1
|
Kong D, Cho H, Hwang S, Lee A, Lee U, Kim YB, Geum DH, Kim BS, Jung YM, Kim HY, Cho GJ, Ahn K, Oh MJ, Kim HJ, Cho HY, Park JS, Hong S. The Role of Prolactin in Amniotic Membrane Regeneration: Therapeutic Potential for Premature Rupture of Membranes. Endocrinology 2024; 165:bqae095. [PMID: 39082703 DOI: 10.1210/endocr/bqae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 08/20/2024]
Abstract
Premature rupture of membranes (PROM) is defined as rupture of fetal membranes before the onset of labor. Prolactin (PRL) is secreted by decidual membranes and accumulated significantly in the amniotic fluid during pregnancy. PRL could ameliorate inflammation and collagen degradation in fetal membranes. However, the role of PRL in amniotic membrane is not well characterized. We isolated human amniotic epithelial stem cells (hAESCs) from human fetal membranes to study the effect of PRL on proliferation, migration, and antioxidative stress. Amniotic pore culture technique (APCT) model was constructed to evaluate the tissue regeneration effect in vitro. The potential targets and pathways of PRL acting in amnion via integrated bioinformatic methods. PRL had a dose-dependent effect on hAESCs in vitro. PRL (500 ng/mL) significantly improved the viability of hAESCs and inhibited cell apoptosis, related to the upregulation of CCN2 expression and downregulation of Bax, Caspase 3, and Caspase 8. PRL accelerated migration process in hAESCs via downregulation of MMP2, MMP3, and MMP9. PRL attenuated the cellular damage and mitochondrial dysfunction induced by hydrogen peroxide in hAESCs. PRL accelerated the healing process in the APCT model significantly. The top 10 specific targets (IGF1R, SIRT1, MAP2K1, CASP8, MAPK14, MCL1, NFKB1, HIF1A, MTOR, and HSP90AA1) and signaling pathways (such as HIF signaling pathway) were selected using an integrated bioinformatics approach. PRL improves the viability and antioxidative stress function of hAESCs and the regeneration of ruptured amniotic membranes in vitro. Thus, PRL has great therapeutic potential for prevention and treatment of ruptured membranes.
Collapse
Affiliation(s)
- Deqi Kong
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Heeryun Cho
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Soowon Hwang
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ahyoung Lee
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Uk Lee
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Yun-Bae Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Dong Ho Geum
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Byung-Soo Kim
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Young Mi Jung
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ho Yeon Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kihoon Ahn
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Min-Jeong Oh
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hai-Joong Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hee Young Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - SoonCheol Hong
- Biomedical Sciences Department, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Pang H, Gong Y, Wang Y, Zhang L. The expression of miR-21, HSP90a and gGASP-1 in serum of patients with lung cancer and their correlation with pathological subtypes. J Med Biochem 2024; 43:460-468. [PMID: 39139173 PMCID: PMC11318063 DOI: 10.5937/jomb0-48051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 08/15/2024] Open
Abstract
Background To investigate the expression of miR-21, heat shock protein-90a (HSP90a) and G protein-coupled receptorrelated sorting protein 1(GASP-1) in the serum of lung cancer patients and their correlation with pathological subtypes. Methods Eighty patients with lung cancer were included in the lung cancer group from May 2020 to May 2022, and 40 volunteers who underwent physical examination were randomly included in the control group according to the group ratio of 2:1. This ratio balances the need for a sufficiently large experimental group to detect significant effects with the practicality of recruiting a manageable control group. To ensure the validity of our findings, we meticulously calculated the sample size to achieve adequate statistical power, thus enabling us to draw reliable conclusions. Serum miR-21, HSP90a and GASP-1 levels of patients in the two groups were detected. We quantitatively assessed the serum levels of miR-21, HSP90a, and GASP1 in lung cancer patients and healthy volunteers. We employed enzyme-linked immunosorbent assay (ELISA) for HSP90a and GASP-1, and reverse transcription-polymerase chain reaction (RT-PCR) for miR-21, ensuring precise quantification. To explore the correlation between it and pathological subtypes, TNM stage and lymph node metastasis of lung cancer patients. TNM stands for Tumor, Node, and Metastasis. This system is widely used for staging cancer and describes the size and extent of the primary tumor (T), the absence or presence of cancer in nearby lymph nodes (N), and whether the cancer has spread to other parts of the body (M). Results The serum levels of miR-21, HSP90a and GASP1 in lung cancer group were higher than those in control group (P < 0.05). ROC curve analysis showed that serum miR-21, HSP90a and GASP-1 levels had certain value in the diagnosis of lung cancer, and their AUC values were 0.901, 0.874 and 0.865, respectively (P < 0.05). There was no difference in the relative expression level of serum miR-21 between squamous cell carcinoma group and adenocarcinoma group (P>0.05), but the levels of HSP90a and GASP-1 in adenocarcinoma group were higher than those in squamous cell carcinoma group (P < 0.05). There was no difference in the levels of serum miR-21, HSP90a and GASP-1 between stage I and stage II groups (P>0.05). The levels of serum miR-21, HSP90a and GASP-1 in stage III and stage IV groups were higher than those in stage I and stage II groups, and those in stage IV were higher than those in stage III group (P < 0.05). The serum levels of miR-21, HSP90a and GASP-1 in patients with metastasis were higher than those in patients without metastasis (P < 0.05). Conclusions Our study concludes that there is a notable association between elevated serum levels of miR-21, HSP90a, and GASP-1 and lung cancer. However, it is crucial to acknowledge that these findings are preliminary and further statistical analysis is needed to strengthen these associations. Future studies with comprehensive statistical evaluation will be vital to validate these potential biomarkers for lung cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Hongyan Pang
- Cangzhou Central Hospital, Department of Respiratory and Critical Care Medicine, Cangzhou, China
| | - Yange Gong
- Cangzhou Central Hospital, Department of Respiratory and Critical Care Medicine, Cangzhou, China
| | - Yaojie Wang
- Cangzhou Central Hospital, Department of Respiratory and Critical Care Medicine, Cangzhou, China
| | - Lianyong Zhang
- Cangzhou Central Hospital, Department of Respiratory and Critical Care Medicine, Cangzhou, China
| |
Collapse
|
3
|
Yan LJ, Y. Lau AT, Xu YM. The regulation of microRNAs on chemoresistance in triple-negative breast cancer: a recent update. Epigenomics 2024; 16:571-587. [PMID: 38639712 PMCID: PMC11160456 DOI: 10.2217/epi-2023-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has negative expressions of ER, PR and HER2. Due to the insensitivity to both endocrine therapy and HER2-targeted therapy, the main treatment method for TNBC is cytotoxic chemotherapy. However, the curative effect of chemotherapy is limited because of the existence of acquired or intrinsic multidrug resistance. MicroRNAs (miRNAs) are frequently dysregulated in malignant tumors and involved in tumor occurrence and progression. Interestingly, growing studies show that miRNAs are involved in chemoresistance in TNBC. Thus, targeting dysregulated miRNAs could be a plausible way for better treatment of TNBC. Here, we present the updated knowledge of miRNAs associated with chemoresistance in TNBC, which may be helpful for the early diagnosis, prognosis and treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Li-Jun Yan
- Laboratory of Cancer Biology & Epigenetics, Department of Cell Biology & Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology & Epigenetics, Department of Cell Biology & Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology & Epigenetics, Department of Cell Biology & Genetics, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
4
|
Mattoo S, Gupta A, Chauhan M, Agrawal A, Pore SK. Prospects and challenges of noncoding-RNA-mediated inhibition of heat shock protein 90 for cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195006. [PMID: 38218528 DOI: 10.1016/j.bbagrm.2024.195006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Heat Shock Protein 90 (HSP90) is a potential drug target for cancer therapy as it is often dysregulated in several cancers, including lung, breast, pancreatic, and prostate cancers. In cancer, HSP90 fails to maintain the structural and functional integrity of its several client proteins which are involved in the hallmarks of cancer such as cell proliferation, invasion, migration, angiogenesis, and apoptosis. Several small molecule inhibitors of HSP90 have been shown to exhibit anticancer effects in vitro and in vivo animal models. However, a few of them are currently under clinical studies. The status and potential limitations of these inhibitors are discussed here. Studies demonstrate that several noncoding RNAs (ncRNAs) such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) regulate HSP90 and its client proteins to modulate cellular processes to exhibit oncogenic or tumor suppressing properties. Over the last decade, miRNAs and lncRNAs have drawn significant interest from the scientific community as therapeutic agents or targets for clinical applications. Here, we discuss the detailed mechanistic regulation of HSP90 and its client proteins by ncRNAs. Moreover, we highlight the significance of these ncRNAs as potential therapeutic agents/targets, and the challenges associated with ncRNA-based therapies. This article aims to provide a holistic view on HSP90-regulating ncRNAs for the development of novel therapeutic strategies to combat cancer.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Abha Gupta
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Manvee Chauhan
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Akshi Agrawal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
5
|
Bonni S, Brindley DN, Chamberlain MD, Daneshvar-Baghbadorani N, Freywald A, Hemmings DG, Hombach-Klonisch S, Klonisch T, Raouf A, Shemanko CS, Topolnitska D, Visser K, Vizeacoumar FJ, Wang E, Gibson SB. Breast Tumor Metastasis and Its Microenvironment: It Takes Both Seed and Soil to Grow a Tumor and Target It for Treatment. Cancers (Basel) 2024; 16:911. [PMID: 38473273 DOI: 10.3390/cancers16050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Metastasis remains a major challenge in treating breast cancer. Breast tumors metastasize to organ-specific locations such as the brain, lungs, and bone, but why some organs are favored over others remains unclear. Breast tumors also show heterogeneity, plasticity, and distinct microenvironments. This contributes to treatment failure and relapse. The interaction of breast cancer cells with their metastatic microenvironment has led to the concept that primary breast cancer cells act as seeds, whereas the metastatic tissue microenvironment (TME) is the soil. Improving our understanding of this interaction could lead to better treatment strategies for metastatic breast cancer. Targeted treatments for different subtypes of breast cancers have improved overall patient survival, even with metastasis. However, these targeted treatments are based upon the biology of the primary tumor and often these patients' relapse, after therapy, with metastatic tumors. The advent of immunotherapy allowed the immune system to target metastatic tumors. Unfortunately, immunotherapy has not been as effective in metastatic breast cancer relative to other cancers with metastases, such as melanoma. This review will describe the heterogeneic nature of breast cancer cells and their microenvironments. The distinct properties of metastatic breast cancer cells and their microenvironments that allow interactions, especially in bone and brain metastasis, will also be described. Finally, we will review immunotherapy approaches to treat metastatic breast tumors and discuss future therapeutic approaches to improve treatments for metastatic breast cancer.
Collapse
Affiliation(s)
- Shirin Bonni
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - M Dean Chamberlain
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Nima Daneshvar-Baghbadorani
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology, Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Afshin Raouf
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Carrie Simone Shemanko
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Diana Topolnitska
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Kaitlyn Visser
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Medical Genetics, and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Spencer B Gibson
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
6
|
Chen S, Long M, Li XY, Li QM, Pan LH, Luo JP, Zha XQ. Codonopsis lanceolata polysaccharide ameliorates high-fat diet induced-postpartum hypogalactia via stimulating prolactin receptor-mediated Jak2/Stat5 signaling. Int J Biol Macromol 2024; 259:129114. [PMID: 38181915 DOI: 10.1016/j.ijbiomac.2023.129114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
This study aims to investigate the ameliorative effect of Codonopsis lanceolata polysaccharide (PCL) on mice with hypogalatia induced by a high-fat diet (HFD) and the potential underlying mechanism. We found that oral administration of PCL demonstrated significant benefits in countering the negative effects of HFD, including weight gain, hepatic steatosis, mesenteric adipocyte hypertrophy, and abnormal glucose/lipid metabolism. In addition, PCL improved mammary gland development and enhanced lactogenesis performance. Histologically, PCL ameliorated the retardation of ductal growth, reduced mammary fat pad thickness, improved the incomplete linear encapsulation of luminal epithelium and myoepithelium, and increased the proliferation of mammary epithelial cells. Flow cytometry analysis showed that PCL mitigated the detrimental effects of HFD on mammary gland development by promoting the proliferation and differentiation of mammary epithelial cells. Mechanistic studies revealed that PCL upregulated the levels of prolactin (PRL) and its receptor (PRLR) in the mammary gland, activated JAK2/STAT5 signaling pathway, and increased the expression of p63, ERBB4, and NRG1. Overall, PCL can ameliorate HFD-induced hypogalactia by activating PRLR-mediated JAK2/STAT5 signaling. Our findings offer a methodological and theoretical foundation for investigating the functional constituents of traditional Chinese medicine in the treatment of hypogalactia.
Collapse
Affiliation(s)
- Shun Chen
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Miao Long
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
7
|
Singh P, Ali SA, Kumar S, Mohanty AK. CRISPR-Cas9 based knockout of S100A8 in mammary epithelial cells enhances cell proliferation and triggers oncogenic transformation via the PI3K-Akt pathway: Insights from a deep proteomic analysis. J Proteomics 2023; 288:104981. [PMID: 37544501 DOI: 10.1016/j.jprot.2023.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
S100A8 is a calcium-binding protein with multiple functions, including being a chemoattractant for phagocytes and playing a key role in the inflammatory response. Its expression has been shown to influence epithelial-mesenchymal transition (EMT) and metastasis in colorectal cancer. However, the role of S100A8 in cell proliferation and differentiation remains unknown. In this study, we used the CRISPR-Cas9 system to knock out S100A8 in healthy mammary epithelial cells and investigated the resulting changes in proteome profiling and signaling pathways. Our results showed that S100A8 knockout led to an increase in cell proliferation and migration, reduced cell-cell adhesion, and increased apoptosis compared to wildtype cells. Proteomics data indicated that S100A8 significantly affects cell cycle progression, cell proliferation, and cell survival through the PI3K-Akt pathway. Furthermore, our findings suggest that S100A8 function is associated with Pten expression, a negative regulator of the PI3K-Akt pathway. These results indicate that S100A8 dysregulation in healthy cells can lead to altered cellular physiology and higher proliferation, similar to cancerous growth. Therefore, maintaining S100A8 expression is critical for preserving healthy cell physiology. This study provides novel insights into the role of S100A8 in cell proliferation and differentiation and its potential relevance to cancer biology. SIGNIFICANCE: The study suggests that maintaining S100A8 expression is critical for preserving healthy cell physiology, and dysregulation of S100A8 in healthy cells can lead to altered cellular physiology and higher proliferation, similar to cancerous growth. Therefore, targeting the PI3K-Akt pathway or regulating Pten expression, a negative regulator of the PI3K-Akt pathway, may be potential strategies for cancer treatment by controlling S100A8 dysregulation. Additionally, S100A8 and S100A9 have been shown to promote metastasis of breast carcinoma by forming a metastatic milieu. However, the differential expression of S100A8 in tumors and its dual effects of antitumor and protumor make the relationship between S100A8 and tumors complicated. Currently, most research focuses on the function of S100A8 as a secretory protein in the microenvironment of tumors, and its function inside healthy cells without forming dimers remains unclear. Furthermore, the study provides insight into the role of S100A8 in cell proliferation and differentiation, which may have implications for other diseases beyond cancer. The functional role of S100A8 in normal mammary epithelial cells remains completely uncertain. Therefore, the objective of this study is to investigate the function of S100A8 on proliferation in mammary epithelial cells after its deletion and to elucidate the underlying proteins involved in downstream signaling. Our findings indicate that the deletion of S100A8 leads to excessive proliferation in normal mammary epithelial cells, reduces apoptosis, and affects cell-cell adhesion molecules required for cellular communication, resulting in a cancer-like phenotype.
Collapse
Affiliation(s)
- Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India; Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India; Indian Veterinary Research Institute, Mukteshwar, 263138 Nainital, Uttarakhand, India.
| |
Collapse
|
8
|
Li Z, Fu H, Liu J, Song W, Zeng M, Wang J. LncRNA PVT1 promotes bladder cancer progression by forming a positive feedback loop with STAT5B. Pathol Res Pract 2023; 248:154635. [PMID: 37392551 DOI: 10.1016/j.prp.2023.154635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Plasmacytoma Variant Translocation 1 (LncRNA PVT1) and signal transducer and activator of transcription 5B (STAT5B) play important roles in various cancers, but their interaction in bladder cancer (BC) remains unclear. PURPOSE We aimed to explore the interaction between lncRNA PVT1 and STAT5B in BC tumorigenesis and find potential drugs for BC. METHODS The association of the expression of lncRNA PVT1 and STAT5B to the prognosis of BC patients was evaluated via bioinformatic analysis. Loss- and gain-of-function assays were performed to determine the biological functions of lncRNA PVT1 and STAT5B. Quantitative real time polymerase chain reaction, Western blot, immunohistochemistry, and immunofluorescence were used to detect lncRNA PVT1 and STAT5B expression. Fluorescence in situ hybridization, RNA pull-down and RNA immunoprecipitation assays were conducted to determine the regulatory effect of lncRNA PVT1 on STAT5B. The transcriptional effect of STAT5B on lncRNA PVT1 gene was determined using luciferase reporter assay, chromatin immunoprecipitation and DNA-affinity precipitation assays. Connectivity Map analysis was used to screen anticancer drugs. RESULTS LncRNA PVT1 and STAT5B enhance the expression of each other and promote the malignant phenotypes in BC, including cell viability and invasion. lncRNA PVT1 stabilizes STAT5B by decreasing ubiquitination, enhances STAT5B phosphorylation, and promotes the translocation to the nucleus of STAT5B to trigger further carcinogenesis activities. In the nucleus, STAT5B activates the transcription of lncRNA PVT1 by binding directly to its promoter region, leading to a positive feedback. Tanespimycin effectively abated the oncogenic effect. CONCLUSIONS We first identified the lncRNA PVT1/STAT5B positive feedback loop for bladder carcinogenesis, and found a potentially effective drug for BC.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Huifeng Fu
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Jian Liu
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Wei Song
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China
| | - Mingqiang Zeng
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China.
| | - Jiansong Wang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province 410005, China.
| |
Collapse
|
9
|
Dorostghoal M, Galehdari H, Hemadi M, Izadi F. Seminal prolactin is associated with HSP90 transcript content in ejaculated spermatozoa. Clin Exp Reprod Med 2023; 50:99-106. [PMID: 37258103 DOI: 10.5653/cerm.2022.05757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/06/2023] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVE Evidence indicates that an imbalance between the production of reactive oxygen species and defense ability of antioxidants has clinical significance in the pathophysiology of male infertility. To investigate the role of seminal prolactin (PRL) in the fertilizing capacity of men, the present study evaluated the associations of seminal PRL levels with semen parameters and heat shock protein 90 (HSP90) transcript abundance in ejaculated spermatozoa. METHODS We assessed seminal PRL levels and the abundance of HSP90 transcripts in ejaculated spermatozoa from normozoospermic donors (n=18) and infertile men (n=18). The transcript content of HSP90 in ejaculated spermatozoa was analyzed using real-time polymerase chain reaction. RESULTS Seminal PRL concentrations in infertile patients were significantly lower (p=0.004) than in fertile controls. Seminal PRL showed relatively good diagnostic power for discriminating infertile men (area under the curve=0.776; 95% confidence interval, 0.568 to 0.934; p=0.005). Significant positive correlations were seen between seminal PRL levels and sperm count (r=0.400, p=0.016) and progressive motility (r=0.422, p=0.010). Infertile patients showed a significantly higher abundance of sperm HSP90 than fertile controls (p=0.040). Sperm HSP90 transcript abundance was negatively correlated with sperm progressive motility (r=0.394, p=0.018). Men with higher seminal PRL levels exhibited a lower abundance of sperm HSP90 transcripts. CONCLUSION Our finding demonstrated associations among semen quality, seminal PRL levels, and the abundance of HSP90 transcripts in ejaculated spermatozoa. Seminal PRL may contribute to male fertility by maintaining the seminal antioxidant capacity and may have the potential to act as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mehran Dorostghoal
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masoud Hemadi
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Fahimeh Izadi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
10
|
Hazra J, Vijayakumar A, Mahapatra NR. Emerging role of heat shock proteins in cardiovascular diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:271-306. [PMID: 36858739 DOI: 10.1016/bs.apcsb.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heat Shock Proteins (HSPs) are evolutionarily conserved proteins from prokaryotes to eukaryotes. They are ubiquitous proteins involved in key physiological and cellular pathways (viz. inflammation, immunity and apoptosis). Indeed, the survivability of the cells under various stressful conditions depends on appropriate levels of HSP expression. There is a growing line of evidence for the role of HSPs in regulating cardiovascular diseases (CVDs) (viz. hypertension, atherosclerosis, atrial fibrillation, cardiomyopathy and heart failure). Furthermore, studies indicate that a higher concentration of circulatory HSP antibodies correlate to CVDs; some are even potential markers for CVDs. The multifaceted roles of HSPs in regulating cellular signaling necessitate unraveling their links to pathophysiology of CVDs. This review aims to consolidate our understanding of transcriptional (via multiple transcription factors including HSF-1, NF-κB, CREB and STAT3) and post-transcriptional (via microRNAs including miR-1, miR-21 and miR-24) regulation of HSPs. The cytoprotective nature of HSPs catapults them to the limelight as modulators of cell survival. Yet another attractive prospect is the development of new therapeutic strategies against cardiovascular diseases (from hypertension to heart failure) by targeting the regulation of HSPs. Moreover, this review provides insights into how genetic variation of HSPs can contribute to the manifestation of CVDs. It would also offer a bird's eye view of the evolving role of different HSPs in the modulation and manifestation of cardiovascular disease.
Collapse
Affiliation(s)
- Joyita Hazra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Anupama Vijayakumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
11
|
Rezaee M, Mohammadi F, Keshavarzmotamed A, Yahyazadeh S, Vakili O, Milasi YE, Veisi V, Dehmordi RM, Asadi S, Ghorbanhosseini SS, Rostami M, Alimohammadi M, Azadi A, Moussavi N, Asemi Z, Aminianfar A, Mirzaei H, Mafi A. The landscape of exosomal non-coding RNAs in breast cancer drug resistance, focusing on underlying molecular mechanisms. Front Pharmacol 2023; 14:1152672. [PMID: 37153758 PMCID: PMC10154547 DOI: 10.3389/fphar.2023.1152672] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. Like many other cancers, BC therapy is challenging and sometimes frustrating. In spite of the various therapeutic modalities applied to treat the cancer, drug resistance, also known as, chemoresistance, is very common in almost all BCs. Undesirably, a breast tumor might be resistant to different curative approaches (e.g., chemo- and immunotherapy) at the same period of time. Exosomes, as double membrane-bound extracellular vesicles 1) secreted from different cell species, can considerably transfer cell products and components through the bloodstream. In this context, non-coding RNAs (ncRNAs), including miRNAs, long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are a chief group of exosomal constituents with amazing abilities to regulate the underlying pathogenic mechanisms of BC, such as cell proliferation, angiogenesis, invasion, metastasis, migration, and particularly drug resistance. Thereby, exosomal ncRNAs can be considered potential mediators of BC progression and drug resistance. Moreover, as the corresponding exosomal ncRNAs circulate in the bloodstream and are found in different body fluids, they can serve as foremost prognostic/diagnostic biomarkers. The current study aims to comprehensively review the most recent findings on BC-related molecular mechanisms and signaling pathways affected by exosomal miRNAs, lncRNAs, and circRNAs, with a focus on drug resistance. Also, the potential of the same exosomal ncRNAs in the diagnosis and prognosis of BC will be discussed in detail.
Collapse
Affiliation(s)
- Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Veisi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sepideh Asadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Abbas Azadi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Nushin Moussavi
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| |
Collapse
|
12
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
13
|
Yuan Z, Wang L, Chen C. Analysis of the prognostic, diagnostic and immunological role of HSP90α in malignant tumors. Front Oncol 2022; 12:963719. [PMID: 36158677 PMCID: PMC9499179 DOI: 10.3389/fonc.2022.963719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Heat shock protein 90α (HSP90α) encoded by the HSP90AA1 gene, is the stress inducible isoform of the molecular chaperone HSP90, and was demonstrated as a promising hallmark to diagnose, prognosis in malignant tumors. This study is to evaluate the value of HSP90α in diagnosis, prognosis and immunotherapy of malignant tumors by investigating the expression of HSP90α in plasma of various tumors and analyzing the expression of HSP90α at gene and protein levels via pan-cancer database. We founded that levels of HSP90α in malignant tumors groups were significantly higher than healthy controls in serum. Pan-cancer analysis showed that HSP90AA1 was highly expressed in 27 of 33 tumors, but low in individual cancers (such as renal malignancies). The plasma HSP90α level was positively correlated with the stage of malignant tumor, but there was no significant difference between HSP90AA1 and the stage of most tumors. Cox regression analysis showed that HSP90AA1 expression was significantly correlated with OS in only 6 of the 32 cancers, including LIHC, KIRC, HNSC, LUAD, BRCA and MESO. Up-regulation of HSP90AA1 in most tumors was positively correlated with PDCD1LG2 and CD274 immune checkpoint genes. T cell CD8+ was positively correlated with HSP90AA1 in COAD, DLBC and UVM, and negatively correlated with HSP90AA1 in ESCA, GBM, HNSC, KIRC, KIRP, UCEC and STAD. The AUC of HSP90α are generally high in different tumor groups, which indicated its diagnostic value in malignant tumors. In conclusion, serum HSP90α in patients with malignant tumor is generally elevated, which is of positive significance as an independent diagnosis and combined diagnosis. However, we found that the expression level of HSP90AA1 gene in most tumors was not completely consistent with the serum level, and even down-regulated in some tumors. Plasma levels can be used as biomarkers of poor prognosis in some tumors, but it cannot be used as a biomarker for poor prognosis of all tumors, and more in-depth studies are needed.
Collapse
Affiliation(s)
- Zhimin Yuan
- Xi’an Jiaotong University, Xi’an, China
- Department of Clinical Laboratory, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Longhao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Cheng Chen
- Department of General Dentistry/Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Cheng Chen,
| |
Collapse
|
14
|
Maiti S, Picard D. Cytosolic Hsp90 Isoform-Specific Functions and Clinical Significance. Biomolecules 2022; 12:1166. [PMID: 36139005 PMCID: PMC9496497 DOI: 10.3390/biom12091166] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is a molecular chaperone and a key regulator of proteostasis under both physiological and stress conditions. In mammals, there are two cytosolic Hsp90 isoforms: Hsp90α and Hsp90β. These two isoforms are 85% identical and encoded by two different genes. Hsp90β is constitutively expressed and essential for early mouse development, while Hsp90α is stress-inducible and not necessary for survivability. These two isoforms are known to have largely overlapping functions and to interact with a large fraction of the proteome. To what extent there are isoform-specific functions at the protein level has only relatively recently begun to emerge. There are studies indicating that one isoform is more involved in the functionality of a specific tissue or cell type. Moreover, in many diseases, functionally altered cells appear to be more dependent on one particular isoform. This leaves space for designing therapeutic strategies in an isoform-specific way, which may overcome the unfavorable outcome of pan-Hsp90 inhibition encountered in previous clinical trials. For this to succeed, isoform-specific functions must be understood in more detail. In this review, we summarize the available information on isoform-specific functions of mammalian Hsp90 and connect it to possible clinical applications.
Collapse
Affiliation(s)
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Geneve, Switzerland
| |
Collapse
|
15
|
Wakasa H, Tsugami Y, Koyama T, Han L, Nishimura T, Isobe N, Kobayashi K. Adverse Effects of High Temperature On Mammary Alveolar Development In Vitro. J Mammary Gland Biol Neoplasia 2022; 27:155-170. [PMID: 35581442 DOI: 10.1007/s10911-022-09518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022] Open
Abstract
In the mammary glands during pregnancy, the alveolar buds are first branched from the mammary ducts after which they form the alveolar luminal structure for milk production postparturition. Body temperature could increase for several reasons, such as infectious disease and heat stress. We have previously reported that high temperature adversely effects on the lactation capacity of mouse mammary epithelial cells (MECs). However, it remains unclear how high temperature influences mammary morophogenesis during pregnancy. In this study, we investigated the effects of high temperature on this mammary alveolar development process using two types of culture models including embedded organoids of MECs in Matrigel; these models reproduced mammary alveolar bud induction and alveolar luminal formation. Results showed that a culture temperature of 41 °C repressed alveolar bud induction and inhibited alveolar luminal formation. In addition, the treatment at 41 °C decreased the number of proliferating mammary epithelial cells but did not affect cell migration. Levels of phosphorylated Akt, -ERK1/2, -HSP90, and -HSP27 were increased in organoids cultured at 41 °C. The specific inhibitors of HSP90 and HSP27 exacerbated the disruption of organoids at 41 °C but not at 37 °C. Furthermore, the organoids precultured at 37 and 41 °C in the alveolar luminal formation model showed differences in the expression levels of caseins and tight junction proteins, which express in MECs in lactating mammary glands, after induction of MEC differentiation by prolactin and dexamethasone treatment in vitro. These results suggest that elevated temperature directly hinders mammary alveolar development; however, heat shock proteins may mitigate the adverse effects of high temperatures.
Collapse
Affiliation(s)
- Haruka Wakasa
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Yusaku Tsugami
- Laboratory of Animal Histophysiology, Graduate School of Integrated Science for Life Faculty of Applied Biological Science, Hiroshima University, 1-4-4, Kagamiyama, 739-8528, Higashi-Hiroshima, Japan
| | - Taku Koyama
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Liang Han
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Naoki Isobe
- Laboratory of Animal Histophysiology, Graduate School of Integrated Science for Life Faculty of Applied Biological Science, Hiroshima University, 1-4-4, Kagamiyama, 739-8528, Higashi-Hiroshima, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| |
Collapse
|
16
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:1784-1823. [PMID: 35530281 PMCID: PMC9077082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Jumping translocation breakpoint (JTB) gene acts as a tumor suppressor or an oncogene in different malignancies, including breast cancer (BC), where it was reported as overexpressed. However, the molecular functions, biological processes and underlying mechanisms through which JTB protein causes increased cell growth, proliferation and invasion is still not fully deciphered. Our goal is to identify the functions of JTB protein by cellular proteomics approaches. MCF7 breast cancer cells were transfected with sense orientation of hJTB cDNA in HA, His and FLAG tagged CMV expression vector to overexpress hJTB and the expression levels were confirmed by Western blotting (WB). Proteins extracted from transfected cells were separated by SDS-PAGE and the in-gel digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). By comparing the proteome of cells with upregulated conditions of JTB vs control and identifying the protein dysregulation patterns, we aim to understand the function of this protein and its contribution to tumorigenesis. Gene Set Enrichment Analysis (GSEA) algorithm was performed to investigate the biological processes and pathways that are associated with the JTB protein upregulation. The results demonstrated four significantly enriched gene sets from the following significantly upregulated pathways: mitotic spindle assembly, estrogen response late, epithelial-to-mesenchymal transition (EMT) and estrogen response early. JTB protein itself is involved in mitotic spindle pathway by its role in cell division/cytokinesis, and within estrogen response early and late pathways, contributing to discrimination between luminal and mesenchymal breast cancer. Thus, the overexpressed JTB condition was significantly associated with an increased expression of ACTNs, FLNA, FLNB, EZR, MYOF, COL3A1, COL11A1, HSPA1A, HSP90A, WDR, EPPK1, FASN and FOXA1 proteins related to deregulation of cytoskeletal organization and biogenesis, mitotic spindle organization, ECM remodeling, cellular response to estrogen, proliferation, migration, metastasis, increased lipid biogenesis, endocrine therapy resistance, antiapoptosis and discrimination between different breast cancer subtypes. Other upregulated proteins for overexpressed JTB condition are involved in multiple cellular functions and pathways that become dysregulated, such as tumor microenvironment (TME) acidification, the transmembrane transport pathways, glycolytic flux, iron metabolism and oxidative stress, metabolic reprogramming, nucleocytosolic mRNA transport, transcriptional activation, chromatin remodeling, modulation of cell death pathways, stress responsive pathways, and cancer drug resistance. The downregulated proteins for overexpressed JTB condition are involved in adaptive communication between external and internal environment of cells and maintenance between pro-apoptotic and anti-apoptotic signaling pathways, vesicle trafficking and secretion, DNA lesions repair and suppression of genes involved in tumor progression, proteostasis, redox state regulation, biosynthesis of macromolecules, lipolytic pathway, carbohydrate metabolism, dysregulation of ubiquitin-mediated degradation system, cancer cell immune escape, cell-to-cell and cell-to-ECM interactions, and cytoskeletal behaviour. There were no significantly enriched downregulated pathways.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I Bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
17
|
Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 2021; 95:1943-1970. [PMID: 34003342 DOI: 10.1007/s00204-021-03070-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Martin E Guerrero
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), 5500, Mendoza, Argentina
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Department of Surgery, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
18
|
Involvement of STAT5 in Oncogenesis. Biomedicines 2020; 8:biomedicines8090316. [PMID: 32872372 PMCID: PMC7555335 DOI: 10.3390/biomedicines8090316] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins, and in particular STAT3, have been established as heavily implicated in cancer. Recently, the involvement of STAT5 signalling in the pathology of cancer has been shown to be of increasing importance. STAT5 plays a crucial role in the development of the mammary gland and the homeostasis of the immune system. However, in various cancers, aberrant STAT5 signalling promotes the expression of target genes, such as cyclin D, Bcl-2 and MMP-2, that result in increased cell proliferation, survival and metastasis. To target constitutive STAT5 signalling in cancers, there are several STAT5 inhibitors that can prevent STAT5 phosphorylation, dimerisation, or its transcriptional activity. Tyrosine kinase inhibitors (TKIs) that target molecules upstream of STAT5 could also be utilised. Consequently, since STAT5 contributes to tumour aggressiveness and cancer progression, inhibiting STAT5 constitutive activation in cancers that rely on its signalling makes for a promising targeted treatment option.
Collapse
|
19
|
Klimczak M, Biecek P, Zylicz A, Zylicz M. Heat shock proteins create a signature to predict the clinical outcome in breast cancer. Sci Rep 2019; 9:7507. [PMID: 31101846 PMCID: PMC6525249 DOI: 10.1038/s41598-019-43556-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/27/2019] [Indexed: 01/30/2023] Open
Abstract
Utilizing The Cancer Genome Atlas (TCGA) and KM plotter databases we identified six heat shock proteins associated with survival of breast cancer patients. The survival curves of samples with high and low expression of heat shock genes were compared by log-rank test (Mantel-Haenszel). Interestingly, patients overexpressing two identified HSPs – HSPA2 and DNAJC20 exhibited longer survival, whereas overexpression of other four HSPs – HSP90AA1, CCT1, CCT2, CCT6A resulted in unfavorable prognosis for breast cancer patients. We explored correlations between expression level of HSPs and clinicopathological features including tumor grade, tumor size, number of lymph nodes involved and hormone receptor status. Additionally, we identified a novel signature with the potential to serve as a prognostic model for breast cancer. Using univariate Cox regression analysis followed by multivariate Cox regression analysis, we built a risk score formula comprising prognostic HSPs (HSPA2, DNAJC20, HSP90AA1, CCT1, CCT2) and tumor stage to identify high-risk and low-risk cases. Finally, we analyzed the association of six prognostic HSP expression with survival of patients suffering from other types of cancer than breast cancer. We revealed that depending on cancer type, each of the six analyzed HSPs can act both as a positive, as well as a negative regulator of cancer development. Our study demonstrates a novel HSP signature for the outcome prediction of breast cancer patients and provides a new insight into ambiguous role of these proteins in cancer development.
Collapse
Affiliation(s)
- Marta Klimczak
- International Institute of Molecular and Cell Biology, Warsaw, Poland. .,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Przemyslaw Biecek
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Alicja Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
20
|
Wang H, Deng G, Ai M, Xu Z, Mou T, Yu J, Liu H, Wang S, Li G. Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/β-catenin signaling pathways in gastric cancer progression. Oncogene 2018; 38:1489-1507. [PMID: 30305727 PMCID: PMC6372478 DOI: 10.1038/s41388-018-0532-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
Abstract
Hsp90ab1 is upregulated in numerous solid tumors, which is thought to induce the angiogenesis and promote cancer metastasis. However, it’s actions in gastric cancer (GC) has not been exhibited. In this study, Hsp90ab1 was demonstrated to be overexpressed and correlated with the poor prognosis, proliferation and invasion of GC. Ectopic expression of Hsp90ab1 promoted the proliferation and metastasis of GC cells both in vitro in cell line models of GC and in vivo using two different xenograft mouse models, while opposite effects were observed in Hsp90ab1 silenced cells. Moreover, the underlining molecular mechanism was explored by the co-immunoprecipitation, immunofluorescence, GST pull-down and in vitro ubiquitination assay. Namely, Hsp90ab1 exerted these functions via the interaction of LRP5 and inhibited ubiquitin-mediated degradation of LRP5, an indispensable coreceptor of the Wnt/β-catenin signaling pathway. In addition, the crosstalk between Hsp90ab1 and LRP5 contributed to the upregulation of multiple mesenchymal markers, which are also targets of Wnt/β-catenin. Collectively, this study uncovers the details of the Hsp90ab1-LRP5 axis, providing novel insights into the role and mechanism of invasion and metastasis in GC.
Collapse
Affiliation(s)
- Huanan Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Guangxu Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Meiling Ai
- Department of Pathology, Southern Medical University, Nanfang Hospital, Guangzhou, 510515, China.,Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510515, China
| | - Zhijun Xu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Tingyu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Shuang Wang
- Department of Pathology, Southern Medical University, Nanfang Hospital, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China.
| |
Collapse
|
21
|
Kobayashi K, Tsugami Y, Matsunaga K, Suzuki T, Nishimura T. Moderate High Temperature Condition Induces the Lactation Capacity of Mammary Epithelial Cells Through Control of STAT3 and STAT5 Signaling. J Mammary Gland Biol Neoplasia 2018; 23:75-88. [PMID: 29633073 DOI: 10.1007/s10911-018-9393-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
In lactating mammary glands, alveolar mammary epithelial cells (MECs) synthesize and secrete milk components. MECs also form less permeable tight junctions (TJs) to prevent the leakage of milk components. During lactation, MECs are exposed to temperature changes by metabolic heat production and air ambient temperature. In this study, we investigated whether temperature changes influence milk production ability and TJ barriers in MECs by using two lactating culture models. The results showed that 39 °C treatment activated milk production and enhanced the formation of less-permeable TJs. In contrast, 41 °C treatment caused adverse effects on the TJ barrier and cell viability, although the milk production ability of MECs was temporarily up-regulated. MECs cultured at 37 °C showed relatively low milk production ability and high proliferation activity. Furthermore, we investigated three kinds of transcription factors relating to lactogenesis, signal transducer and activator of transcription 5 (STAT5), STAT3 and glucocorticoid receptor (GR). STAT5 signaling was activated at 39 and 41 °C by an increase in total STAT5. However, long-term treatment led to a decrease in total STAT5. STAT3 signaling was inactivated by high temperature treatment through a decrease in total STAT3 and inhibited phosphorylation of STAT3. GR signaling was continuously activated regardless of temperature. These results indicate that a moderate high temperature condition at 39 °C induces a high lactation capacity of MECs through control of STAT5 and STAT3 signaling. In contrast, long-term exposure at 41 °C leads to a decline in milk production capacity by inactivation of STAT5 and a decrease in the total number of MECs.
Collapse
Affiliation(s)
- Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan.
| | - Yusaku Tsugami
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Kota Matsunaga
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Takahiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Takahiro Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| |
Collapse
|
22
|
Karayazi Atici Ö, Urbanska A, Gopinathan SG, Boutillon F, Goffin V, Shemanko CS. ATM Is Required for the Prolactin-Induced HSP90-Mediated Increase in Cellular Viability and Clonogenic Growth After DNA Damage. Endocrinology 2018; 159:907-930. [PMID: 29186352 DOI: 10.1210/en.2017-00652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents.
Collapse
Affiliation(s)
- Ödül Karayazi Atici
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anna Urbanska
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sesha Gopal Gopinathan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Florence Boutillon
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Vincent Goffin
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Carrie S Shemanko
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Davis SR, Spelman RJ, Littlejohn MD. BREEDING AND GENETICS SYMPOSIUM:Breeding heat tolerant dairy cattle: the case for introgression of the "slick" prolactin receptor variant into dairy breeds. J Anim Sci 2017; 95:1788-1800. [PMID: 28464106 DOI: 10.2527/jas.2016.0956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increasing environmental temperatures are a threat to the sustainability of livestock production and, because of the high metabolic demands of lactation, to dairy production in particular. Summer heat waves in temperate climates reduce feed intake, milk production, and cow comfort. In extreme heat events, there is an increase in cow mortality. In tropical climates, dairy cattle are mostly (zebu) type or zebu crossbred with temperate dairy breeds. Crossbreeding is undertaken to combine the heat tolerance and tick resistance of zebu with the productivity of temperate dairy breeds. In the absence of improved heat tolerance, milk production and fertility of temperate cattle is severely impaired. We have recently identified a key role for the prolactin pathway in regulating heat tolerance. A de novo mutation in prolactin that impairs prolactin activity was discovered in hairy and heat intolerant, New Zealand dairy cattle. The phenotypes produced were remarkably similar to those seen in fescue toxicosis, a syndrome seen in grazing cattle in the U.S. where ingestion of ergovaline, a fungal toxin from infected pasture, inhibits prolactin secretion. Recognition of the role of prolactin in hairy cattle led us to identify a deletion in exon 10 of the long-form of the prolactin receptor in Senepol cattle that causes truncation of the protein and determines the slick coat and heat tolerance traits found in this , beef breed. The short form of the prolactin receptor is predicted to be unaffected by the deletion. Knowledge of this dominant mutation has provided the impetus to begin a crossbreeding program to investigate performance and heat tolerance of temperate dairy cattle carrying the slick, prolactin receptor variant. The perceived opportunity is to introgress this variant into temperate dairy cattle to enable performance and welfare improvement in hot climates. Heat tolerance of cattle with slick coats appears to be mostly associated with coat type although sweating ability may also be enhanced. Further investigation is required of performance traits in cows homozygous for the slick variant because the published data are almost exclusively from heterozygous animals. Combination of the slick mutation with other favorable genes for heat tolerance, especially those for coat color, will be particularly enabled by gene editing technologies, offering opportunities for further improvement in bovine thermotolerance.
Collapse
|
24
|
Linher-Melville K, Singh G. The complex roles of STAT3 and STAT5 in maintaining redox balance: Lessons from STAT-mediated xCT expression in cancer cells. Mol Cell Endocrinol 2017; 451:40-52. [PMID: 28202313 DOI: 10.1016/j.mce.2017.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
STAT3 and STAT5 mediate diverse cellular processes, transcriptionally regulating gene expression and interacting with cytoplasmic proteins. Their canonical activity is stimulated by cytokines/growth factors through JAK-STAT signaling. As targets of oncogenes with intrinsic tyrosine kinase activity, STAT3 and STAT5 become constitutively active in hematologic neoplasms and solid tumors, promoting cell proliferation and survival and modulating redox homeostasis. This review summarizes reactive oxygen species (ROS)-regulated STAT activation and how STATs influence ROS production. ROS-induced effects on post-translational modifications are presented, and STAT3/5-mediated regulation of xCT, a redox-sensitive target up-regulated in numerous cancers, is discussed with regard to transcriptional cross-talk.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
25
|
O'Brien K, Lowry MC, Corcoran C, Martinez VG, Daly M, Rani S, Gallagher WM, Radomski MW, MacLeod RAF, O'Driscoll L. miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget 2016; 6:32774-89. [PMID: 26416415 PMCID: PMC4741729 DOI: 10.18632/oncotarget.5192] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
Exosomes (EVs) have relevance in cell-to-cell communication carrying pro-tumorigenic factors that participate in oncogenesis and drug resistance and are proposed to have potential as self-delivery systems. Advancing on our studies of EVs in triple-negative breast cancer, here we more comprehensively analysed isogenic cell line variants and their EV populations, tissues cell line variants and their EV populations, as well as breast tumour and normal tissues. Profiling 384 miRNAs showed EV miRNA content to be highly representative of their cells of origin. miRNAs most substantially down-regulated in aggressive cells and their EVs originated from 14q32. Analysis of miR-134, the most substantially down-regulated miRNA, supported its clinical relevance in breast tumours compared to matched normal breast tissue. Functional studies indicated that miR-134 controls STAT5B which, in turn, controls Hsp90. miR-134 delivered by direct transfection into Hs578Ts(i)8 cells (in which it was greatly down-regulated) reduced STAT5B, Hsp90, and Bcl-2 levels, reduced cellular proliferation, and enhanced cisplatin-induced apoptosis. Delivery via miR-134-enriched EVs also reduced STAT5B and Hsp90, reduced cellular migration and invasion, and enhanced sensitivity to anti-Hsp90 drugs. While the differing effects achieved by transfection or EV delivery are likely to be, at least partly, due to specific amounts of miR-134 delivered by these routes, these EV-based studies identified miRNA-134 as a potential biomarker and therapeutic for breast cancer.
Collapse
Affiliation(s)
- Keith O'Brien
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Michelle C Lowry
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Claire Corcoran
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Vanesa G Martinez
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Melissa Daly
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Sweta Rani
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, Conway Institute, UCD School of Biomolecular and Biomedical Science, Dublin, Ireland
| | - Marek W Radomski
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Roderick A F MacLeod
- Leibniz Institute DSMZ, German Collection of Human and Animal Cell Cultures, Braunschweig, Germany
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
26
|
Chen X, Lu P, Wu Y, Wang DD, Zhou S, Yang SJ, Shen HY, Zhang XH, Zhao JH, Tang JH. MiRNAs-mediated cisplatin resistance in breast cancer. Tumour Biol 2016; 37:12905-12913. [DOI: 10.1007/s13277-016-5216-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
|
27
|
Sutherland A, Forsyth A, Cong Y, Grant L, Juan TH, Lee JK, Klimowicz A, Petrillo SK, Hu J, Chan A, Boutillon F, Goffin V, Egan C, Tang PA, Cai L, Morris D, Magliocco A, Shemanko CS. The Role of Prolactin in Bone Metastasis and Breast Cancer Cell-Mediated Osteoclast Differentiation. J Natl Cancer Inst 2015; 108:djv338. [PMID: 26586670 DOI: 10.1093/jnci/djv338] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 10/15/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Metastasis to the bone is a deleterious aspect of breast cancer and is a preferred site that results in bone loss. Hormones such as prolactin (PRL) have not yet been studied for their role in modulating the secondary tumor bone microenvironment. METHODS We used quantitative immunohistochemistry with 134 samples of human primary breast cancer and 17 matched primary breast cancers and bone metastases. A Cox proportional hazards regression model was fitted to evaluate the associations between high prolactin receptor (PRLR) expression and time to bone metastasis, adjusting for estrogen receptor status, lymph node status, and chemotherapy status. We assessed osteoclast differentiation, osteoclast size, and measured pit formation in dentine slices. Statistical tests were two-sided. RESULTS High PRLR expression in the primary breast tumor was associated with a shorter time to metastasis that includes bone (PRLRAQUA Max-per 100 unit hazard ratio = 1.04, 95% confidence interval = 1.00 to 1.07, P = .03). We observed the PRLR in rare samples of bone metastases and matched primary breast cancer. PRL treatment of breast cancer cells induced osteoclast differentiation and bone lysis via secreted factors and was abrogated by a PRLR antagonist (delta1-9-G129R-hPRL). We demonstrated that sonic hedgehog is a PRL-regulated cytokine in breast cancer cells and part of the mechanism that induces osteoclast differentiation. CONCLUSIONS Our evidence indicates that PRL-PRLR can escalate the impact of breast cancer on bone metastasis and that the presence of the PRLR in the tumor microenvironment of breast cancer bone metastasis has the potential to modulate the microenvironment to induce lytic osteoclast formation.
Collapse
Affiliation(s)
- Ashley Sutherland
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Amanda Forsyth
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Yingying Cong
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Laurel Grant
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Tzu-Hua Juan
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Jae K Lee
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Alexander Klimowicz
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Stephanie K Petrillo
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Jinghui Hu
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Angela Chan
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Florence Boutillon
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Vincent Goffin
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Cay Egan
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Patricia A Tang
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Li Cai
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Don Morris
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Anthony Magliocco
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Carrie S Shemanko
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| |
Collapse
|
28
|
Regulation and function of the human HSP90AA1 gene. Gene 2015; 570:8-16. [PMID: 26071189 DOI: 10.1016/j.gene.2015.06.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/21/2015] [Accepted: 06/06/2015] [Indexed: 12/11/2022]
Abstract
Heat shock protein 90α (Hsp90α), encoded by the HSP90AA1 gene, is the stress inducible isoform of the molecular chaperone Hsp90. Hsp90α is regulated differently and has different functions when compared to the constitutively expressed Hsp90β isoform, despite high amino acid sequence identity between the two proteins. These differences are likely due to variations in nucleotide sequence within non-coding regions, which allows for specific regulation through interaction with particular transcription factors, and to subtle changes in amino acid sequence that allow for unique post-translational modifications. This article will specifically focus on the expression, function and regulation of Hsp90α.
Collapse
|
29
|
Wallis SP, Stafford ND, Greenman J. Clinical relevance of immune parameters in the tumor microenvironment of head and neck cancers. Head Neck 2014; 37:449-59. [DOI: 10.1002/hed.23736] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/19/2013] [Accepted: 05/03/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Nicholas D. Stafford
- Hull York Medical School, Daisy Laboratories, Castle Hill Hospital; Hull United Kingdom
| | - John Greenman
- School of Biological, Biomedical and Environmental Sciences, University of Hull; Hull United Kingdom
| |
Collapse
|
30
|
Sato T, Tran TH, Peck AR, Liu C, Ertel A, Lin J, Neilson LM, Rui H. Global profiling of prolactin-modulated transcripts in breast cancer in vivo. Mol Cancer 2013; 12:59. [PMID: 23758962 PMCID: PMC3691730 DOI: 10.1186/1476-4598-12-59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/15/2013] [Indexed: 12/02/2022] Open
Abstract
Background Prolactin (PRL) is essential for normal mammary gland development. PRL promotes mammary tumor formation in rodents and elevated serum prolactin is associated with increased risk of estrogen-receptor positive breast cancer in women. On the other hand, PRL may also exert pro-differentiation effects and act to suppress invasive features of established breast cancer. Previously published limited global transcript profiling analyses of prolactin-regulated gene expression in human breast cancer cells have exclusively been performed in vitro. The present study aimed to shed new light on how PRL modulates estrogen receptor (ER)-positive breast cancer through global transcript profiling of a human breast cancer xenograft model in vivo. Methods The prolactin-responsive human T47D breast cancer cell line was xenotransplanted into nude mice and global transcript profiling was carried out following treatment with or without human PRL for 48 h. A subset of PRL-modulated transcripts was further validated using qRT-PCR and immunohistochemistry. Results The in vivo analyses identified 130 PRL-modulated transcripts, 75 upregulated and 55 downregulated, based on fold change >1.6 and P-value <0.05. From this initial panel of transcripts, a subset of 18 transcripts with established breast cancer-relevance were selected and validated by qRT-PCR. Some but not all of the transcripts were also PRL-modulated in vitro. The selected PRL-modulated transcripts were tested for dependence on Stat5, Jak1 or Jak2 activation, and for co-regulation by 17β-estradiol (E2). The protein encoded by one of the PRL-regulated transcripts, PTHrP, was examined in a panel of 92 human breast cancers and found by in situ quantitative immunofluorescence analysis to be highly positively correlated with nuclear localized and tyrosine phosphorylated Stat5. Gene Ontology analysis revealed that PRL-upregulated genes were enriched in pathways involved in differentiation. Finally, a gene signature based on PRL-upregulated genes was associated with prolonged relapse-free and metastasis-free survival in breast cancer patients. Conclusions This global analysis identified and validated a panel of PRL-modulated transcripts in an ER-positive human breast cancer xenotransplant model, which may have value as markers of relapse-free and metastasis-free survival. Gene products identified in the present study may facilitate ongoing deciphering of the pleiotropic effects of PRL on human breast cancer.
Collapse
|
31
|
Damiano JS, Wasserman E. Molecular pathways: blockade of the PRLR signaling pathway as a novel antihormonal approach for the treatment of breast and prostate cancer. Clin Cancer Res 2013; 19:1644-50. [PMID: 23515410 DOI: 10.1158/1078-0432.ccr-12-0138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prolactin (PRL)-prolactin receptor (PRLR) signaling complex has been implicated in the pathology of breast and prostate carcinoma. A multitude of pro-oncogenic intracellular signaling pathways are activated by PRL in breast and prostate epithelial cells, leading to enhanced cellular proliferation, survival, and tumorigenesis in numerous model systems. Emerging evidence suggests that targeting the PRL-PRLR axis in human cancer may represent an unexploited avenue for therapeutic intervention and, given the extensive cross-talk between PRLR and other signal transduction pathways, a potential means through which other anticancer agents could be rendered more efficacious in the clinic. LFA102 is a potent anti-PRLR neutralizing antibody that efficiently abrogates the function of this receptor in vivo, mediating significant antitumor effects in preclinical models. The clean safety profile of this antibody in animals and in the clinical experiences to date suggests that blocking the PRLR signaling pathway in human tumors may have few significant toxicologic consequences and may be a promising approach to treating cancer. A phase I trial in patients with breast and prostate cancer is underway to better understand the clinical utility of LFA102 and the contribution of PRL to the maintenance and progression of human cancer.
Collapse
Affiliation(s)
- Jason S Damiano
- Novartis Institutes for BioMedical Research, Emeryville, CA 94608, USA.
| | | |
Collapse
|
32
|
Wu CC, D'Argenio D, Asgharzadeh S, Triche T. TARGETgene: a tool for identification of potential therapeutic targets in cancer. PLoS One 2012; 7:e43305. [PMID: 22952662 PMCID: PMC3432038 DOI: 10.1371/journal.pone.0043305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/18/2012] [Indexed: 11/19/2022] Open
Abstract
The vast array of in silico resources and data of high throughput profiling currently available in life sciences research offer the possibility of aiding cancer gene and drug discovery process. Here we propose to take advantage of these resources to develop a tool, TARGETgene, for efficiently identifying mutation drivers, possible therapeutic targets, and drug candidates in cancer. The simple graphical user interface enables rapid, intuitive mapping and analysis at the systems level. Users can find, select, and explore identified target genes and compounds of interest (e.g., novel cancer genes and their enriched biological processes), and validate predictions using user-defined benchmark genes (e.g., target genes detected in RNAi screens) and curated cancer genes via TARGETgene. The high-level capabilities of TARGETgene are also demonstrated through two applications in this paper. The predictions in these two applications were then satisfactorily validated by several ways, including known cancer genes, results of RNAi screens, gene function annotations, and target genes of drugs that have been used or in clinical trial in cancer treatments. TARGETgene is freely available from the Biomedical Simulations Resource web site (http://bmsr.usc.edu/Software/TARGET/TARGET.html).
Collapse
Affiliation(s)
- Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
| | | | | | | |
Collapse
|
33
|
Coffee polyphenols change the expression of STAT5B and ATF-2 modifying cyclin D1 levels in cancer cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:390385. [PMID: 22919439 PMCID: PMC3424007 DOI: 10.1155/2012/390385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 12/31/2022]
Abstract
Background. Epidemiological studies suggest that coffee consumption reduces the risk of cancer, but the molecular mechanisms of its chemopreventive effects remain unknown. Objective. To identify differentially expressed genes upon incubation of HT29 colon cancer cells with instant caffeinated coffee (ICC) or caffeic acid (CA) using whole-genome microarrays. Results. ICC incubation of HT29 cells caused the overexpression of 57 genes and the underexpression of 161, while CA incubation induced the overexpression of 12 genes and the underexpression of 32. Using Venn-Diagrams, we built a list of five overexpressed genes and twelve underexpressed genes in common between the two experimental conditions. This list was used to generate a biological association network in which STAT5B and ATF-2 appeared as highly interconnected nodes. STAT5B overexpression was confirmed at the mRNA and protein levels. For ATF-2, the changes in mRNA levels were confirmed for both ICC and CA, whereas the decrease in protein levels was only observed in CA-treated cells. The levels of cyclin D1, a target gene for both STAT5B and ATF-2, were downregulated by CA in colon cancer cells and by ICC and CA in breast cancer cells. Conclusions. Coffee polyphenols are able to affect cyclin D1 expression in cancer cells through the modulation of STAT5B and ATF-2.
Collapse
|
34
|
Doubrovin M, Che JT, Serganova I, Moroz E, Solit DB, Ageyeva L, Kochetkova T, Pillarsetti N, Finn R, Rosen N, Blasberg RG. Monitoring the induction of heat shock factor 1/heat shock protein 70 expression following 17-allylamino-demethoxygeldanamycin treatment by positron emission tomography and optical reporter gene imaging. Mol Imaging 2012; 11:67-76. [PMID: 22418029 PMCID: PMC5400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
The cell response to proteotoxic cell stresses is mediated primarily through activation of heat shock factor 1 (HSF1). This transcription factor plays a major role in the regulation of the heat shock proteins (HSPs), including HSP70. We demonstrate that an [124I]iodide-pQHNIG70 positron emission tomography (PET) reporter system that includes an inducible HSP70 promoter can be used to image and monitor the activation of the HSF1/HSP70 transcription factor in response to drug treatment (17-allylamino-demethoxygeldanamycin [17-AAG]). We developed a dual imaging reporter (pQHNIG70) for noninvasive imaging of the heat shock response in cell culture and living animals previously and now study HSF1/HSP70 reporter activation in both cell culture and tumor-bearing animals following exposure to 17-AAG. 17-AAG (10-1,000 nM) induced reporter expression; a 23-fold increase was observed by 60 hours. Good correspondence between reporter expression and HSP70 protein levels were observed. MicroPET imaging based on [124I]iodide accumulation in pQHNIG70-transduced RG2 xenografts showed a significant 6.2-fold reporter response to 17-AAG, with a corresponding increase in tumor HSP70 and in tumor human sodium iodide symporter and green fluorescent protein reporter proteins. The HSF1 reporter system can be used to screen anticancer drugs for induction of cytotoxic stress and HSF1 activation both in vitro and in vivo.
Collapse
Affiliation(s)
- Mikhail Doubrovin
- Department of Neurology, Memorial Hospital,Sloan-KetteringInstitute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Doubrovin M, Che JT, Serganova I, Moroz E, Solit DB, Ageyeva L, Kochetkova T, Pillarsetti N, Finn R, Rosen N, Blasberg RG. Monitoring the Induction of Heat Shock Factor 1/Heat Shock Protein 70 Expression following 17-Allylamino-Demethoxygeldanamycin Treatment by Positron Emission Tomography and Optical Reporter Gene Imaging. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mikhail Doubrovin
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jian T. Che
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Inna Serganova
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ekaterina Moroz
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - David B. Solit
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Lyudmila Ageyeva
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Tatiana Kochetkova
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nagavarakishore Pillarsetti
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ronald Finn
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Neal Rosen
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ronald G. Blasberg
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
36
|
Miah MA, Yoon CH, Kim J, Jang J, Seong YR, Bae YS. CISH is induced during DC development and regulates DC-mediated CTL activation. Eur J Immunol 2011; 42:58-68. [PMID: 22002016 DOI: 10.1002/eji.201141846] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/16/2011] [Accepted: 10/06/2011] [Indexed: 11/07/2022]
Abstract
The cytokine inducible SH2-domain protein (CISH) is a well-known STAT5 target gene, but its role in the immune system remains uncertain. In this study, we found that CISH is predominantly induced during dendritic cell (DC) development from mouse bone marrow (BM) cells and plays a crucial role in type 1 DC development and DC-mediated CTL activation. CISH knockdown reduced the expression of MHC class I, co-stimulatory molecules and pro-inflammatory cytokines in BMDCs. Meanwhile, the DC yield was markedly enhanced by CISH knockdown via cell-cycle activation and reduction of cell apoptosis. Down-regulation of cell proliferation at the later stage of DC development was found to be associated with CISH-mediated negative feedback regulation of STAT5 activation. In T-cell immunity, OT-1 T-cell proliferation was significantly reduced by CISH knockdown in DCs, whereas OT-2 T-cell proliferation was not affected by CISH knockdown. CTLs generated by DC vaccination were also markedly reduced by CISH knockdown, followed by significant impairment of DC-based tumor immunotherapy. Taken together, our data suggest that CISH expression at the later stage of DC development triggers the shutdown of DC progenitor cell proliferation and facilitates DC differentiation into a potent stimulator of CTLs.
Collapse
Affiliation(s)
- Mohammad Alam Miah
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | | | | | | | | | | |
Collapse
|
37
|
Furth PA, Nakles RE, Millman S, Diaz-Cruz ES, Cabrera MC. Signal transducer and activator of transcription 5 as a key signaling pathway in normal mammary gland developmental biology and breast cancer. Breast Cancer Res 2011; 13:220. [PMID: 22018398 PMCID: PMC3262193 DOI: 10.1186/bcr2921] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
STAT5 consists of two proteins, STAT5A/B, that impact mammary cell differentiation, proliferation, and survival. In normal development, STAT5 expression and activity are regulated by prolactin signaling with JAK2/ELF5, EGF signaling networks that include c-Src, and growth hormone, insulin growth factor, estrogen, and progesterone signaling pathways. In cancer, erythropoietin signaling can also regulate STAT5. Activation levels are influenced by AKT, caveolin, PIKE-A, Pak1, c-Myb, Brk, beta-integrin, dystroglycan, other STATs, and STAT pathway molecules JAK1, Shp2, and SOCS. TGF-β and PTPN9 can downregulate prolactin- and EGF-mediated STAT5 activation, respectively. IGF, AKT, RANKL, cyclin D1, BCL6, and HSP90A lie downstream of STAT5.
Collapse
Affiliation(s)
- Priscilla A Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Rd NW, Research Building, Room 520A, Washington DC 20057, USA.
| | | | | | | | | |
Collapse
|
38
|
Bauernhofer T, Pichler M, Wieckowski E, Stanson J, Aigelsreiter A, Griesbacher A, Groselj-Strele A, Linecker A, Samonigg H, Langner C, Whiteside TL. Prolactin receptor is a negative prognostic factor in patients with squamous cell carcinoma of the head and neck. Br J Cancer 2011; 104:1641-8. [PMID: 21505459 PMCID: PMC3101909 DOI: 10.1038/bjc.2011.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: The influence of human prolactin (hPRL) on the development of breast and other types of cancer is well established. Little information, however, exists on the effects of hPRL on squamous cell carcinomas of the head and neck (SCCHNs). Methods: In this study, we evaluated prolactin receptor (PRLR) expression in SCCHN cell lines and assessed by immunohistochemistry the expression in 89 patients with SCCHNs. The PRLR expression was correlated with clinicopathological characteristics as well as clinical outcome. The effect of hPRL treatment on tumour cell growth was evaluated in vitro. Results: Immunoreactivity for PRLR was observed in 85 out of 89 (95%) tumours. Multivariate COX regression analysis confirmed high levels of PRLR expression (>25% of tumour cells) to be an independent prognostic factor with respect to overall survival (HR=3.70, 95% CI: 1.14–12.01; P=0.029) and disease-free survival (P=0.017). Growth of PRLR-positive cancer cells increased in response to hPRL treatment. Conclusion: Our data indicate that hPRL is an important growth factor for SCCHN. Because of PRLR expression in a vast majority of tumour specimens and its negative impact on overall survival, the receptor represents a novel prognosticator and a promising drug target for patients with SCCHNs.
Collapse
Affiliation(s)
- T Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, Graz A-8036, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Reactive oxygen species is essential for cycloheximide to sensitize lexatumumab-induced apoptosis in hepatocellular carcinoma cells. PLoS One 2011; 6:e16966. [PMID: 21347335 PMCID: PMC3037406 DOI: 10.1371/journal.pone.0016966] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/18/2011] [Indexed: 11/19/2022] Open
Abstract
This study aims to investigate apoptosis induced by lexatumumab (Lexa) in hepatocellular carcinoma (HCC) cells. We assessed the sensitivity of HCC cell lines and normal human hepatocytes to Lexa and explored the sensitization of HCC cells to Lexa-induced apoptosis by cycloheximide (CHX). Our data indicated that CHX sensitized HCC cell lines to Lexa-induced apoptosis, whereas treatment using solely CHX or Lexa was ineffective. The sequential treatment of CHX followed by Lexa dramatically induced caspase-dependent apoptosis in HCC cells and had synergistically increased intracellular rates of reactive oxygen species (ROS). Additionally, when ROS production was blocked by N-acetyl-L-cysteine (NAC), HCC cells were protected against Lexa and CHX combination treatment-induced apoptosis. ROS generation induced by combination treatment of Lexa and CHX triggered pro-apoptotic protein Bax oligomerization, conformation change, and translocation to mitochondria, which resulted in the release of cytochrome c and subsequent cell death. Furthermore, HSP90 was involved in mediating Lexa and CHX combination treatment-induced ROS increase and apoptotic death. More importantly, we observed that combination treatment of Lexa and CHX did not cause apoptotic toxicity in normal human primary hepatocytes. These results suggest that Lexa and CHX combination treatment merits investigation for the development of therapies for patients with HCC.
Collapse
|
40
|
Zhao X, Cao M, Liu JJ, Zhu H, Nelson DR, Liu C. Reactive Oxygen Species Is Essential for Cycloheximide to Sensitize Lexatumumab-Induced Apoptosis in Hepatocellular Carcinoma Cells. PLoS One 2011; 6:e16966. [DOI: doi10.1371/journal.pone.0016966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
41
|
Blanchard A, Nistor A, Castaneda FE, Martin D, Hicks GG, Amara F, Shiu RPC, Myal Y. Generation and initial characterization of the prolactin-inducible protein (PIP) null mouse: accompanying global changes in gene expression in the submandibular gland. Can J Physiol Pharmacol 2010; 87:859-72. [PMID: 20052012 DOI: 10.1139/y09-077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human prolactin-inducible protein/gross cystic disease fluid protein-15 (hPIP/GCDFP-15) is a secretory glycoprotein found primarily in apocrine tissues including the breast and salivary glands. With largely unknown functions, PIP has been implicated in breast cancer and metastasis, host defense processes and T lymphocyte apoptosis. To begin to address PIP function in vivo, we generated the PIP null mouse (Pip-/-). Additionally, to determine the effect of the loss of PIP on gene expression and to gain insight into some of the molecular mechanisms underlying PIP function, microarray analysis of the submandibular gland was also undertaken. Pip-/- mice developed normally with no overt differences in behaviour or gross morphology and were fertile. However, histological examination of 3-month-old Pip-/- mice sometimes showed enlarged submandibular lymph nodes, lymphocytic aggregations within the prostate lobes, and enlarged medulla in the thymus. Functional analysis of gene expression revealed sets of multiple differentially expressed genes associated with cell death and survival, lipid metabolism, inflammation, immune disease, and cancer, as a consequence of mPIP abrogation. Taken together, these studies lend support to an immunomodulatory role for PIP in vivo and provide further insights into potentially novel signaling pathways and regulatory networks for PIP.
Collapse
Affiliation(s)
- A Blanchard
- Department of Pathology, Faculty of Medicine, University of Manitoba, 401-727 McDermot Avenue, Winnipeg, MB R3E 3P5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Krämer OH, Heinzel T. Phosphorylation-acetylation switch in the regulation of STAT1 signaling. Mol Cell Endocrinol 2010; 315:40-8. [PMID: 19879327 DOI: 10.1016/j.mce.2009.10.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 02/07/2023]
Abstract
STAT1 signaling regulates the expression of important genes controlling cell growth, differentiation, apoptosis, and immune functions. Biochemical and genetic experiments have identified how this cascade is modulated. Phosphorylation of STAT1 tyrosine and serine moieties is induced rapidly by cytokines and growth factors. Upon nuclear translocation, phosphorylated STAT1 homo- and heterodimers activate gene expression. Inactivation of phosphorylated nuclear STAT1 has to be precisely regulated in order to allow signal transduction within limited time frames. Lysine acetylation has recently been appreciated as a novel mechanism regulating signal transduction events relying on STAT proteins. Here, we review these analyses and the finding that a switch from phosphorylated to acetylated STAT1 regulates acetylation-dependent dephosphorylation of STAT1 via the T cell tyrosine phosphatase. We discuss how these observations can be integrated into our current understanding of STAT-dependent cytokine signaling and its potential relevance for endocrine functions.
Collapse
Affiliation(s)
- Oliver H Krämer
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), University of Jena, Hans-Knöll-Str. 2, 07743 Jena, Germany.
| | | |
Collapse
|
43
|
|
44
|
Craig PM, Hogstrand C, Wood CM, McClelland GB. Gene expression endpoints following chronic waterborne copper exposure in a genomic model organism, the zebrafish, Danio rerio. Physiol Genomics 2009; 40:23-33. [PMID: 19789285 DOI: 10.1152/physiolgenomics.00089.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although copper (Cu) is an essential micronutrient for all organisms, in excess, waterborne Cu poses a significant threat to fish from the cellular to population level. We examined the physiological and gene expression endpoints that chronic waterborne Cu exposure (21 d) imposes on soft-water acclimated zebrafish at two environmentally relevant concentrations: 8 microg/l (moderate) and 15 microg/l (high). Using a 16,730 65-mer oligonucleotide customized zebrafish microarray chip related to metal metabolism and toxicity to assess the transcriptomic response, we found that 573 genes in the liver responded significantly to Cu exposure. These clustered into three distinct patterns of expression. There was distinct upregulation of a majority of these genes under moderate Cu exposure and a significant downregulation under high Cu exposure. Microarray results were validated by qPCR of eight genes; two genes, metallothionein 2 (mt2) and Na(+)-K(+)-ATPase 1a1 (atp1a1), displayed increased expression under both Cu exposures, indicative of potential genetic endpoints of Cu toxicity, whereas the remaining six genes demonstrated opposing effects at each Cu exposure. Na(+)-K(+)-ATPase enzyme activity decreased during Cu exposure, which may be linked to Cu's competitive effects with Na(+). Whole body cortisol levels were significantly increased in Cu-exposed fish, which prompted an analysis of the promoter region of all significantly regulated genes for glucocorticoid (GRE) and metal (MRE) response elements to dissociate metal- and stress-specific gene responses. Of the genes significantly regulated, 30% contained only a GRE sequence, whereas 2.5% contained only a consensus MRE. We conclude that the indirect effects of Cu exposure regulate gene expression to a much greater degree than the direct effects.
Collapse
Affiliation(s)
- Paul M Craig
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
45
|
Dent S, Verma S, Latreille J, Rayson D, Clemons M, Mackey J, Verma S, Lemieux J, Provencher L, Chia S, Wang B, Pritchard K. The role of HER2-targeted therapies in women with HER2-overexpressing metastatic breast cancer. Curr Oncol 2009; 16:25-35. [PMID: 19672422 PMCID: PMC2722050 DOI: 10.3747/co.v16i4.469] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The role of targeted therapies in the treatment of women with breast cancer has been rapidly evolving. Trastuzumab, a monoclonal antibody against the human epidermal growth factor receptor 2 (HER2), was the first HER2-targeted therapy that clearly demonstrated a significant clinical benefit for women with HER2-overexpressing metastatic breast cancer (mbc). However, in recent years it has become increasingly apparent that, when trastuzumab is used in the first-line setting in combination with chemotherapy, most women eventually develop progressive disease. Determining the treatment options available to women who have progressed while on trastuzumab therapy has been hampered by a paucity of high-quality published data. In addition, with the standard use of trastuzumab in the adjuvant setting (for eligible HER2-positive patients), the role of anti-HER2 agents for patients who experience a breast cancer relapse has become a clinically relevant question. This manuscript reviews current available data and outlines suggestions from a panel of Canadian oncologists about the use of trastuzumab and other HER2-targeted agents in two key mbc indications:Treatment for women with HER2-positive mbc progressing on trastuzumab (that is, treatment beyond progression)Treatment for women with HER2-positive mbc recurring following adjuvant trastuzumab (that is, re-treatment)The suggestions set out here will continue to evolve as data and future trials with trastuzumab and other HER2-targeted agents emerge.
Collapse
Affiliation(s)
- S Dent
- The Ottawa Hospital Cancer Centre and University of Ottawa, Ottawa, ON.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bercovich D, Goodman G. Pregnancy and lactation after breast cancer elevate plasma prolactin, do not shorten and may prolong survival. Med Hypotheses 2009; 73:942-7. [PMID: 19632054 DOI: 10.1016/j.mehy.2009.06.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 06/13/2009] [Indexed: 01/19/2023]
Abstract
The affliction of breast cancer is doubled for young patients wishing to have a child. Because estrogens can cause breast cancer and its elevation during pregnancy, clinical advice historically restricted pregnancy to at least 5 years post-diagnosis. Opposing evidence gradually relaxed this. Furthermore, in the last decade it was clarified that overall, post-treatment pregnancy and breast-feeding do not shorten survival. Despite this evidence and patients such as S.B. (deceased) and remarkable L.H. (five children, starting immediately after treatment for node-positive breast cancer), much opposition and restrictive advice remain: additional therapy preferred over pregnancy. In healthy women, pregnancy reduces (cause unknown) the risk of breast cancer and lactation may reduce it. These are accompanied by highly elevated plasma prolactin (PRL) over many months (pregnancy, 15-25 x daily mean 10 ng/ml; lactation, up to 30 x daily mean). PRL concentration too increases in other natural and non-biological conditions, also apparently without increasing breast cancer incidence. Nevertheless, firm and implied support for early pregnancy (and lactation) post-diagnosis and treatment may face a new issue. Over a decade, some studies have claimed epidemiological evidence that a relatively minute PRL elevation (from zero to 0.6-0.8 ng/ml) over mean level increases the risk of breast cancer (i.e. it is a carcinogen) and that this supports (and is supported by) a similar view from some laboratory research. This two-pronged mutuality could create further anxiety and unjustified advice dashing the wish for a child. Is this justified? Epidemiology on PRL and breast cancer risk in the eighties/nineties was contradictory and inconclusive; in the last decade, it was also biologically implausible. 'Positive' laboratory results targeting a 'tamoxifen for PRL' have over-shadowed confounding, negative (often called 'inconsistent') laboratory evidence. Increasingly evident complexity of conflicting biochemical, hormonal, cellular and tissue interactions, confused further by failure of molecular genetics to confirm PRL as a carcinogen, make this target more a mirage than an oasis. While recognizing the value of laboratory research primarily for facts, future progress will be most sound and rapid from observation starting with the human entity, not with its parts. Molecular genetics makes this possible and will be the epicentre of breast cancer research. Meanwhile, young breast cancer patients after initial treatment and eager for a child can today reasonably benefit from advice based on phenomena evolved over eons: pregnancy, lactation and accompanying highly-elevated PRL will not increase risk of recurrence and will in some cases prolong survival.
Collapse
Affiliation(s)
- Dani Bercovich
- Human Molecular Genetics and Pharmacogenetics, Migal Biotechnology Institute, Galilee, POB 831, Kiryat Shmona 11016, Israel
| | | |
Collapse
|
47
|
Perotti C, Wiedl T, Florin L, Reuter H, Moffat S, Silbermann M, Hahn M, Angel P, Shemanko CS. Characterization of mammary epithelial cell line HC11 using the NIA 15k gene array reveals potential regulators of the undifferentiated and differentiated phenotypes. Differentiation 2009; 78:269-82. [PMID: 19523745 DOI: 10.1016/j.diff.2009.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 04/30/2009] [Accepted: 05/20/2009] [Indexed: 12/11/2022]
Abstract
Differentiation of undifferentiated mammary epithelial stem and/or progenitor cells results in the production of luminal-ductal and myoepithelial cells in the young animal and upon pregnancy, the production of luminal alveolar cells. A few key regulators of differentiation have been identified, though it is not known yet how these proteins function together to achieve their well-orchestrated products. In an effort to identify regulators of early differentiation, we screened the NIA 15k gene array of 15,247 developmentally expressed genes using mouse mammary epithelial HC11 cells as a model of differentiation. We have confirmed a number of genes preferentially expressed in the undifferentiated cells (Lgals1, Ran, Jam-A and Bmpr1a) and in those induced to undergo differentiation (Id1, Nfkbiz, Trib1, Rps21, Ier3). Using antibodies to the proteins encoded by Lgals1, and Jam-A, we confirmed that their proteins levels were higher in the undifferentiated cells. Although the amounts of bone morphogenetic protein receptor-1A (BMPR1A) protein were present at all stages, we found the activity of its downstream signal transduction pathway, as measured by the presence of phosphorylated-SMAD1, -SMAD5, and -SMAD8, is elevated in undifferentiated cells and decreases in fully differentiated cells. This evidence supports that the BMPR1A pathway functions primarily in undifferentiated mammary epithelial cells. We have identified a number of genes, of known and unknown function, that are candidates for the maintenance of the undifferentiated phenotype and for early regulators of mammary alveolar cell differentiation.
Collapse
Affiliation(s)
- C Perotti
- Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W. Calgary, AB, Canada T2N 1N4
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Endocrine regulation of heat shock protein mRNA levels in long-lived dwarf mice. Mech Ageing Dev 2009; 130:393-400. [PMID: 19428459 DOI: 10.1016/j.mad.2009.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/12/2009] [Accepted: 03/28/2009] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (HSPs) maintain proteostasis and may protect against age-associated pathology caused by protein malfolding. In Caenorhabditis elegans, the lifespan extension and thermotolerance in mutants with impaired insulin/IGF signals depend partly on HSP elevation. Less is known about the role of HSPs in the increased lifespan of mice with defects in GH/IGF-I pathways. We measured HSP mRNAs in liver, kidney, heart, lung, muscle and cerebral cortex from long-lived Pit1(dw/dw) Snell dwarf mice. We found many significant differences in HSP mRNA levels between dwarf and control mice, but these effects were complex and organ-specific. We noted 15 instances where HSP mRNAs were lower in Pit1(dw/dw) liver, kidney, or heart tissues, and 14/15 of these were also seen in Ghr(-/-) mice, which lack GH receptor. In contrast, of 12 examples where HSP mRNAs were higher in Snell liver, kidney, or heart, none were altered in Ghr(-/-) mice. Four liver mRNAs were depressed in both Pit1(dw/dw) and Ghr(-/-) mice, and each of these was elevated by GH injection in Ames (Prop1(df/df)) dwarf mice, consistent with the hypothesis that these declines depended on GH and/or IGF-I. Contributions of chaperones to longevity in mice may be more complex than those inferred from C. elegans.
Collapse
|