1
|
More-Adate P, Lokhande KB, Shrivastava A, Doiphode S, Nagar S, Singh A, Baheti A. Pharmacoinformatics approach for the screening of Kovidra (Bauhinia variegata) phytoconstituents against tumor suppressor protein in triple negative breast cancer. J Biomol Struct Dyn 2024; 42:4263-4282. [PMID: 37288734 DOI: 10.1080/07391102.2023.2219744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Globally, 2.3 million women were diagnosed with breast cancer, with 6,85000 mortalities in year 2021; making it the world's most prevalent cancer. This growing global burden necessitates a new treatment option, and plant-based medicines offers a promising alternative to conventional cancer treatment. In this work, screening of phytoconstituents of an indigenous therapeutic plant, Bauhinia variegata carried out for potential regulator of tumor suppressor protein p53. Here, an in-silico analysis was employed to develop more effective, pharmaceutically potent small drug-like compounds that target tumor suppressor protein p53. The methanol and aqueous powdered extracts of Bauhinia variegata were prepared and phytochemically evaluated along with antioxidant property evaluation. The LC50 of methanol (325.33 µg/ml) and aqueous extract (361.15 µg/ml) showed their cytotoxic characteristics. Further, GCMS analysis of both the extracts reveals total 57 secondary metabolites. Among these, four lead compounds; compound 1, compound 2, compound 3 and compound 4 were found to have the highest binding ability (-8.15 to -5.40 kcal/mol) with p53. MD simulation and binding free energy validates these findings with highest binding free energy (-67.09 ± 4.87 kcal/mol) towards p53 by the lead phytocompound 2. Selected compounds exhibit excellent pharmacokinetic features and drug-like characteristics. The acute toxicity (LD50) values of the lead phytocompounds ranges from 670 mg/kg to 3100 mg/kg, with toxicity classes of IV and V. As a result, these druggable phytochemicals could serve as potential lead applicants for triple negative breast cancer treatment. However, more in vitro and in vivo research is planned to produce future breast cancer medicine. HIGHLIGHTSScreening of phytoconstituents of an indigenous therapeutic plant, Bauhinia variegata, for potential regulator of tumor suppressor protein p53.The LC50 of methanol (325.33µg/ml) and aqueous extract (361.15µg/ml) showed their cytotoxic characteristics.GCMS analysis of both the extracts reveals total 57 secondary metabolites. Among these, four lead compounds were found to have the highest binding affinity (-8.153 to -5.401 kcal/mol) with tumor suppressor protein p53.MD simulation along with the Prime MM/GBSA binding free energy validates this discovery with highest binding free energy (-67.09 ± 4.87 kcal/mol) towards p53 by the lead compound 2.The acute toxicity (LD50) values of the lead phytocompounds ranges from 670 mg/kg to 3100 mg/kg, with toxicity classes of IV and V.As a result, these druggable phytochemicals could serve as potential lead applicants for triple negative breast cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pallavi More-Adate
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Greater Noida, India
- Bioinformatics Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Sayali Doiphode
- Bioinformatics Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Shuchi Nagar
- Bioinformatics Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Akshay Baheti
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| |
Collapse
|
2
|
Livi L, Scotti V, Desideri I, Saieva C, Cecchini S, Francolini G, Becherini C, Delli Paoli C, Visani L, Salvestrini V, De Feo ML, Nori J, Bernini M, Sanchez L, Orzalesi L, Bianchi S, Meattini I. Phase 2 placebo-controlled, single-blind trial to evaluate the impact of oral ibandronate on bone mineral density in osteopenic breast cancer patients receiving adjuvant aromatase inhibitors: 5-year results of the single-centre BONADIUV trial. Eur J Cancer 2019; 108:100-110. [DOI: 10.1016/j.ejca.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
|
3
|
Hoorelbeke D, Decrock E, Van Haver V, De Bock M, Leybaert L. Calcium, a pivotal player in photodynamic therapy? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1805-1814. [PMID: 30076858 DOI: 10.1016/j.bbamcr.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy combines three non-toxic components: light, oxygen and a photosensitizer to generate singlet oxygen and/or other ROS molecules in order to target destruction of cancer cells. The damage induced in the targeted cells can furthermore propagate to non-exposed bystander cells thereby exacerbating the damage. Ca2+ signaling is strongly intertwined with ROS signaling and both play crucial roles in cell death. In this review we aimed to review current knowledge on the role of Ca2+ and ROS signaling, their effect on cell-cell propagation via connexin-linked mechanisms and the outcome in terms of cell death. In general, photodynamic therapy results in an increased cytosolic Ca2+ concentration originating from Ca2+ entry or Ca2+ release from internal stores. While photodynamic therapy can certainly induce cell death, the outcome depends on the cell type and the photosensitizer used. Connexin channels propagating the Ca2+ signal, and presumably regenerating ROS at distance, may play a role in spreading the effect to neighboring non-exposed bystander cells. Given the various cell types and photosensitizers used, there is currently no unified signaling scheme to explain the role of Ca2+ and connexins in the responses following photodynamic therapy. This article is part of a Special Issue entitled: Calcium signaling in health, disease and therapy edited by Geert Bultynck and Jan Parys.
Collapse
Affiliation(s)
| | - Elke Decrock
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Valérie Van Haver
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Marijke De Bock
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Luc Leybaert
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium.
| |
Collapse
|
4
|
Extracellular Ca2+-dependent enhancement of cytocidal potency of zoledronic acid in human oral cancer cells. Eur J Pharmacol 2015; 761:44-54. [DOI: 10.1016/j.ejphar.2015.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/28/2015] [Accepted: 04/01/2015] [Indexed: 11/20/2022]
|
5
|
Wu SN, Huang YM, Liao YK. Effects of ibandronate sodium, a nitrogen-containing bisphosphonate, on intermediate-conductance calcium-activated potassium channels in osteoclast precursor cells (RAW 264.7). J Membr Biol 2014; 248:103-15. [PMID: 25362532 DOI: 10.1007/s00232-014-9747-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/23/2014] [Indexed: 01/08/2023]
Abstract
Ibanonate sodium (Iban), a nitrogen-containing bisphosphonate, is recognized to reduce skeletal complications through an inhibition of osteoclast-mediated bone resorption. However, how this drug interacts with ion channels in osteoclasts and creates anti-osteoclastic activity remains largely unclear. In this study, we investigated the possible effects of Iban and other related compounds on ionic currents in the osteoclast precursor RAW 264.7 cells. Iban suppressed the amplitude of whole-cell K(+) currents (I K) in a concentration-dependent manner with an IC50 value of 28.9 μM. The I K amplitude was sensitive to block by TRAM-34 and Iban-mediated inhibition of I K was reversed by further addition of DCEBIO, an activator of intermediate-conductance Ca(2+)-activated K(+) (IKCa) channels. Intracellular dialysis with Iban diminished I K amplitude and further addition of ionomycin reversed its inhibition. In 17β-estradiol-treated cells, Iban-mediated inhibition of I K remained effective. In cell-attached current recordings, Iban applied to bath did not modify single-channel conductance of IKCa channels; however, it did reduce channel activity. Iban-induced inhibition of IKCa channels was voltage-dependent. As IKCa-channel activity was suppressed by KN-93, subsequent addition of Iban did not further decrease the channel open probability. Iban could not exert any effect on inwardly rectifying K(+) current in RAW 264.7 cells. Under current-clamp recordings, Iban depolarized the membrane of RAW 264.7 cells and DCEBIO reversed Iban-induced depolarization. Iban also suppressed lipopolysaccharide-stimulated migration of RAW 264.7 cells in a concentration-dependent manner. Therefore, the inhibition by Iban of IKCa channels would be an important mechanism underlying its actions on the functional activity of osteoclasts occurring in vivo.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, No. 1 University Road, Tainan City, 70101, Taiwan,
| | | | | |
Collapse
|
6
|
Kaur J, Dutta S, Chang KP, Singh N. A member of the Ras oncogene family, RAP1A, mediates antileishmanial activity of monastrol. J Antimicrob Chemother 2013; 68:1071-80. [PMID: 23292345 PMCID: PMC3625431 DOI: 10.1093/jac/dks507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives To investigate the mode of action of monastrol in intracellular Leishmania. Methods Microarray experiments were conducted on an Affymetrix GeneChip® Human Genome U133 Plus 2.0 Array, to determine the genes that encode proteins related to pathological alterations of cell signalling pathways in intracellular Leishmania amastigotes in response to monastrol treatment. Results Monastrol induced unprenylated Rap1A in intracellular Leishmania when exposed to this anticancer drug at the IC50 (10 μM). Monastrol, known to cause mitotic arrest in cancer cells, inhibited Rap1A prenylation (geranylgeranylation) in intracellular Leishmania, which resulted in blockade at the G1 phase of the cell cycle. Growth inhibition, rather than apoptosis, was found to be the mechanism by which monastrol displays antileishmanial activity. Conclusions Prenylation inhibitors (unprenylation) of cell signalling pathways can be exploited in Leishmania parasites as novel therapeutic tools.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Drug Target Discovery & Development Division, Central Drug Research Institute (CSIR), Chattar Manzil Palace, Lucknow, India
| | | | | | | |
Collapse
|
7
|
Arai N, Inoue S, Tomihara K, Tsuno H, Noguchi M. In vitro synergistic effects of zoledronic acid and calcium on viability of human epithelial cells. Oral Dis 2012; 19:200-5. [PMID: 22891943 DOI: 10.1111/j.1601-0825.2012.01971.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/06/2012] [Accepted: 06/19/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Bisphosphonate-related osteonecrosis of the jaw is a common complication with defective wound healing of oral mucosa and frequently occurs in patients receiving zoledronic acid (ZA). The aim of this in vitro study was to investigate whether ZA has a cytotoxic effect at clinically relevant concentrations on epithelial cells when calcium conditions are altered. METHODS HaCaT human keratinocyte cells were treated with ZA in the presence of various concentrations of calcium. The concentrations of ZA included submicromolar ones, which are comparable with those found in the plasma of patients. Cell viability and apoptosis were assessed using MTT assay and annexin V flow cytometry. RESULTS Under standard culture conditions, cell growth was inhibited at 1 μM of ZA or above, but was unaffected by lower concentrations. However, when calcium concentrations were moderately increased, cell viability was decreased and apoptosis was induced at 0.2-0.3 μM of ZA. Moreover, a 50% reduction in serum in the hypercalcemic medium resulted in a significant decrease in cell viability at a much lower concentration (0.05 μM). CONCLUSION These results suggest that clinically relevant concentrations of ZA, which alone have little effects, can be toxic to the epithelial cells depending on the conditions of extracellular calcium.
Collapse
Affiliation(s)
- N Arai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan
| | | | | | | | | |
Collapse
|
8
|
Deng B, Jia LQ, Gao FY, Cui J, Li H. Effect of Sangu Decoction () on metastatic bone destruction in rats with mammary cancer. Chin J Integr Med 2012; 18:304-7. [PMID: 22457143 DOI: 10.1007/s11655-011-0802-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To study and evaluate the effect of Sangu Decoction (SGD, ) on the bone destruction due to mammary cancer metastasis. METHODS Metastasis rat mammary tumor-1 cells were transplanted into the left hind limb tibia of SD rats to establish the bone metastasis of the mammary cancer model. The modeled rats were treated with SGD for observing its effect on rats' pain behavior, including 50% paw withdrawal threshold (50% PWT) after von Frey fiber stimulation, burden difference of bilateral feet, and thermal withdrawal latency (TWL), with zoledronic acid as the positive control. Moreover, the damage in the tibia sample of rats was scored by an iconographic method, and the bone mineral density (BMD) as well as the bone mineral content (BMC) were estimated. RESULTS The model established showed characteristics of mixed metastasis, revealing the manifestations of tumor development, bone destruction, cancerous pain, etc. In the SGD-treated group, 50% PWT was prolonged (8.13 ± 4.76 vs. 2.30 ± 2.19), and TWL was longer (3.48 ± 0.62 s vs. 2.89 ± 0.26 s) than those in the control group, respectively (P<0.05 or P<0.01). Iconographic scoring also showed improvement of BMD (0.134 ± 0.009 vs. 0.120 ± 0.007, P<0.01) and an elevating trend of BMC in the SGD-treated group. CONCLUSION SGD could effectively alleviate the cancerous pain of bone metastasis and mitigate the metastasis that cause osteolytic destruction of bone.
Collapse
Affiliation(s)
- Bo Deng
- Department of Chinese Medicine on Tumor, China-Japan Friendship Hospital, Beijing, China.
| | | | | | | | | |
Collapse
|
9
|
Id Boufker H, Lagneaux L, Fayyad-Kazan H, Badran B, Najar M, Wiedig M, Ghanem G, Laurent G, Body JJ, Journé F. Role of farnesoid X receptor (FXR) in the process of differentiation of bone marrow stromal cells into osteoblasts. Bone 2011; 49:1219-31. [PMID: 21893226 DOI: 10.1016/j.bone.2011.08.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/16/2022]
Abstract
Bone tissue contains bile acids which accumulate from serum and which can be released in large amounts in the bone microenvironment during bone resorption. However, the direct effects of bile acids on bone cells remain largely unexplored. Bile acids have been identified as physiological ligands of the farnesoid X receptor (FXR, NR1H4). In the present study, we have examined the effects of FXR activation/inhibition on the osteoblastic differentiation of human bone marrow stromal cells (BMSC). We first demonstrated the expression of FXR in BMSC and SaOS2 osteoblast-like cells, and observed that FXR activation by chenodeoxycholic acid (CDCA) or by farnesol (FOH) increases the activity of alkaline phosphatase and the calcification of the extracellular matrix. In addition, we observed that FXR agonists are able to stimulate the expression of osteoblast marker genes [bone sialoprotein (BSP), osteocalcin (OC), osteopontin (OPN) and alkaline phosphatase (ALP)] (FXR involvement validated by shRNA-induced gene silencing), as well as the DNA binding activity of the bone transcription factor RUNX2 (EMSA and ChIP assay). Importantly, we observed that nitrogen-containing bisphosphonates (BPs) inhibit the basal osteoblastic differentiation of BMSC, possibly through suppression of endogenous FOH production, independently of their effects on protein prenylation. Likewise, we found that the FXR antagonist guggulsterone (GGS) inhibits ALP activity, calcium deposition, DNA binding of RUNX2, and bone marker expression, indicating that GGS interferes with osteoblastic differentiation. Furthermore, GGS induced the appearance of lipid vesicles in BMSC and stimulated the expression of adipose tissue markers (peroxisome proliferator activated receptor-gamma (PPARγ), adipoQ, leptin and CCAAT/enhancer-binding protein-alpha (C/EBPα)). In conclusion, our data support a new role for FXR in the modulation of osteoblast/adipocyte balance: its activation stimulates RUNX2-mediated osteoblastic differentiation of BMSC, whereas its inhibition leads to an adipocyte-like phenotype.
Collapse
Affiliation(s)
- Hichame Id Boufker
- Laboratoire d'Hématologie Expérimentale, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Açil Y, Möller B, Niehoff P, Rachko K, Gassling V, Wiltfang J, Simon MJK. The cytotoxic effects of three different bisphosphonates in-vitro on human gingival fibroblasts, osteoblasts and osteogenic sarcoma cells. J Craniomaxillofac Surg 2011; 40:e229-35. [PMID: 22082730 DOI: 10.1016/j.jcms.2011.10.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/07/2011] [Accepted: 10/10/2011] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION Osteonecrosis of the jaw (ONJ) is an emerging condition in patients undergoing long-term administration of bisphosphonates (BP) for the treatment of osteoporosis and hypercalcaemia associated with malignancy, multiple myeloma, and metastatic breast and prostate cancers. This is a follow-up study, its purpose was to examine the effects in-vitro of intravenous zoledronic acid (ZOL) and pamidronate (PAM) and oral alendronate (FOS) on the human oral cavity using gingival fibroblasts and osteoblasts cells and, in addition, osteogenic sarcoma cells (SaOS-2-cells). MATERIALS AND METHODS Human gingival fibroblasts, osteoblasts and SaOS-2-cells were seeded on multiple 6-well plates at a density of 5 × 10(5)cells in a 4-week cell culture. Four different concentrations (1, 5, 10, 20 μM) of each BP (ZOL, PAM, FOS) and pyrophosphate were used in this study. RESULTS All BP decreased collagen production and lowered cell proliferation in-vitro. ZOL was the component with most inhibitory effect. CONCLUSION The findings in this study suggest that ZOL, PAM and FOS generally diminish cell proliferation and collagen production of human gingival fibroblasts, osteoblasts and SaOS-2-cells. The present follow-up study shows that not only ZOL and PAM but also FOS have a strong inhibitory effect on collagen production and cell survival in-vitro.
Collapse
Affiliation(s)
- Y Açil
- Department of Oral and Maxillofacial Surgery, UK S-H, Campus Kiel, Arnold-Heller-Strasse 3, Haus 26, 24105 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Chebbi I, Migianu-Griffoni E, Sainte-Catherine O, Lecouvey M, Seksek O. In vitro assessment of liposomal neridronate on MDA-MB-231 human breast cancer cells. Int J Pharm 2009; 383:116-22. [PMID: 19748562 DOI: 10.1016/j.ijpharm.2009.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 11/28/2022]
Abstract
Bisphosphonates have been used for decades in the standard therapy of bone-related diseases, including bone metastasis of various malignancies, and they might as well be toxic on early cancer cells themselves. In order to allow a better delivery of neridronate (a N-containing bisphosphonate with relatively poor activity), liposomes were evaluated in vitro on cancer cell lines (MDA-MB-231, U87-MG and Caco2). After chemical synthesis, this water-soluble molecule was encapsulated into liposomes containing DOPC:DOPG:Chol (72:27:1 molar ratio). The influence of neridronate (free or liposomal) on cell viability or proliferation after treatment was evaluated using the MTT method, as well as cell migration and invasion assays; these techniques showed a drastic improvement of the action of neridronate on MDA-MB-231 cells with an EC(50) 50 times lower when neridronate was encapsulated. Internalization of liposomes was followed by flow cytometry and fluorescence microscopy, demonstrating internalization via the endocytic pathway. Furthermore, since overexpression of matrix metalloproteinases (particularly MMP-2 and MMP-9) has been correlated to poor prognosis in many cancer types, detection of MMP expression is a satisfactory indication of the therapy efficiency and was then performed on treated cells. On MDA-MB-231 cells, MPPs expression was also significantly reduced by neridronate while entrapped in liposomes.
Collapse
Affiliation(s)
- Imène Chebbi
- ANBioPhy, CNRS FRE 3207, Université Pierre & Marie Curie, Génopole Campus 1, Evry, France
| | | | | | | | | |
Collapse
|