1
|
Chen M, Wu C, Fu Z, Liu S. ICAM1 promotes bone metastasis via integrin-mediated TGF-β/EMT signaling in triple-negative breast cancer. Cancer Sci 2022; 113:3751-3765. [PMID: 35969372 DOI: 10.1111/cas.15532] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
Bone-related events caused by breast cancer bone metastasis substantially compromise the survival and quality of life of patients. Because triple-negative breast cancer (TNBC) lacks hormone receptors and Her2-targeted therapeutic options, progress in the treatment of TNBC bone metastasis has been very slow. Intercellular adhesion molecule 1 (ICAM1) is highly expressed in various cancers and plays an important role in tumorigenesis and metastasis. However, the effect and mechanism of ICAM1 in TNBC bone metastasis are still unknown. We found that ICAM1 was highly expressed in TNBC and correlated with prognosis in TNBC patients. Cell lines with high expression of ICAM1 exhibited enhanced bone metastasis in tumor-bearing mice, and silencing ICAM1 expression significantly inhibited bone metastasis in mice. ICAM1 interacted with integrins to activate the epithelial-to-mesenchymal transition (EMT) program through TGF-β/SMAD signaling, ultimately enhancing cell invasiveness. Therefore, the findings of the present study provide a strong rationale for the application of ICAM1-targeted therapy in TNBC patients with bone metastasis.
Collapse
Affiliation(s)
- Mingcang Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Sheng Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Raafat Elsayed AA, Al-Marsoummi S, Vomhof-Dekrey EE, Basson MD. SLFN12 Over-expression Sensitizes Triple Negative Breast Cancer Cells to Chemotherapy Drugs and Radiotherapy. Cancer Genomics Proteomics 2022; 19:328-338. [PMID: 35430566 PMCID: PMC9016483 DOI: 10.21873/cgp.20323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Schlafen 12 (SLFN12) expression correlates with survival in triple negative breast cancer (TNBC). SLFN12 slows TNBC proliferation and induces TNBC differentiation, but whether SLFN12 affects the tumoral response to chemotherapy or radiation is unknown. MATERIALS AND METHODS We over-expressed SLFN12 in MDA-MB-231 cells using two different lentiviral vectors. We assessed viable cell numbers via crystal violet assay after treatment with carboplatin, paclitaxel, olaparib, zoledronic acid, camptothecin, or cesium irradiation. CHK1 and CHK2 phosphorylation was assessed by western blot and the effects of inhibiting CHK1/CHK2 by AZD7762 were examined. Key findings were confirmed in Hs578t and BT549 TNBC cells after adenoviral SLFN12 over-expression. RESULTS SLFN12 over-expression increased TNBC sensitivity to radiation, carboplatin, paclitaxel, zoledronic acid, and camptothecin, but not to olaparib. SLFN12 over-expression decreased CHK1 and CHK2 phosphorylation after treatment with the DNA damaging agent camptothecin (CPT). The CHK1/CHK2 inhibitor diminished the significant cytotoxicity difference between over-expression and baseline SLFN12 levels in response to carboplatin. CONCLUSION SLFN12 increases TNBC sensitivity to DNA-damaging agents at least in part by reducing CHK1/2 phosphorylation. This may contribute to improved survival in patients whose TNBC over-expresses SLFN12. Therefore, SLFN12 levels may be used to customize or predict radiotherapy and chemotherapy effects in TNBC.
Collapse
Affiliation(s)
- Ahmed Adham Raafat Elsayed
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
| | - Sarmad Al-Marsoummi
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
| | - Emilie E Vomhof-Dekrey
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
| | - Marc D Basson
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A.;
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
| |
Collapse
|
3
|
Abstract
The COVID-19 pandemic has horrified the human race and every government of the world, not only in the healthcare sector but also in terms of the economy, social disturbances, and large-scale growth of all nations. SARS-CoV-2, responsible for this pandemic, is a single member of a huge family of pathogenic viruses. Previous encounters with these viruses have taught the whole world that they can transform into more resistant and more harmful forms in a very short time. Antiviral medicines with characteristics of excellent potency, less resistance, and low toxicity are still challenging, and obtaining such drugs is a demanding arena in the field of pharmaceutical development. Antiviral medicines contain heterocyclic moieties with diverse substitutions and fusion. Among the potent heterocycles, imidazoles serve as one of the most crucial moieties in the field of drug discovery due to their ability to interact with the active target sites of living systems which provide enormous opportunities to discover new drugs with several modes of action. This chapter gives a systemic representation of design, discovery, and structure–activity relationship studies of the imidazole analogs as antiviral drugs in comparison to standard treatment used in the present-day scenario.
Collapse
|
4
|
Long-term outcome of (neo)adjuvant zoledronic acid therapy in locally advanced breast cancer. Breast Cancer Res Treat 2021; 187:135-144. [PMID: 33591469 DOI: 10.1007/s10549-021-06100-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/09/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE The role of zoledronic acid (ZOL), a bone-targeted bisphosphonate, in the treatment of patients with breast cancer remains an active area of study. Here, we report the long-term outcomes of a randomized placebo-controlled phase II clinical trial in which ZOL treatment was added to neoadjuvant chemotherapy in women with locally advanced breast cancer. METHODS 120 women with clinical stage II-III (≥ T2 and/or ≥ N1) newly diagnosed breast cancer were randomized to receive either 4 mg intravenous ZOL every 3 weeks for 1 year (17 total doses) beginning with the first dose of neoadjuvant chemotherapy, or chemotherapy alone. Clinical endpoints included time to recurrence (TTR), time to bone recurrence (TTBR), time to non-bone recurrence (TTNBR), breast cancer survival (BCS) and overall survival (OS). RESULTS With a median follow-up interval of 14.4 years, there were no significant differences in any of the clinical endpoints studied between the control and ZOL groups in the overall study population. However, ER+/HER2- patients younger than age 45 who were treated with ZOL had significantly worse TTR and TTNBR with a trend towards worse TTBR, BCS and OS (TTR: P = 0.024, HR 6.05 [1.26-29.1]; TTNBR: P = 0.026, HR 6.94 [1.26-38.1]; TTBR: P = 0.054, HR 6.01 [0.97-37.1]; BCS: P = 0.138, HR 4.43 [0.62-31.7]; OS: P = 0.138, HR 4.43 [0.62-31.7]). These differences were not seen in older ER+/HER2- patients or triple-negative patients of any age. CONCLUSION Addition of ZOL to neoadjuvant therapy did not significantly affect clinical outcomes in the overall study population but was associated with increased extra-skeletal recurrence and a trend towards worse survival in ER+/HER2- patients younger than age 45. These findings suggest caution when using zoledronic acid in young, premenopausal women with locally advanced breast cancer and warrant further investigation. Clinical Trial Registration Number NCT00242203, Date of Registration: 10/17/2005.
Collapse
|
5
|
Hebishy AMS, Abdelfattah MS, Elmorsy A, Elwahy AHM. ZnO nanoparticles catalyzed synthesis of bis- and poly(imidazoles) as potential anticancer agents. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1726396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ali M. S. Hebishy
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Abdullah Elmorsy
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed H. M. Elwahy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
6
|
Cui X, Li S, Gu J, Lin Z, Lai B, Huang L, Feng J, Liu B, Zhou Y. Retrospective study on the efficacy of bisphosphonates in tyrosine kinase inhibitor-treated patients with non-small cell lung cancer exhibiting bone metastasis. Oncol Lett 2019; 18:5437-5447. [PMID: 31612052 PMCID: PMC6781563 DOI: 10.3892/ol.2019.10870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/14/2019] [Indexed: 01/04/2023] Open
Abstract
Bisphosphonates (Bps) inhibit the maturation of osteoclasts and suppress the adhesion of cancer cells to the bone matrix. They are recommended as the standard treatment for tumors exhibiting bone metastasis (BM). However, whether Bps can improve the prognosis of patients with tyrosine kinase inhibitor (TKI)-treated non-small cell lung cancer (NSCLC) exhibiting BM remains unclear. A total of 129 patients with NSCLC initially diagnosed with BM at The First Affiliated Hospital of Sun Yat-Sen University (Guangzhou, China) between January 2005 and December 2017 were analyzed in the present retrospective study. Median progression free survival (mPFS) time, median bone metastasis overall survival (mBM-OS) time and bone-associated progression-free survival were analyzed. Among the 129 patients, patients treated with Bps experienced significantly prolonged PFS time [mPFS: 7.1 vs. 5.1 months; hazard ratio (HR), 0.51; confidence interval (CI), 0.30-0.87; P=0.0114] in comparison with patients not treated with Bps. Of the 49 patients treated with frontline TKIs (EGFR TKIs or ALK TKI), 32 received Bps at the same time, while 17 patients received TKIs alone. The results revealed that mPFS time was significantly greater in the TKIs plus Bps group than in the TKIs alone group (mPFS: 11.2 vs. 6.9 months; HR, 0.13; CI, 0.05-0.35; P<0.0001). Significantly prolonged BM-OS time was also observed in the combination group in comparison with the TKIs alone group (mBM-OS: 31 vs. 22 months; HR, 0.31; CI, 0.10-0.96; P=0.0413). The present study demonstrated that among the patients who received TKIs (EGFR TKIs or ALK TKIs), those who also received Bps experienced significantly longer PFS time and tended to exhibit significantly improved BM-OS time, which indicated that Bps should be added to the treatment regimen of patients with NSCLC exhibiting genetic mutations and bone metastasis who have been prescribed TKIs (EGFR TKIs or ALK TKIs).
Collapse
Affiliation(s)
- Xiaoxian Cui
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shaoli Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jincui Gu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ziying Lin
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bipeng Lai
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lixia Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jinlun Feng
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Baomo Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yanbin Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
7
|
Yazdani A, Dorri S, Atashi A, Shirafkan H, Zabolinezhad H. Bone Metastasis Prognostic Factors in Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2019; 13:1178223419830978. [PMID: 30828246 PMCID: PMC6388452 DOI: 10.1177/1178223419830978] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/17/2022]
Abstract
Objective: Bone is the most common site of metastasis in breast cancer. Prognostic factors for predicting bone metastases in breast cancer are controversial yet. In this study, we investigated clinical factors associated with secondary bone metastasis of breast cancer. Methods: In total, 1690 patients with breast cancer recorded between 2002 and 2012 in Motamed Cancer Institute, Tehran, Iran entered in the retrospective study. We studied age, menopausal status, histologic type, tumor size, number of cancerous axillary lymph nodes, serum concentrations of alkaline phosphatase (ALP), carcinogenicity antigen (CEA), cancer antigen (CA)-153, and hemoglobin (HB) in 2 groups with bone metastases (n = 123) and without it, respectively. We applied logistic regression to identify bone metastasis prognostic factors in breast cancer patients and calculated the cut-off value, sensitivity, and characteristics of independent prognostic factors using receiver operating characteristic (ROC) curve analysis. Results: Menopause, larger tumor size, and the greater number of cancerous axillary lymph nodes increased the chance of bone metastases significantly (P < .05). There was no significant difference between mean groups with and without bone metastases regarding serum concentration of CEA, CA-153, HB, and histopathologic type (P > .05). Logistic regression showed that age (odds ratio (OR) = 1.021), menopausal status (OR = 1.854), number of cancerous axillary lymph nodes (OR = 1.065), a tumor size between 2 and 5 cm diameter (OR = 2.002) and more than 5 cm diameter (OR = 4.009), and ALP (OR = 1.005) are independent prognostic factors associated with bone metastases. The ROC curve showed that the abovementioned factors have comparable predictive accuracy for bone metastases. Conclusions: Age, menopausal status, number of axillary lymph node metastases, tumor size, and ALP were identified as prognostic factors for bone metastasis in patients with breast cancer. So patients with these characteristics should be monitored more precisely with regular follow-ups.
Collapse
Affiliation(s)
- Akram Yazdani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Dorri
- Medical Informatics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Alirezza Atashi
- E-Health Department, Virtual School, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Shirafkan
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedieh Zabolinezhad
- Information Technology Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Xiong Z, Deng G, Huang X, Li X, Xie X, Wang J, Shuang Z, Wang X. Bone metastasis pattern in initial metastatic breast cancer: a population-based study. Cancer Manag Res 2018; 10:287-295. [PMID: 29467583 PMCID: PMC5811177 DOI: 10.2147/cmar.s155524] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose Bone is one of the most common sites of breast cancer metastasis, and population-based studies of patients with bone metastasis in initial metastatic breast cancer (MBC) are lacking. Materials and methods From 2010 to 2013, 245,707 breast cancer patients and 8901 patients diagnosed with initial bone metastasis were identified by Surveillance, Epidemiology, and End Results database of the National Cancer Institute. Multivariate logistic and Cox regression were used to identify predictive factors for the presence of bone metastasis and prognosis factors. Kaplan-Meier method and log-rank test were used for survival analysis. Results Eight thousand nine hundred one patients with initial MBC had bone involvement, accounting for 3.6% of the entire cohort and 62.5% of the patients with initial MBC. Also, 70.5% of patients with bone metastasis were hormone receptor (HR) positive (HR+/human epidermal growth factor receptor 2 [HER2]-: 57.6%; HR+/HER2+: 12.9%). Patients with initial bone metastasis had a better 5-year survival rate compared to those with initial brain, liver, or lung metastasis. HR+/HER2- and HR+/HER2+ breast cancer had a propensity of bone metastasis in the entire cohort and were correlated with better prognosis in patients with initial bone metastasis. Local surgery had significantly improved overall survival in initial MBC patients with bone metastasis. Conclusion Our study has provided population-based estimates of epidemiologic characteristics and prognosis in patients with bone metastasis at the time of breast cancer diagnosis. These findings would lend support to optimal surveillance and treatment of bone metastasis in breast cancer.
Collapse
Affiliation(s)
- Zhenchong Xiong
- Department of Breast Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guangzheng Deng
- Department of Breast Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xinjian Huang
- Department of Breast Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xing Li
- Department of Breast Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xinhua Xie
- Department of Breast Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jin Wang
- Department of Breast Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zeyu Shuang
- Department of Breast Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xi Wang
- Department of Breast Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
9
|
Ying G, Bo L, Yanjun J, Lina W, Binquan W. Effect of a local, one time, low-dose injection of zoledronic acid on titanium implant osseointegration in ovariectomized rats. Arch Med Sci 2016; 12:941-949. [PMID: 27695483 PMCID: PMC5016583 DOI: 10.5114/aoms.2016.61908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Local application of bisphosphonates has been proven to be safer than systemic administration to promote implant fixation. The objective of this study was to introduce such a simple, convenient and efficient method to enhance titanium (Ti) implant osseointegration in ovariectomized (OVX) rats. MATERIAL AND METHODS Twenty female Sprague-Dawley rats sequentially underwent bilateral ovariectomy and tibia implantation, and injection of 30 µg/implant zoledronic acid (ZOL) at the site of implantation was performed. At the end of the study, the tibiae, mandibles, femurs and vertebrae were harvested for dual energy X-ray absorptiometry, histology and micro-computed tomography examination. RESULTS Ovariectomized rats showed poor bone density, bone mass and trabecular microstructure. OVX + ZOL rats were characterized by significantly improved peri-implant bone area (1.72-fold), bone contact (2.30-fold), bone mineral density (1.57-fold) and bone mineral content (1.67-fold), as well as moderately increased bone volume to total volume ratio (1.34-fold), percentage osteointegration (1.54-fold), connectivity density (1.45-fold), and trabecular number (1.43-fold), but decreased trabecular separation (57.69%) when compared with the control levels (p < 0.05). No histological signs of jaw osteonecrosis were observed in the rats treated with ZOL, and there was no significant difference between the OVX group and OVX + ZOL group in the bone mass of the mandible, femur and 5th lumbar vertebra (p > 0.05). In addition, the overproduction of osteoporosis-induced advanced glycation end-products (AGEs) was completely prevented by local treatment with 30 µg/implant ZOL. CONCLUSIONS A local, one time, low-dose injection of ZOL at the site of implantation is able to promote the osseointegration of Ti implants following postmenopausal osteoporosis, and this action may be partly mediated by inhibition of the osteoporosis-induced AGE overproduction in the bone marrow.
Collapse
Affiliation(s)
- Gao Ying
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lian Bo
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiao Yanjun
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wu Lina
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wang Binquan
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Holen I, Walker M, Nutter F, Fowles A, Evans CA, Eaton CL, Ottewell PD. Oestrogen receptor positive breast cancer metastasis to bone: inhibition by targeting the bone microenvironment in vivo. Clin Exp Metastasis 2015; 33:211-24. [PMID: 26585891 DOI: 10.1007/s10585-015-9770-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Clinical trials have shown that adjuvant Zoledronic acid (ZOL) reduces the development of bone metastases irrespective of ER status. However, post-menopausal patients show anti-tumour benefit with ZOL whereas pre-menopausal patients do not. Here we have developed in vivo models of spontaneous ER+ve breast cancer metastasis to bone and investigated the effects of ZOL and oestrogen on tumour cell dissemination and growth. ER+ve (MCF7, T47D) or ER-ve (MDA-MB-231) cells were administered by inter-mammary or inter-cardiac injection into female nude mice ± estradiol. Mice were administered saline or 100 μg/kg ZOL weekly. Tumour growth, dissemination of tumour cells in blood, bone and bone turnover were monitored by luciferase imaging, histology, flow cytometry, two-photon microscopy, micro-CT and TRAP/P1NP ELISA. Estradiol induced metastasis of ER+ve cells to bone in 80-100 % of animals whereas bone metastases from ER-ve cells were unaffected. Administration of ZOL had no effect on tumour growth in the fat pad but significantly inhibited dissemination of ER+ve tumour cells to bone and frequency of bone metastasis. Estradiol and ZOL increased bone volume via different mechanisms: Estradiol increased activity of bone forming osteoblasts whereas administration of ZOL to estradiol supplemented mice decreased osteoclast activity and returned osteoblast activity to levels comparable to that of saline treated mice. ER-ve cells require increased osteoclast activity to grow in bone whereas ER+ve cells do not. Zol does not affect ER+ve tumour growth in soft tissue, however, inhibition of bone turnover by ZOL reduced dissemination and growth of ER+ve breast cancer cells in bone.
Collapse
Affiliation(s)
- I Holen
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - M Walker
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - F Nutter
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - A Fowles
- Bone Biology, Department of Human Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, S10 2RX, UK
| | - C A Evans
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - C L Eaton
- Bone Biology, Department of Human Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, S10 2RX, UK
| | - P D Ottewell
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
11
|
Rivera-Hernández A, López-Jimeno IS, Carmona-Reyes GA, Alfredo-Toscano R, Penieres-Carrillo JG, Álvarez-Toledano C. Facile access to imidazole derivatives: carboxylic acids and δ-lactones. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.06.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ottewell PD, Wang N, Brown HK, Reeves KJ, Fowles CA, Croucher PI, Eaton CL, Holen I. Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clin Cancer Res 2014; 20:2922-32. [PMID: 24687923 DOI: 10.1158/1078-0432.ccr-13-1246] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Clinical trials in early breast cancer have suggested that benefits of adjuvant bone-targeted treatments are restricted to women with established menopause. We developed models that mimic pre- and postmenopausal status to investigate effects of altered bone turnover on growth of disseminated breast tumor cells. Here, we report a differential antitumor effect of zoledronic acid (ZOL) in these two settings. EXPERIMENTAL DESIGN Twleve-week-old female Balb/c-nude mice with disseminated MDA-MB-231 breast tumor cells in bone underwent sham operation or ovariectomy (OVX), mimicking the pre- and postmenopausal bone microenvironment, respectively. To determine the effects of bone-targeted therapy, sham/OVX animals received saline or 100 μg/kg ZOL weekly. Tumor growth was assessed by in vivo imaging and effects on bone by real-time PCR, micro-CT, histomorphometry, and measurements of bone markers. Disseminated tumor cells were detected by two-photon microscopy. RESULTS OVX increased bone resorption and induced growth of disseminated tumor cells in bone. Tumors were detected in 83% of animals following OVX (postmenopausal model) compared with 17% following sham operation (premenopausal model). OVX had no effect on tumors outside of bone. OVX-induced tumor growth was completely prevented by ZOL, despite the presence of disseminated tumor cells. ZOL did not affect tumor growth in bone in the sham-operated animals. ZOL increased bone volume in both groups. CONCLUSIONS This is the first demonstration that tumor growth is driven by osteoclast-mediated mechanisms in models that mimic post- but not premenopausal bone, providing a biologic rationale for the differential antitumor effects of ZOL reported in these settings. Clin Cancer Res; 20(11); 2922-32. ©2014 AACR.
Collapse
Affiliation(s)
- Penelope D Ottewell
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - Ning Wang
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - Hannah K Brown
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - Kimberly J Reeves
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - C Anne Fowles
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - Peter I Croucher
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - Colby L Eaton
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - Ingunn Holen
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| |
Collapse
|
13
|
Lu J, Huang G, Li HP, Feng KY, Chen L, Zheng MY, Cai YD. Prediction of cancer drugs by chemical-chemical interactions. PLoS One 2014; 9:e87791. [PMID: 24498372 PMCID: PMC3912061 DOI: 10.1371/journal.pone.0087791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Cancer, which is a leading cause of death worldwide, places a big burden on health-care system. In this study, an order-prediction model was built to predict a series of cancer drug indications based on chemical-chemical interactions. According to the confidence scores of their interactions, the order from the most likely cancer to the least one was obtained for each query drug. The 1(st) order prediction accuracy of the training dataset was 55.93%, evaluated by Jackknife test, while it was 55.56% and 59.09% on a validation test dataset and an independent test dataset, respectively. The proposed method outperformed a popular method based on molecular descriptors. Moreover, it was verified that some drugs were effective to the 'wrong' predicted indications, indicating that some 'wrong' drug indications were actually correct indications. Encouraged by the promising results, the method may become a useful tool to the prediction of drugs indications.
Collapse
Affiliation(s)
- Jing Lu
- Department of Medicinal Chemistry, School of Pharmacy, Yantai University, Yantai, Shandong, People’s Republic of China
| | - Guohua Huang
- Institute of Systems Biology, Shanghai University, Shanghai, People’s Republic of China
- Department of Mathematics, Shaoyang University, Shaoyang, Hunan, People’s Republic of China
| | - Hai-Peng Li
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Kai-Yan Feng
- Beijing Genomics Institute, Shenzhen Beishan Industrial zone, Shenzhen, People’s Republic of China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, People’s Republic of China
- * E-mail: (LC); (MYZ); (YDC)
| | - Ming-Yue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai, People’s Republic of China
- * E-mail: (LC); (MYZ); (YDC)
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, People’s Republic of China
- * E-mail: (LC); (MYZ); (YDC)
| |
Collapse
|
14
|
The Roles of Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Epithelial Transition (MET) in Breast Cancer Bone Metastasis: Potential Targets for Prevention and Treatment. J Clin Med 2013; 2:264-82. [PMID: 26237148 PMCID: PMC4470149 DOI: 10.3390/jcm2040264] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/25/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022] Open
Abstract
Many studies have revealed molecular connections between breast and bone. Genes, important in the control of bone remodeling, such as receptor activator of nuclear kappa (RANK), receptor activator of nuclear kappa ligand (RANKL), vitamin D, bone sialoprotein (BSP), osteopontin (OPN), and calcitonin, are expressed in breast cancer and lactating breast. Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) effectors play critical roles during embryonic development, postnatal growth, and epithelial homeostasis, but also are involved in a number of pathological conditions, including wound repair, fibrosis, inflammation, as well as cancer progression and bone metastasis. Transforming growth factor β (TGFβ), insulin-like growth factor I & II (IGF I & II), platelet-derived growth factor (PDGF), parathyroid hormone-related protein (PTH(rP)), vascular endothelial growth factor (VEGF), epithelial growth factors II/I (ErbB/EGF), interleukin 6 (IL-6), IL-8, IL-11, IL-1, integrin αvβ3, matrix metalloproteinases (MMPs), catepsin K, hypoxia, notch, Wnt, bone morphogenetic proteins (BMP), and hedgehog signaling pathways are important EMT and MET effectors identified in the bone microenviroment facilitating bone metastasis formation. Recently, Runx2, an essential transcription factor in the regulation of mesenchymal cell differentiation into the osteoblast lineage and proper bone development, is also well-recognized for its expression in breast cancer cells promoting osteolytic bone metastasis. Understanding the precise mechanisms of EMT and MET in the pathogenesis of breast cancer bone metastasis can inform the direction of therapeutic intervention and possibly prevention.
Collapse
|
15
|
Esposito M, Kang Y. Targeting tumor-stromal interactions in bone metastasis. Pharmacol Ther 2013; 141:222-33. [PMID: 24140083 DOI: 10.1016/j.pharmthera.2013.10.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/17/2022]
Abstract
Bone metastasis is a frequent occurrence in late stage solid tumors, including breast cancers, prostate or lung. However, the causes for this proclivity have only recently been elucidated. Significant progress has been made in the past decade toward understanding the molecular underpinnings of bone metastasis, and much of this research reveals a crucial role of the host stroma in each step of the metastatic cascade. Tumor-stromal interactions are crucial in engineering a pre-metastatic niche, accommodating metastatic seeding, and establishing the vicious cycle of bone metastasis. Current treatments in bone metastasis focus on latter steps of the metastatic cascade, with most treatments targeting the process of bone remodeling; however, emerging research identifies many other candidates as promising targets. Host stromal cells including platelets and endothelial cells are important in the early steps of metastatic homing, attachment and extravasation while a variety of immune cells, parenchymal cells and mesenchymal cells of the bone marrow are important in the establishment of overt, immune-suppressed metastatic lesions. Many participants during these steps have been identified and functionally validated. Significant contributors include integrins, (αvβ3, α2β1, α4β1), TGFβ family members, bone resident proteins (BSP, OPG, SPARC, OPN), RANKL, and PTHrP. In this review, we will discuss the contribution of host stromal cells to pre-metastatic niche conditioning, seeding, dormancy, bone-remodeling, immune regulation, and chemotherapeutic shielding in bone metastasis. Research exploring these interactions between bone metastases and stromal cells has yielded many therapeutic targets, and we will discuss both the current and future therapeutic avenues in treating bone metastasis.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
16
|
von Moos R, Haynes I. Where Do Bone-Targeted Agents RANK in Breast Cancer Treatment? J Clin Med 2013; 2:89-102. [PMID: 26237064 PMCID: PMC4470230 DOI: 10.3390/jcm2030089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 12/26/2022] Open
Abstract
Breast cancer cells preferentially metastasise to the skeleton, owing, in part, to the fertile environment provided by bone. Increased bone turnover releases growth factors that promote tumour cell growth. In turn, tumour cells release factors that stimulate further bone turnover, resulting in a vicious cycle of metastasis growth and bone destruction. The RANK-RANK ligand (RANKL) pathway plays a key role in this cycle, and inhibition of RANKL using the fully-human monoclonal antibody denosumab, has demonstrated efficacy in delaying skeletal complications associated with bone metastases in three phase 3 trials. Preclinical studies suggest that the RANKL pathway also plays a role in breast cancer tumourigenesis and migration to bone. In a subgroup analysis of the negative Adjuvant Zoledronic Acid to Reduce Recurrence (AZURE) trial, the bisphosphonate zoledronic acid showed potential for improving survival in patients who were postmenopausal; however, a prospective study in this patient population is required to validate this observation. Ongoing trials are examining whether adjuvant blockade of the RANKL pathway using denosumab can prevent disease recurrence in patients with high-risk breast cancer. These are building on analogous studies that have shown that denosumab improves bone metastasis-free survival in prostate cancer and suggested that it confers an overall survival benefit in non-small-cell lung cancer.
Collapse
Affiliation(s)
- Roger von Moos
- Medical Oncology/Haematology, Kantonsspital Graubünden, Chur 7000, Switzerland.
| | - Ian Haynes
- Amgen Ltd., 1 Uxbridge Business Park, Uxbridge UB8 1DH, UK.
| |
Collapse
|
17
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 482] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Azim HA, Kamal NS, Malak RA. Bisphosphonates in the adjuvant treatment of young women with breast cancer: the estrogen rich is a poor candidate! J Thorac Dis 2013; 5 Suppl 1:S27-35. [PMID: 23819025 PMCID: PMC3695537 DOI: 10.3978/j.issn.2072-1439.2013.06.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 01/06/2023]
Abstract
During the last 2 decades the role of bisphosphonates (BPs) to reduce skeletal-related events from bone metastases in breast cancer has been well defined. Several preclinical studies have strongly suggested that BPs may also provide an anti-cancer effect in early breast cancer. Indeed, the use of adjuvant BPs represents a unique approach that attempts at eradicating occult tumor micro-metastases residing in the bone marrow via targeting the bone microenvironment to render it less favorable for cancer cell growth. Although, this concept has been tested clinically for more than 15 years, no final consensus has been reached as for the routine use of BPs in the adjuvant phase of breast cancer, owing to conflicting results of randomized studies. Nevertheless, accumulating evidence from recent trials has indicated a therapeutic benefit of adjuvant BPs-particularly zoledronic acid-in women with established menopause, with no or perhaps detrimental effects in premenopausal women. Indeed, this hypothesis has opened a new chapter on the role of estrogen-poor microenvironment as a potential pre-requisite for the anti-tumor effects of BPs in the adjuvant phase of breast cancer. In this review, we will emphasize the biological rational of using BPs to target bone microenvironment in patients with early breast cancer and we will explore mechanistic differences; related to bisphosphonates effects in premenopausal versus postmenopausal women and how the endocrine environment would influence the anticancer potential of these compounds.
Collapse
Affiliation(s)
- Hamdy A Azim
- The Department of Clinical Oncology, Cairo University, Giza, Egypt
| | | | | |
Collapse
|