1
|
Kalofonou F, Leach DA, Powell SM, Waxman J, Fletcher CE, Bevan CL. Androgen receptor modulatory miR-1271-5p can promote hormone sensitive prostate cancer cell growth. Front Oncol 2024; 14:1440612. [PMID: 39267821 PMCID: PMC11390458 DOI: 10.3389/fonc.2024.1440612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
In most patients with advanced prostate cancer treated with hormonal therapy, androgen independence eventually emerges, leading to death. Androgen receptor signalling remains an important prostate cancer driver, even in the advanced disease stage. MicroRNAs (miRs), non-coding RNAs that regulate gene expression by inhibiting translation and/or promoting degradation of target mRNAs, can act as tumour suppressors or "oncomiRs" and modulate tumour growth. Because of their stability in tissues and in circulation, and their specificity, microRNAs have emerged as potential biomarkers, as well as therapeutic targets in cancer. We identified miR-1271-5p as an androgen receptor modulatory microRNA and we show it can promote hormone sensitive prostate cancer cell growth. Inhibition or overexpression of miR-1271-5p levels affects prostate cancer cell growth, apoptosis and expression of both androgen receptor target genes and other genes that are likely direct targets, dependent on androgen receptor status, and tumour stage. We conclude that miR-1271-5p has the potential to drive progression of hormone-dependent disease and that the use of specific inhibitors of miR-1271-5p may have therapeutic potential in prostate cancer.
Collapse
Affiliation(s)
- Foteini Kalofonou
- Androgen Signalling and Prostate Cancer Laboratory, Imperial Centre of Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Damien A Leach
- Androgen Signalling and Prostate Cancer Laboratory, Imperial Centre of Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Sue M Powell
- Androgen Signalling and Prostate Cancer Laboratory, Imperial Centre of Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Jonathan Waxman
- Androgen Signalling and Prostate Cancer Laboratory, Imperial Centre of Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Claire E Fletcher
- Androgen Signalling and Prostate Cancer Laboratory, Imperial Centre of Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Charlotte L Bevan
- Androgen Signalling and Prostate Cancer Laboratory, Imperial Centre of Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| |
Collapse
|
2
|
Jiang N, Li YB, Jin JY, Guo JY, Ding QR, Meng D, Zhi XL. Structural and functional insights into the epigenetic regulator MRG15. Acta Pharmacol Sin 2024; 45:879-889. [PMID: 38191914 PMCID: PMC11053006 DOI: 10.1038/s41401-023-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
MORF4-related gene on chromosome 15 (MRG15), a chromatin remodeller, is evolutionally conserved and ubiquitously expressed in mammalian tissues and cells. MRG15 plays vital regulatory roles in DNA damage repair, cell proliferation and division, cellular senescence and apoptosis by regulating both gene activation and gene repression via associations with specific histone acetyltransferase and histone deacetylase complexes. Recently, MRG15 has also been shown to rhythmically regulate hepatic lipid metabolism and suppress carcinoma progression. The unique N-terminal chromodomain and C-terminal MRG domain in MRG15 synergistically regulate its interaction with different cofactors, affecting its functions in various cell types. Thus, how MRG15 elaborately regulates target gene expression and performs diverse functions in different cellular contexts is worth investigating. In this review, we provide an in-depth discussion of how MRG15 controls multiple physiological and pathological processes.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yong-Bo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jia-Yu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jie-Yu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiu-Rong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiu-Ling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Modification of BRCA1-associated breast cancer risk by HMMR overexpression. Nat Commun 2022; 13:1895. [PMID: 35393420 PMCID: PMC8989921 DOI: 10.1038/s41467-022-29335-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer risk for carriers of BRCA1 pathological variants is modified by genetic factors. Genetic variation in HMMR may contribute to this effect. However, the impact of risk modifiers on cancer biology remains undetermined and the biological basis of increased risk is poorly understood. Here, we depict an interplay of molecular, cellular, and tissue microenvironment alterations that increase BRCA1-associated breast cancer risk. Analysis of genome-wide association results suggests that diverse biological processes, including links to BRCA1-HMMR profiles, influence risk. HMMR overexpression in mouse mammary epithelium increases Brca1-mutant tumorigenesis by modulating the cancer cell phenotype and tumor microenvironment. Elevated HMMR activates AURKA and reduces ARPC2 localization in the mitotic cell cortex, which is correlated with micronucleation and activation of cGAS-STING and non-canonical NF-κB signaling. The initial tumorigenic events are genomic instability, epithelial-to-mesenchymal transition, and tissue infiltration of tumor-associated macrophages. The findings reveal a biological foundation for increased risk of BRCA1-associated breast cancer.
Collapse
|
4
|
CDK5RAP3, a New BRCA2 Partner That Regulates DNA Repair, Is Associated with Breast Cancer Survival. Cancers (Basel) 2022; 14:cancers14020353. [PMID: 35053516 PMCID: PMC8773632 DOI: 10.3390/cancers14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 02/01/2023] Open
Abstract
BRCA2 is essential for homologous recombination DNA repair. BRCA2 mutations lead to genome instability and increased risk of breast and ovarian cancer. Similarly, mutations in BRCA2-interacting proteins are also known to modulate sensitivity to DNA damage agents and are established cancer risk factors. Here we identify the tumor suppressor CDK5RAP3 as a novel BRCA2 helical domain-interacting protein. CDK5RAP3 depletion induced DNA damage resistance, homologous recombination and single-strand annealing upregulation, and reduced spontaneous and DNA damage-induced genomic instability, suggesting that CDK5RAP3 negatively regulates double-strand break repair in the S-phase. Consistent with this cellular phenotype, analysis of transcriptomic data revealed an association between low CDK5RAP3 tumor expression and poor survival of breast cancer patients. Finally, we identified common genetic variations in the CDK5RAP3 locus as potentially associated with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Our results uncover CDK5RAP3 as a critical player in DNA repair and breast cancer outcomes.
Collapse
|
5
|
Bhat-Nakshatri P, Kumar B, Simpson E, Ludwig KK, Cox ML, Gao H, Liu Y, Nakshatri H. Breast Cancer Cell Detection and Characterization from Breast Milk-Derived Cells. Cancer Res 2020; 80:4828-4839. [PMID: 32934021 DOI: 10.1158/0008-5472.can-20-1030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/05/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
Radiologic techniques remain the main method for early detection for breast cancer and are critical to achieve a favorable outcome from cancer. However, more sensitive detection methods to complement radiologic techniques are needed to enhance early detection and treatment strategies. Using our recently established culturing method that allows propagation of normal and cancerous breast epithelial cells of luminal origin, flow cytometry characterization, and genomic sequencing, we show that cancer cells can be detected in breast milk. Cells derived from milk from the breast with cancer were enriched for CD49f+/EpCAM-, CD44+/CD24-, and CD271+ cancer stem-like cells (CSC). These CSCs carried mutations within the cytoplasmic retention domain of HDAC6, stop/gain insertion in MORF4L1, and deletion mutations within SWI/SNF complex component SMARCC2. CSCs were sensitive to HDAC6 inhibitors, BET bromodomain inhibitors, and EZH2 inhibitors, as mutations in SWI/SNF complex components are known to increase sensitivity to these drugs. Among cells derived from breast milk of additional ten women not known to have breast cancer, two of them contained cells that were enriched for the CSC phenotype and carried mutations in NF1 or KMT2D, which are frequently mutated in breast cancer. Breast milk-derived cells with NF1 mutations also carried copy-number variations in CDKN2C, PTEN, and REL genes. The approach described here may enable rapid cancer cell characterization including driver mutation detection and therapeutic screening for pregnancy/postpartum breast cancers. Furthermore, this method can be developed as a surveillance or early detection tool for women at high risk for developing breast cancer. SIGNIFICANCE: These findings describe how a simple method for characterization of cancer cells in pregnancy and postpartum breast cancer can be exploited as a surveillance tool for women at risk of developing breast cancer.
Collapse
Affiliation(s)
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ed Simpson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kandice K Ludwig
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary L Cox
- IU Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,IU Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. .,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,IU Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,VA Roudebush Medical Center, Indianapolis, Indiana
| |
Collapse
|
6
|
Wu S, Zhou J, Zhang K, Chen H, Luo M, Lu Y, Sun Y, Chen Y. Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front Oncol 2020; 10:301. [PMID: 32185139 PMCID: PMC7059202 DOI: 10.3389/fonc.2020.00301] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/20/2020] [Indexed: 12/31/2022] Open
Abstract
Partner and localizer of BRCA2 (PALB2) is vital for homologous recombination (HR) repair in response to DNA double-strand breaks (DSBs). PALB2 functions as a tumor suppressor and participates in the maintenance of genome integrity. In this review, we summarize the current knowledge of the biological roles of the multifaceted PALB2 protein and of its regulation. Moreover, we describe the link between PALB2 pathogenic variants (PVs) and breast cancer predisposition, aggressive clinicopathological features, and adverse clinical prognosis. We also refer to both the opportunities and challenges that the identification of PALB2 PVs provides in breast cancer genetic counseling and precision medicine.
Collapse
Affiliation(s)
- Shijie Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Zhou
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Sun
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Miwa T, Inoue K, Sakamoto H. MRG-1 is required for both chromatin-based transcriptional silencing and genomic integrity of primordial germ cells in Caenorhabditis elegans. Genes Cells 2019; 24:377-389. [PMID: 30929290 DOI: 10.1111/gtc.12683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 11/30/2022]
Abstract
In Caenorhabditis elegans, germline cells remain transcriptionally silenced during embryogenesis. The transcriptional silencing is achieved by two different mechanisms: One is the inhibition of RNA polymerase II in P2-P4 cells at the establishment stage, and another is chromatin-based silencing in two primordial germ cells (PGCs) at the maintenance stage; however, the molecular mechanism underlying chromatin-based silencing is less understood. We investigated the role of the chromodomain protein MRG-1, which is an essential maternal factor for germline development, in transcriptional silencing in PGCs. PGCs lacking maternal MRG-1 showed increased levels of two histone modifications (H3K4me2 and H4K16ac), which are epigenetic markers for active transcription, and precocious activation of germline promoters. Loss of MES-4, a H3K36 methyltransferase, also caused similar derepression of the germline genes in PGCs, suggesting that both MRG-1 and MES-4 function in chromatin-based silencing in PGCs. In addition, the mrg-1 null mutant showed abnormal chromosome structures and a decrease in homologous recombinase RAD-51 foci in PGCs, but the mes-4 null mutant did not show such phenotypes. Taken together, we propose that MRG-1 has two distinct functions: chromatin-based transcriptional silencing and preserving genomic integrity at the maintenance stage of PGCs.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Hiroshi Sakamoto
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| |
Collapse
|
8
|
Ducy M, Sesma-Sanz L, Guitton-Sert L, Lashgari A, Gao Y, Brahiti N, Rodrigue A, Margaillan G, Caron MC, Côté J, Simard J, Masson JY. The Tumor Suppressor PALB2: Inside Out. Trends Biochem Sci 2019; 44:226-240. [PMID: 30638972 DOI: 10.1016/j.tibs.2018.10.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 12/26/2022]
Abstract
Partner and Localizer of BRCA2 (PALB2) has emerged as an important and versatile player in genome integrity maintenance. Biallelic mutations in PALB2 cause Fanconi anemia (FA) subtype FA-N, whereas monoallelic mutations predispose to breast, and pancreatic familial cancers. Herein, we review recent developments in our understanding of the mechanisms of regulation of the tumor suppressor PALB2 and its functional domains. Regulation of PALB2 functions in DNA damage response and repair occurs on multiple levels, including homodimerization, phosphorylation, and ubiquitylation. With a molecular emphasis, we present PALB2-associated cancer mutations and their detailed analysis by functional assays.
Collapse
Affiliation(s)
- Mandy Ducy
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laura Sesma-Sanz
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laure Guitton-Sert
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Anahita Lashgari
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Yuandi Gao
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Nadine Brahiti
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Guillaume Margaillan
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Marie-Christine Caron
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Côté
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Simard
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
9
|
Sang Y, Zhang R, Sun L, Chen KK, Li SW, Xiong L, Peng Y, Zeng L, Huang G. MORF4L1 suppresses cell proliferation, migration and invasion by increasing p21 and E-cadherin expression in nasopharyngeal carcinoma. Oncol Lett 2018; 17:294-302. [PMID: 30655767 PMCID: PMC6313188 DOI: 10.3892/ol.2018.9588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/14/2018] [Indexed: 12/14/2022] Open
Abstract
Mortality factor 4-like 1 (MORF4L1) is a member of a subgroup of histone acetyltransferases and belongs to the mortality factor on chromosome 4 (MORF4) class of proteins. However, the role of MORF4L1 in cancers is largely unknown. Using reverse transcription-quantitative polymerase chain reaction and published datasets, the present study demonstrated that the expression of MORF4L1 is decreased in several cancers, including nasopharyngeal carcinoma (NPC). Additionally, the methylation rate of the promoter of MORF4L1 was identified to be significantly higher in tumour cells than in normal cells. The ectopic expression of MORF4L1 was also revealed to inhibit cell proliferation, colony formation, migration and invasion in NPC, whereas the knockdown of MORF4L1 promoted cell proliferation, colony formation, migration and invasion. Mechanistically, the present study demonstrated that MORF4L1 functions as a tumour suppressor by increasing p21 and E-cadherin levels. These findings may be useful novel targets for treating patients with NPC.
Collapse
Affiliation(s)
- Yi Sang
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Longhua Sun
- Respiratory Department, Nanchang Hospital of Integrative Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330008, P.R. China
| | - Kaddie Kwok Chen
- College of Arts and Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Si-Wei Li
- Department of Radiation Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Longxin Xiong
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Yongjian Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Lei Zeng
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Guofu Huang
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| |
Collapse
|
10
|
Hernández G, Ramírez MJ, Minguillón J, Quiles P, Ruiz de Garibay G, Aza-Carmona M, Bogliolo M, Pujol R, Prados-Carvajal R, Fernández J, García N, López A, Gutiérrez-Enríquez S, Diez O, Benítez J, Salinas M, Teulé A, Brunet J, Radice P, Peterlongo P, Schindler D, Huertas P, Puente XS, Lázaro C, Pujana MÀ, Surrallés J. Decapping protein EDC4 regulates DNA repair and phenocopies BRCA1. Nat Commun 2018; 9:967. [PMID: 29511213 PMCID: PMC5840268 DOI: 10.1038/s41467-018-03433-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
BRCA1 is a tumor suppressor that regulates DNA repair by homologous recombination. Germline mutations in BRCA1 are associated with increased risk of breast and ovarian cancer and BRCA1 deficient tumors are exquisitely sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. Therefore, uncovering additional components of this DNA repair pathway is of extreme importance for further understanding cancer development and therapeutic vulnerabilities. Here, we identify EDC4, a known component of processing-bodies and regulator of mRNA decapping, as a member of the BRCA1-BRIP1-TOPBP1 complex. EDC4 plays a key role in homologous recombination by stimulating end resection at double-strand breaks. EDC4 deficiency leads to genome instability and hypersensitivity to DNA interstrand cross-linking drugs and PARP inhibitors. Lack-of-function mutations in EDC4 were detected in BRCA1/2-mutation-negative breast cancer cases, suggesting a role in breast cancer susceptibility. Collectively, this study recognizes EDC4 with a dual role in decapping and DNA repair whose inactivation phenocopies BRCA1 deficiency.
Collapse
Affiliation(s)
- Gonzalo Hernández
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 08193, Spain
| | - María José Ramírez
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 08193, Spain
| | - Jordi Minguillón
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 08193, Spain
| | - Paco Quiles
- Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, 08908, Spain
| | - Gorka Ruiz de Garibay
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, 08908, Spain
| | - Miriam Aza-Carmona
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 08193, Spain
| | - Massimo Bogliolo
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 08193, Spain
| | - Roser Pujol
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 08193, Spain
| | - Rosario Prados-Carvajal
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
| | - Juana Fernández
- Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, 08908, Spain
| | - Nadia García
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, 08908, Spain
| | - Adrià López
- Hereditary Cancer Programme, ICO, Girona Biomedical Research Institute (IDIBGI), Girona, 17007, Spain
| | | | - Orland Diez
- Oncogenetics Group, Vall d´Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
- Area of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, 08035, Spain
| | - Javier Benítez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 08193, Spain
- Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Mónica Salinas
- Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, 08908, Spain
| | - Alex Teulé
- Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, 08908, Spain
| | - Joan Brunet
- Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, 08908, Spain
- Hereditary Cancer Programme, ICO, Girona Biomedical Research Institute (IDIBGI), Girona, 17007, Spain
| | - Paolo Radice
- Department of Preventive and Predictive Medicine, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT), Milan, 20133, Italy
| | - Paolo Peterlongo
- Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare and Unit of Molecular Bases of Genetic Risk and Genetic Testing, Milan, 20139, Italy
| | - Detlev Schindler
- Department of Human Genetics, Wurzburg University, Wurzburg, 97070, Germany
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
| | - Xose S Puente
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Conxi Lázaro
- Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, 08908, Spain
| | - Miquel Àngel Pujana
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, 08908, Spain.
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Oviedo, 33006, Spain.
| | - Jordi Surrallés
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 08193, Spain.
- Department of Genetics and Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, 08028, Spain.
| |
Collapse
|
11
|
Nepomuceno TC, De Gregoriis G, de Oliveira FMB, Suarez-Kurtz G, Monteiro AN, Carvalho MA. The Role of PALB2 in the DNA Damage Response and Cancer Predisposition. Int J Mol Sci 2017; 18:ijms18091886. [PMID: 28858227 PMCID: PMC5618535 DOI: 10.3390/ijms18091886] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
The deoxyribonucleic acid (DNA) damage response (DDR) is a major feature in the maintenance of genome integrity and in the suppression of tumorigenesis. PALB2 (Partner and Localizer of Breast Cancer 2 (BRCA2)) plays an important role in maintaining genome integrity through its role in the Fanconi anemia (FA) and homologous recombination (HR) DNA repair pathways. Since its identification as a BRCA2 interacting partner, PALB2 has emerged as a pivotal tumor suppressor protein associated to hereditary cancer susceptibility to breast and pancreatic cancers. In this review, we discuss how other DDR proteins (such as the kinases Ataxia Telangiectasia Mutated (ATM) and ATM- and Rad3-Related (ATR), mediators BRCA1 (Breast Cancer 1)/BRCA2 and effectors RAD51/DNA Polymerase η (Polη) interact with PALB2 to orchestrate DNA repair. We also examine the involvement of PALB2 mutations in the predisposition to cancer and the role of PALB2 in stimulating error-free DNA repair through the FA/HR pathway.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Giuliana De Gregoriis
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | | | - Guilherme Suarez-Kurtz
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Alvaro N Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Marcelo A Carvalho
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
- Instituto Federal do Rio de Janeiro-IFRJ, Rio de Janeiro 20270-021, Brazil.
| |
Collapse
|
12
|
Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells. Int J Mol Sci 2016; 17:ijms17071113. [PMID: 27420050 PMCID: PMC4964488 DOI: 10.3390/ijms17071113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022] Open
Abstract
Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds.
Collapse
|
13
|
Gupta P, Leahul L, Wang X, Wang C, Bakos B, Jasper K, Hansen D. Proteasome regulation of the chromodomain protein MRG-1 controls the balance between proliferative fate and differentiation in the C. elegans germ line. Development 2015; 142:291-302. [PMID: 25564623 DOI: 10.1242/dev.115147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The level of stem cell proliferation must be tightly controlled for proper development and tissue homeostasis. Multiple levels of gene regulation are often employed to regulate stem cell proliferation to ensure that the amount of proliferation is aligned with the needs of the tissue. Here we focus on proteasome-mediated protein degradation as a means of regulating the activities of proteins involved in controlling the stem cell proliferative fate in the C. elegans germ line. We identify five potential E3 ubiquitin ligases, including the RFP-1 RING finger protein, as being involved in regulating proliferative fate. RFP-1 binds to MRG-1, a homologue of the mammalian chromodomain-containing protein MRG15 (MORF4L1), which has been implicated in promoting the proliferation of neural precursor cells. We find that C. elegans with reduced proteasome activity, or that lack RFP-1 expression, have increased levels of MRG-1 and a shift towards increased proliferation in sensitized genetic backgrounds. Likewise, reduction of MRG-1 partially suppresses stem cell overproliferation. MRG-1 levels are controlled independently of the spatially regulated GLP-1/Notch signalling pathway, which is the primary signal controlling the extent of stem cell proliferation in the C. elegans germ line. We propose a model in which MRG-1 levels are controlled, at least in part, by the proteasome, and that the levels of MRG-1 set a threshold upon which other spatially regulated factors act in order to control the balance between the proliferative fate and differentiation in the C. elegans germ line.
Collapse
Affiliation(s)
- Pratyush Gupta
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Lindsay Leahul
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Brendan Bakos
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Katie Jasper
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
14
|
PALB2: the hub of a network of tumor suppressors involved in DNA damage responses. Biochim Biophys Acta Rev Cancer 2014; 1846:263-75. [PMID: 24998779 DOI: 10.1016/j.bbcan.2014.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/04/2014] [Accepted: 06/25/2014] [Indexed: 12/30/2022]
Abstract
PALB2 was first identified as a partner of BRCA2 that mediates its recruitment to sites of DNA damage. PALB2 was subsequently found as a tumor suppressor gene. Inherited heterozygosity for this gene is associated with an increased risk of cancer of the breast and other sites. Additionally, biallelic mutation of PALB2 is linked to Fanconi anemia, which also has an increased risk of developing malignant disease. Recent work has identified numerous interactions of PALB2, suggesting that it functions in a network of proteins encoded by tumor suppressors. Notably, many of these tumor suppressors are related to the cellular response to DNA damage. The recruitment of PALB2 to DNA double-strand breaks at the head of this network is via a ubiquitin-dependent signaling pathway that involves the RAP80, Abraxas and BRCA1 tumor suppressors. Next, PALB2 interacts with BRCA2, which is a tumor suppressor, and with the RAD51 recombinase. These interactions promote DNA repair by homologous recombination (HR). More recently, PALB2 has been found to bind the RAD51 paralog, RAD51C, as well as the translesion polymerase pol η, both of which are tumor suppressors with functions in HR. Further, an interaction with MRG15, which is related to chromatin regulation, may facilitate DNA repair in damaged chromatin. Finally, PALB2 interacts with KEAP1, a regulator of the response to oxidative stress. The PALB2 network appears to mediate the maintenance of genome stability, may explain the association of many of the corresponding genes with similar spectra of tumors, and could present novel therapeutic opportunities.
Collapse
|
15
|
Abstract
Parathyroid carcinoma is a rare form of endocrine malignancy accounting for only a small minority of cancer cases. Due to the rarity of this cancer, there are no generalized guidelines for its management; however, surgery remains to be the mainstay therapy. The purpose of this article is to review and summarize the available literature on parathyroid carcinoma, while discussing proposed staging systems and the role of available adjuvant therapies.
Collapse
|
16
|
Chen Y, Li J, Dunn S, Xiong S, Chen W, Zhao Y, Chen BB, Mallampalli RK, Zou C. Histone deacetylase 2 (HDAC2) protein-dependent deacetylation of mortality factor 4-like 1 (MORF4L1) protein enhances its homodimerization. J Biol Chem 2014; 289:7092-7098. [PMID: 24451372 DOI: 10.1074/jbc.m113.527507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone acetyltransferase mortality factor 4-like 1 (MORF4L1) is a relatively new histone acetyltransferase component that exists as a homodimer to exert its epigenetic function. The mechanism of MORF4L1 self-assembly is unknown. Here we report that Lys-148 deacetylation is indispensable for facilitating MORF4L1 self-assembly into a homodimeric unit. Among a stretch of ∼10 amino acids in the NH2 terminus between the chromodomain and MORF4-related gene (MRG) domain within MORF4L1, Lys-148 is normally acetylated. Substitution of Lys-148 with arginine augments MORF4L1 self-assembly. However, acetylation mimics of MORF4L1, including K148L and K148Q, abolished its self-assembly of the histone acetyltransferase component. HDAC2, a deacetylase, interacts with and keeps MORF4L1 in a deacetylation status at Lys(148) that triggers MORF4L1 self-assembly. Knockdown of HDAC2 reduces MORF4L1 self-assembly. HDAC2-dependent deacetylation of MORF4L1 enhances MORF4L1 homodimerization, thus facilitating the functionality of complex formation to repress cell proliferation.
Collapse
Affiliation(s)
- Yan Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Department of Respiratory Medicine, The Second Xiangya Hospital, Central-South University, Changsha, Hunan 410011, China.
| | - Jin Li
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Sarah Dunn
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Sheng Xiong
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Wei Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yutong Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Bill B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Rama K Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Chunbin Zou
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
17
|
Zou C, Mallampalli RK. Regulation of histone modifying enzymes by the ubiquitin-proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:694-702. [PMID: 24389248 DOI: 10.1016/j.bbamcr.2013.12.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/17/2013] [Accepted: 12/24/2013] [Indexed: 11/30/2022]
Abstract
Histone post-translational modification is a key step that may result in an epigenetic mark that regulates chromatin structure and gene transcriptional activity thereby impacting many fundamental aspects of human biology. Subtypes of post-translational modification such as acetylation and methylation are executed by a variety of distinct modification enzymes. The cytoplasmic and nuclear concentrations of these enzymes are dynamically and tightly controlled at the protein level to precisely fine-tune transcriptional activity in response to environmental clues and during pathophysiological states. Recent data have emerged demonstrating that the life span of these critical nuclear enzymes involved in histone modification that impact chromatin structure and gene expression are controlled at the level of protein turnover by ubiquitin-proteasomal processing. This review focuses on the recent progress on mechanisms for ubiquitin-proteasomal degradation of histone modification enzymes and the potential pathophysiological significance of this process.
Collapse
Affiliation(s)
- Chunbin Zou
- Department of Medicine, The Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Rama K Mallampalli
- Department of Medicine, The Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
18
|
Xie H, Xia K, Rong H, Chen X. Genetic polymorphism in hOGG1 is associated with triple-negative breast cancer risk in Chinese Han women. Breast 2013; 22:707-12. [PMID: 23369609 DOI: 10.1016/j.breast.2012.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 11/20/2012] [Accepted: 12/17/2012] [Indexed: 02/02/2023] Open
Abstract
8-hydroxy-2'-deoxyguanine (8-OHdG), a typical product of oxidative stress-induced DNA damage, can cause a G-T transversion during DNA replication if it is not removed. Human 8-oxoguanine glycosylase 1 (hOGG1), a key DNA repair gene, recognizes and excises 8-OHdG from damaged DNA accurately; however, a c.977C>G (Ser326Cys) polymorphism in hOGG1 can inhibit the gene's ability to remove 8-OHdG. The aim of present study was to investigate the association between the c.977C>G polymorphism in hOGG1 and the risk of breast cancer in Chinese Han women. We used high-resolution melting and sequencing to analyze the genotypes of 630 patients with sporadic breast cancer patients and 777 healthy controls. We also performed risk-stratified subgroup analyses to determine the association between the c.977C>G polymorphism and other characteristics of breast cancer subgroups. Breast cancer patients and healthy controls did not have significantly different of c.977C/G genotypes (odds ratio [OR] = 1.10, 95% confidence interval [CI] = 0.82-1.49, p = 0.57) and c.977G/G genotypes (OR = 1.34, 95% CI = 0.97-1.84, p = 0.09). However, the c.977G/G genotype was especially prevalent in breast cancer patients who were younger than 55 years (OR = 1.58, 95% CI = 1.05-2.39, p = 0.04), were premenopausal status (OR = 1.87, 95% CI = 1.14-3.06, p = 0.02), had triple-negative disease (OR = 2.14, 95% CI = 1.06-4.29, p = 0.04), or p53-positive disease (OR = 1.56, 95% CI = 1.14-2.12, p = 0.005). These findings suggest that the c.977C>G polymorphism in hOGG1 is associated with an increased risk of breast cancer in Chinese Han women who are younger than 55 years, premenopausal, triple-negative, or p53-positive subgroups.
Collapse
Affiliation(s)
- Hui Xie
- State Key Laboratory of Reproductive Medicine, Department of Breast Surgery, Nanjing Maternity and Child Health Care Hospital Affiliated Nanjing Medical University, Nanjing, China; Department of Gerontology, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|