytene spermatocyte stage. Immunoblot analyses demonstrated that SPINK2 protein is present in male germ cells at all developmental stages, including in testicular spermatogenic cells, testicular sperm, and mature sperm. To elucidate the functional role of SPINK2 in vivo, we generated mutant mice with diminished levels of SPINK2 using a gene trap mutagenesis approach. Mutant male mice exhibit significantly impaired fertility; further phenotypic analyses revealed that testicular integrity is disrupted, resulting in a reduction in sperm number. Moreover, we found that testes from mutant mice exhibit abnormal spermatogenesis and germ cell apoptosis accompanied by elevated serine protease activity. Our studies thus provide the first demonstration that SPINK2 is required for maintaining normal spermatogenesis and potentially regulates serine protease-mediated apoptosis in male germ cells.
Collapse
Affiliation(s)
- Boyeon Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Inju Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Sora Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Heejin Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Jun Tae Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Jihye Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Juri Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Byung-Nam Cho
- Department of Life Science, The Catholic University of Korea, Bucheon 420-743, Korea, and
| | - Edward M Eddy
- Gamete Biology Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea,.
| |
Collapse
|
5
|
Ghale G, Ramalingam V, Urbach AR, Nau WM. Determining protease substrate selectivity and inhibition by label-free supramolecular tandem enzyme assays. J Am Chem Soc 2011; 133:7528-35. [PMID: 21513303 DOI: 10.1021/ja2013467] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An analytical method has been developed for the continuous monitoring of protease activity on unlabeled peptides in real time by fluorescence spectroscopy. The assay is enabled by a reporter pair comprising the macrocycle cucurbit[7]uril (CB7) and the fluorescent dye acridine orange (AO). CB7 functions by selectively recognizing N-terminal phenylalanine residues as they are produced during the enzymatic cleavage of enkephalin-type peptides by the metalloendopeptidase thermolysin. The substrate peptides (e.g., Thr-Gly-Ala-Phe-Met-NH(2)) bind to CB7 with moderately high affinity (K ≈ 10(4) M(-1)), while their cleavage products (e.g., Phe-Met-NH(2)) bind very tightly (K > 10(6) M(-1)). AO signals the reaction upon its selective displacement from the macrocycle by the high affinity product of proteolysis. The resulting supramolecular tandem enzyme assay effectively measures the kinetics of thermolysin, including the accurate determination of sequence specificity (Ser and Gly instead of Ala), stereospecificity (d-Ala instead of l-Ala), endo- versus exopeptidase activity (indicated by differences in absolute fluorescence response), and sensitivity to terminal charges (-CONH(2) vs -COOH). The capability of the tandem assay to measure protease inhibition constants was demonstrated on phosphoramidon as a known inhibitor to afford an inhibition constant of (17.8 ± 0.4) nM. This robust and label-free approach to the study of protease activity and inhibition should be transferable to other endo- and exopeptidases that afford products with N-terminal aromatic amino acids.
Collapse
Affiliation(s)
- Garima Ghale
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
6
|
Radpour R, Barekati Z, Kohler C, Holzgreve W, Zhong XY. New trends in molecular biomarker discovery for breast cancer. Genet Test Mol Biomarkers 2010; 13:565-71. [PMID: 19814613 DOI: 10.1089/gtmb.2009.0060] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the most common and leading causes of cancer death in women. Early diagnosis, selection of appropriate therapeutic strategies, and efficient follow-up play an important role in reducing mortality. Recently, HER-2/neu in breast cancer has been routinely used to guide treatment of using Trastuzumab in less than 25-30% of patients. More new biomarkers will be still expected in the future to tailor treatments. However, there are still many obstacles in developing clinically useful biomarker tests for clinical practice. A lack of specificity of tumor markers and lack of sensitivity of testing systems have been noticed, which limit their clinical use. Finding biomarkers for breast cancer could allow physicians to identify individuals who are susceptible to certain types and stages of cancer to tailor preventive and therapeutic modalities based on the genotype and phenotype information. These biomarkers should be cancer specific, and sensitively detectable in a wide range of specimen(s) containing cancer-derived materials, including body fluids (plasma, serum, urine, saliva, etc.), tissues, and cell lines. This review highlights the new trends and approaches in breast cancer biomarker discovery, which could be potentially used for early diagnosis, development of new therapeutic approaches, and follow-up of patients.
Collapse
Affiliation(s)
- Ramin Radpour
- Laboratory for Prenatal Medicine and Gynecologic Oncology, Women's Hospital/Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
7
|
Del Fattore A, Teti A, Rucci N. Osteoclast receptors and signaling. Arch Biochem Biophys 2008; 473:147-60. [PMID: 18237538 DOI: 10.1016/j.abb.2008.01.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/07/2008] [Indexed: 02/03/2023]
Abstract
Osteoclasts are bone-resorbing cells derived from hematopoietic precursors of the monocyte-macrophage lineage. Besides the well known Receptor Activator of Nuclear factor-kappaB (RANK), RANK ligand and osteoprotegerin axis, a variety of factors tightly regulate osteoclast formation, adhesion, polarization, motility, resorbing activity and life span, maintaining bone resorption within physiological ranges. Receptor-mediated osteoclast regulation is rather complex. Nuclear receptors, cell surface receptors, integrin receptors and cell death receptors work together to control osteoclast activity and prevent both reduced or increased bone resorption. Here we will discuss the signal transduction pathways activated by the main osteoclast receptors, integrating their function and mechanisms of action.
Collapse
Affiliation(s)
- Andrea Del Fattore
- Department of Experimental Medicine, University of L'Aquila, Via Vetoio, Coppito 2, 67100 L'Aquila, Italy
| | | | | |
Collapse
|
8
|
Hernandez M, Valenzuela MA, Lopez-Otin C, Alvarez J, Lopez JM, Vernal R, Gamonal J. Matrix metalloproteinase-13 is highly expressed in destructive periodontal disease activity. J Periodontol 2007; 77:1863-70. [PMID: 17076612 DOI: 10.1902/jop.2006.050461] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) participate in extracellular matrix degradation in physiological and pathological conditions. The available evidence suggests that MMP-13 plays a significant role in both the initiation and progress of bone resorption. The aim of our study was to identify the presence of MMP-13 in adult patients with untreated chronic periodontitis. We also determined the activity of MMP-13 present in lesions undergoing episodic attachment loss in gingival crevicular fluid (GCF) samples. METHODS After monitoring at 2 and 4 months, 21 patients showed destructive periodontitis (periodontally affected sites presenting at least two sites with > or =2 mm clinical attachment loss), and GCF samples were collected both from active and inactive sites (21 GCF samples, each). GCF was collected during a 30-second interval using a paper strip, and an immunofluorescence assay was performed to determine the basal activity of MMP-13 and the relationship between 4-aminophenylmercuric acetate (APMA)-activated total MMP-13 and basal MMP-13 activity. Gingival tissues from five patients were fixed in formalin and MMP-13 expression was demonstrated using immunohistochemistry and in situ hybridization. MMP-13 molecular forms were examined by Western immunoblotting with monoclonal antibodies. RESULTS MMP-13 was found in 100% of GCF samples from patients with chronic periodontitis. Active sites, associated with tissue destruction, had significantly higher proportions of active MMP-13 and MMP-13 activity levels than their inactive counterparts (1.49 versus 1.17 ng fluorescent product, respectively; P <0.05). Western blot, immunohistochemical staining, and in situ hybridization confirmed the presence of MMP-13 in periodontal disease, with observable differences between periodontitis and healthy subjects. MMP-13 immunoreactivities were seen mainly as 55 and 48 kDa, corresponding to partially and fully activated forms, respectively, and a smaller proportion of 60-kDa proenzyme form. CONCLUSION MMP-13 activity in GCF samples was significantly increased in active sites from progressive periodontal disease, supporting its role in the alveolar bone loss developed in this disease.
Collapse
Affiliation(s)
- Marcela Hernandez
- Periodontal Biology Laboratory, Dentistry School, University of Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
9
|
Heng BC, Cao T, Lee EH. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells 2005; 22:1152-67. [PMID: 15579636 DOI: 10.1634/stemcells.2004-0062] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A major area in regenerative medicine is the application of stem cells in cartilage tissue engineering and reconstructive surgery. This requires well-defined and efficient protocols for directing the differentiation of stem cells into the chondrogenic lineage, followed by their selective purification and proliferation in vitro. The development of such protocols would reduce the likelihood of spontaneous differentiation of stem cells into divergent lineages upon transplantation, as well as reduce the risk of teratoma formation in the case of embryonic stem cells. Additionally, such protocols could provide useful in vitro models for studying chondrogenesis and cartilaginous tissue biology. The development of pharmacokinetic and cytotoxicity/genotoxicity screening tests for cartilage-related biomaterials and drugs could also utilize protocols developed for the chondrogenic differentiation of stem cells. Hence, this review critically examines the various strategies that could be used to direct the differentiation of stem cells into the chondrogenic lineage in vitro.
Collapse
Affiliation(s)
- Boon Chin Heng
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | | |
Collapse
|
10
|
MacLean HE, Kim JI, Glimcher MJ, Wang J, Kronenberg HM, Glimcher LH. Absence of transcription factor c-maf causes abnormal terminal differentiation of hypertrophic chondrocytes during endochondral bone development. Dev Biol 2003; 262:51-63. [PMID: 14512017 DOI: 10.1016/s0012-1606(03)00324-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we report that the transcription factor c-Maf is required for normal chondrocyte differentiation during endochondral bone development. c-maf is expressed in hypertrophic chondrocytes during fetal development (E14.5-E18.5), with maximal expression in the tibia occurring at E15.5 and E16.5, in terminally differentiated chondrocytes. In c-maf-null mice, fetal bone length is decreased approximately 10%, and hypertrophic chondrocyte differentiation is perturbed. There is an initial decrease in the number of mature hypertrophic chondrocytes at E15.5 in c-maf-null tibiae, with decreased expression domains of collagen X and osteopontin, markers of hypertrophic and terminal hypertrophic chondrocytes, respectively. By E16.5, there is an expanded domain of late hypertrophic, osteopontin-positive chondrocytes in the c-maf-/-. This accumulation of hypertrophic chondrocytes persists and is still observed at 4 weeks of age. These data suggest that c-Maf facilitates the initial chondrocyte terminal differentiation and influences the disappearance of hypertrophic chondrocytes. BrdU and TUNEL analyses show normal proliferation rate and apoptosis in the c-maf-null. There is a specific decrease in MMP-13 expression at E15.5 in the c-maf-null. MMP-13 is known to be regulated by AP-1 and may also be a target of c-Maf. Thus, cartilage is a novel system in which c-Maf acts during development, where c-Maf is required for normal chondrocyte differentiation.
Collapse
Affiliation(s)
- Helen E MacLean
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
11
|
Puente XS, Sánchez LM, Overall CM, López-Otín C. Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 2003; 4:544-58. [PMID: 12838346 DOI: 10.1038/nrg1111] [Citation(s) in RCA: 639] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The availability of the human and mouse genome sequences has allowed the identification and comparison of their respective degradomes--the complete repertoire of proteases that are produced by these organisms. Because of the essential roles of proteolytic enzymes in the control of cell behaviour, survival and death, degradome analysis provides a useful framework for the global exploration of these protease-mediated functions in normal and pathological conditions.
Collapse
Affiliation(s)
- Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | |
Collapse
|