1
|
Zhang X, Wang J, Su H, Liu X. Integrative analysis of single-cell and transcriptome sequencing with experimental validation reveals PKHD1L1 as a novel biomarker in lung adenocarcinoma. Sci Rep 2025; 15:2795. [PMID: 39843484 PMCID: PMC11754870 DOI: 10.1038/s41598-025-85981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Polycystic kidney and hepatic disease 1-like protein 1 (PKHD1L1) is predicted to encode a large type I transmembrane protein involved in hearing transmission and mediating cellular immunity under physiological conditions. However, its role in cancer progression, especially in lung adenocarcinoma (LUAD), has not been fully elucidated. In this study, we observed significantly lower expression of PKHD1L1 in LUAD tissues than in normal lung tissues on the basis of the integration of public datasets from the TCGA and GEO cohorts. Furthermore, we found that low PKHD1L1 expression was a strong predictor of poor prognosis in patients with LUAD. Pathway enrichment analyses revealed that PKHD1L1 is associated primarily with asthma and multiple immune processes. Through meticulous analysis of immune cell infiltrates and single-cell datasets, we discerned a notable correlation between the expression of PKHD1L1 and the presence of B cells, with a particularly strong association observed in plasma cells. This finding led us to believe that the role of PKHD1L1 may extend beyond its previously reported involvement in cellular immunity, potentially impacting humoral immunity as well. In vitro experiments revealed that the over-expression of PKHD1L1 significantly inhibited the proliferation and migration ability of LUAD cell lines. These findings suggest that PKHD1L1 is an important prognostic indicator and a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Xiangqian Zhang
- Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Wang
- Department of Gastroenterology & National Clinical Research Centerfor Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hanyang Su
- Department of Respiratory Medicine & Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojin Liu
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Al-Hawary SIS, Altalbawy FMA, Jasim SA, Jyothi S R, Jamal A, Naiyer MM, Mahajan S, Kalra H, Jawad MA, Zwamel AH. Inhibitors of the mTOR signaling pathway can play an important role in breast cancer immunopathogenesis. Cell Biol Int 2024; 48:1601-1611. [PMID: 39164963 DOI: 10.1002/cbin.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
This study explores the critical role of inhibitors targeting the mammalian target of rapamycin (mTOR) signaling pathway in breast cancer research and treatment. The mTOR pathway, a central regulator of cellular processes, has been identified as a crucial factor in the development and progression of breast cancer. The essay explains the complex molecular mechanisms through which mTOR inhibitors, such as rapamycin and its analogs, exert their anticancer effects. These inhibitors can stop cell growth, proliferation, and survival in breast cancer cells by blocking critical signaling pathways within the mTOR pathway. Furthermore, the essay discusses the implications of using mTOR inhibitors as a comprehensive therapeutic strategy. It emphasizes the potential benefits of combining mTOR inhibitors with other treatment approaches to enhance the effectiveness of breast cancer treatment. The evolving landscape of breast cancer research underscores the significance of mTOR as a therapeutic target and highlights ongoing efforts to improve and optimize mTOR inhibitors for clinical use. In conclusion, the essay asserts that inhibitors of the mTOR signaling pathway offer a promising approach in the fight against breast cancer. These inhibitors provide a focused and effective intervention targeting specific dysregulations within the mTOR pathway. As research advances, the integration of mTOR inhibitors into customized combination therapies holds excellent potential for shaping a more effective and personalized approach to breast cancer treatment, ultimately leading to improved outcomes for individuals affected by this complex and diverse disease.
Collapse
Affiliation(s)
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Azfar Jamal
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah, Saudi Arabia
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Mohammed M Naiyer
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
| | - Shriya Mahajan
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Hitesh Kalra
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab, India
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
4
|
Sekihara K, Himuro H, Toda S, Saito N, Hirayama R, Suganuma N, Sasada T, Hoshino D. Recent Trends and Potential of Radiotherapy in the Treatment of Anaplastic Thyroid Cancer. Biomedicines 2024; 12:1286. [PMID: 38927493 PMCID: PMC11201408 DOI: 10.3390/biomedicines12061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly aggressive malignancy characterized by advanced disease at diagnosis and a poor prognosis. Despite multimodal therapeutic approaches that include surgery, radiotherapy, and chemotherapy, an optimal treatment strategy remains elusive. Current developments in targeted therapies and immunotherapy offer promising avenues for improved outcomes, particularly for BRAF-mutant patients. However, challenges remain regarding overcoming drug resistance and developing effective treatments for BRAF-wild-type tumors. This comprehensive review examines the clinical and biological features of ATC, outlines the current standards of care, and discusses recent developments with a focus on the evolving role of radiotherapy. Moreover, it emphasizes the necessity of a multidisciplinary approach and highlights the urgent need for further research to better understand ATC pathogenesis and identify new therapeutic targets. Collaborative efforts, including large-scale clinical trials, are essential for translating these findings into improved patient outcomes.
Collapse
Affiliation(s)
- Kazumasa Sekihara
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Biospecimen Center, Kanagawa Cancer Center, Yokohama 2418515, Japan
| | - Hidetomo Himuro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (H.H.); (T.S.)
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama 2418515, Japan
| | - Soji Toda
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama 2320024, Japan
| | - Nao Saito
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Biospecimen Center, Kanagawa Cancer Center, Yokohama 2418515, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, QST Hospital, National Institutes for Quantum Science and Technology, Chiba 2638555, Japan;
| | - Nobuyasu Suganuma
- Department of Surgery, Yokohama City University, Yokohama 2360004, Japan;
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (H.H.); (T.S.)
| | - Daisuke Hoshino
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Biospecimen Center, Kanagawa Cancer Center, Yokohama 2418515, Japan
| |
Collapse
|
5
|
Tang H, Dilimulati D, Yang Z, Zhou K, Chen X, Sun R, Wang N, Liang Z, Bian S, Zhao J, Song P, Zheng S, Wang H, Xie H. Chemically engineered mTOR-nanoparticle blockers enhance antitumour efficacy. EBioMedicine 2024; 103:105099. [PMID: 38604089 PMCID: PMC11017279 DOI: 10.1016/j.ebiom.2024.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly prevalent and deadly type of cancer, and although pharmacotherapy remains the cornerstone of treatment, therapeutic outcomes are often unsatisfactory. Pharmacological inhibition of mammalian target of rapamycin (mTOR) has been closely associated with HCC regression. METHODS Herein, we covalently conjugated AZD8055, a potent mTORC1/2 blocker, with a small panel of unsaturated fatty acids via a dynamically activating linkage to enable aqueous self-assembly of prodrug conjugates to form mTOR nanoblockers. Cell-based experiments were carried out to evaluate the effects of the nanoblocker against hepatocellular carcinoma (HCC) cells. The orthotopic and subcutaneous HCC mouse models were established to examine its antitumour activity. FINDINGS Among several fatty acids as promoieties, linoleic acid-conjugated self-assembling nanoblocker exhibited optimal size distribution and superior physiochemical properties. Compared with free agents, PEGylated AZD8055 nanoblocker (termed AZD NB) was pharmacokinetically optimized after intravenous administration. In vivo investigations confirmed that AZD NB significantly suppressed tumour outgrowth in subcutaneous HCCLM3 xenograft, Hepatoma-22, and orthotopic Hepa1-6 liver tumour models. Strikingly, treatment with AZD NB, but not free agent, increased intratumour infiltration of IFN-γ+CD8+ T cells and CD8+ memory T cells, suggesting a potential role of the mTOR nanoblocker to remodel the tumour microenvironment. Overall, a single conjugation with fatty acid transformed a hydrophobic mTOR blocker into a systemically injectable nanomedicine, representing a facile and generalizable strategy for improving the therapeutic index of mTOR inhibition-based cancer therapy. INTERPRETATION The mTOR inhibition by chemically engineered nanoblocker presented here had enhanced efficacy against tumours compared with the pristine drug and thus has the potential to improve the survival outcomes of patients with HCC. Additionally, this new nanosystem derived from co-assembling of small-molecule prodrug entities can serve as a delivery platform for the synergistic co-administration of distinct pharmaceutical agents. FUNDING This work was supported by the National Natural Science Foundation of China (32171368,81721091), the Zhejiang Provincial Natural Science Foundation of China (LZ21H180001), the Jinan Provincial Laboratory Research Project of Microecological Biomedicine (JNL-2022039c and JNL-2022010B), State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (zz202310), and Natural Science Foundation of Shandong Province (ZR2023ZD59).
Collapse
Affiliation(s)
- Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dilinuer Dilimulati
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ke Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaona Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhi Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Suchen Bian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jialing Zhao
- Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province 310003, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Hangxiang Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
6
|
Wylaź M, Kaczmarska A, Pajor D, Hryniewicki M, Gil D, Dulińska-Litewka J. Exploring the role of PI3K/AKT/mTOR inhibitors in hormone-related cancers: A focus on breast and prostate cancer. Biomed Pharmacother 2023; 168:115676. [PMID: 37832401 DOI: 10.1016/j.biopha.2023.115676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) and prostate cancer (PC) are at the top of the list when it comes to the most common types of cancers worldwide. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is important, in that it strongly influences the development and progression of these tumors. Previous studies have emphasized the key role of inhibitors of the PIK3/AKT/mTOR signaling pathway in the treatment of BC and PC, and it remains to be a crucial method of treatment. In this review, the inhibitors of these signaling pathways are compared, as well as their effectiveness in therapy and potential as therapeutic agents. The use of these inhibitors as polytherapy is evaluated, especially with the use of hormonal therapy, which has shown promising results.
Collapse
Affiliation(s)
- Mateusz Wylaź
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Anna Kaczmarska
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dawid Pajor
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Matthew Hryniewicki
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dorota Gil
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland.
| |
Collapse
|
7
|
Singh DD, Lee HJ, Yadav DK. Recent Clinical Advances on Long Non-Coding RNAs in Triple-Negative Breast Cancer. Cells 2023; 12:cells12040674. [PMID: 36831341 PMCID: PMC9955037 DOI: 10.3390/cells12040674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a more aggressive type of breast cancer due to its heterogeneity and complex molecular mechanisms. TNBC has a high risk for metastasis, and it is difficult to manage clinical conditions of the patients. Various investigations are being conducted to overcome these challenges using RNA, DNA, and proteins for early diagnosis and treatment. Recently, long non-coding RNAs (lncRNAs) have emerged as a novel target to treat the multistep process of TNBC. LncRNAs regulate epigenetic expression levels, cell proliferation and apoptosis, and tumour invasiveness and metastasis. Thus, lncRNA-based early diagnosis and treatment options could be helpful, especially for patients with severe TNBC. lncRNAs are expressed in a highly specific manner in cells and tissues and are involved in TNBC progression and development. lncRNAs could be used as sensitive and specific targets for diagnosis, treatment, and monitoring of patients with TNBC. Therefore, the exploration of novel diagnostic and prognostic biomarkers is of extreme importance. Here, we discuss the molecular advances on lncRNA regulation of TNBC and lncRNA-based early diagnosis, treatment, and drug resistance.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
- Correspondence: (H.-J.L.); (D.K.Y.)
| | | |
Collapse
|
8
|
Lachnochromonin, a fungal metabolite from Lachnum virgineum, inhibits cell growth and promotes apoptosis in tumor cells through JAK/STAT3 signaling. Cell Signal 2023; 106:110592. [PMID: 36641081 DOI: 10.1016/j.cellsig.2023.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Natural compounds that interfere with tumor cell growth have potential to be used as therapeutic agents to treat cancers. Lachnochromonin (p71) is a small molecule isolated from Lachnum virgineum. Here, we reported the effect of p71 on human tumor cells, especially on breast cancer MCF-7 cells. We found that p71 significantly suppresses cell growth and induces apoptosis. The luciferase results demonstrated that p71 specifically attenuates the activation of JAK/STAT3 signaling. Biochemical analysis revealed that p71 blocks the phosphorylation of STAT3 tyrosine 705 and serine 727, resulting in down-regulation of c-Myc and Cyclin D1 expression level. Importantly, p71 inhibited cell growth, colony-formation, and migration through affecting STAT3 activity. These results implied that p71 may be used as a therapeutic agent against breast cancer.
Collapse
|
9
|
Chen J, Sun M, Chen C, Kang M, Qian B, Sun J, Ma X, Zhou J, Huang L, Jiang B, Fang Y. Construction of a novel anoikis-related prognostic model and analysis of its correlation with infiltration of immune cells in neuroblastoma. Front Immunol 2023; 14:1135617. [PMID: 37081871 PMCID: PMC10111050 DOI: 10.3389/fimmu.2023.1135617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Background Anoikis resistance (AR) plays an important role in the process of metastasis, which is an important factor affecting the risk stage of neuroblastoma (NB). This study aims to construct an anoikis-related prognostic model and analyze the characteristics of hub genes, important pathways and tumor microenvironment of anoikis-related subtypes of NB, so as to provide help for the clinical diagnosis, treatment and research of NB. Methods We combined transcriptome data of GSE49710 and E-MTAB-8248, screened anoikis-related genes (Args) closely related to the prognosis of NB by univariate cox regression analysis, and divided the samples into anoikis-related subtypes by consistent cluster analysis. WGCNA was used to screen hub genes, GSVA and GSEA were used to analyze the differentially enriched pathways between anoikis-related subtypes. We analyzed the infiltration levels of immune cells between different groups by SsGSEA and CIBERSORT. Lasso and multivariate regression analyses were used to construct a prognostic model. Finally, we analyzed drug sensitivity through the GDSC database. Results 721 cases and 283 Args were included in this study. All samples were grouped into two subtypes with different prognoses. The analyses of WGCNA, GSVA and GSEA suggested the existence of differentially expressed hub genes and important pathways in the two subtypes. We further constructed an anoikis-related prognostic model, in which 15 Args participated. This model had more advantages in evaluating the prognoses of NB than other commonly used clinical indicators. The infiltration levels of 9 immune cells were significantly different between different risk groups, and 13 Args involved in the model construction were correlated with the infiltration levels of immune cells. There was a relationship between the infiltration levels of 6 immune cells and riskscores. Finally, we screened 15 drugs with more obvious effects on NB in high-risk group. Conclusion There are two anoikis-related subtypes with different prognoses in the population of NB. The anoikis-related prognostic model constructed in this study can accurately predict the prognoses of children with NB, and has a good guiding significance for clinical diagnosis, treatment and research of NB.
Collapse
Affiliation(s)
- Ji Chen
- Department of General Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengjiao Sun
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chuqin Chen
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Meiyun Kang
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bo Qian
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Sun
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaopeng Ma
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jianfeng Zhou
- Department of General Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Huang
- Department of General Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Lei Huang, ; Bin Jiang, ; Yongjun Fang,
| | - Bin Jiang
- Department of General Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Lei Huang, ; Bin Jiang, ; Yongjun Fang,
| | - Yongjun Fang
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Lei Huang, ; Bin Jiang, ; Yongjun Fang,
| |
Collapse
|
10
|
Musheyev D, Alayev A. Endocrine therapy resistance: what we know and future directions. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:480-496. [PMID: 36071983 PMCID: PMC9446423 DOI: 10.37349/etat.2022.00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Endocrine resistance is a major hurdle in the treatment of estrogen receptor (ER)-positive breast cancer. When abnormally regulated, molecular signals responsible for cellular proliferation, as well as ER itself, allow for cellular evasion of ER-dependent treatments. Therefore, pharmacological treatments that target these evasion mechanisms are beneficial for the treatment of endocrine-resistant breast cancers. This review summarizes currently understood molecular signals that contribute to endocrine resistance and their crosstalk that stem from mitogen-activated protein kinase (MAPK), phosphoinositol-3 kinase/protein kinase B (PI3K/AKT), mechanistic target of rapamycin (mTOR), cyclin-dependent kinases 4 and 6 (CDK4/6) and aberrant ER function. Recent clinical trials that target these molecular signals as a treatment strategy for endocrine-resistant breast cancer are also highlighted.
Collapse
Affiliation(s)
- David Musheyev
- Alayev Lab, Stern College for Women, Biology Department, Yeshiva University, New York, NY 10174, USA
| | - Anya Alayev
- Alayev Lab, Stern College for Women, Biology Department, Yeshiva University, New York, NY 10174, USA
| |
Collapse
|
11
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
12
|
Agarwal S, Sau S, Iyer AK, Dixit A, Kashaw SK. Multiple strategies for the treatment of invasive breast carcinoma: A comprehensive prospective. Drug Discov Today 2021; 27:585-611. [PMID: 34715356 DOI: 10.1016/j.drudis.2021.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023]
Abstract
In this review, we emphasize on evolving therapeutic strategies and advances in the treatment of breast cancer (BC). This includes small-molecule inhibitors under preclinical and clinical investigation, phytoconstituents with antiproliferative potential, targeted therapies as antibodies and antibody-drug conjugates (ADCs), vaccines as immunotherapeutic agents and peptides as a novel approach inhibiting the interaction of oncogenic proteins. We provide an update of molecules under different phases of clinical investigation which aid in the identification of loopholes or shortcomings that can be overcomed with future breast cancer research.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar, MP, India
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar, MP, India.
| |
Collapse
|
13
|
Pontes O, Oliveira-Pinto S, Baltazar F, Costa M. Renal cell carcinoma therapy: Current and new drug candidates. Drug Discov Today 2021; 27:304-314. [PMID: 34265458 DOI: 10.1016/j.drudis.2021.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Renal cell carcinoma (RCC) is the most common and lethal tumor of the urological system. Curative treatment of localized RCC includes nephrectomy, radio-ablation, and active surveillance, whereas metastatic RCC (mRCC) requires a combination of surgery and systemic therapy. Response to conventional therapy is limited but, recently, many novel therapies for mRCC have emerged, including targeted therapies and new immunotherapeutic agents. Nevertheless, development of resistance and limited durable responses demand new anticancer candidates with improved selectivity and efficacy. In this review, we summarize recent preclinical studies of novel natural and synthetic compounds to treat RCC, detailing their mechanisms of action and anticancer activities.
Collapse
Affiliation(s)
- Olívia Pontes
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sofia Oliveira-Pinto
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
14
|
Yin S, Liu L, Gan W. The Roles of Post-Translational Modifications on mTOR Signaling. Int J Mol Sci 2021; 22:ijms22041784. [PMID: 33670113 PMCID: PMC7916890 DOI: 10.3390/ijms22041784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth, proliferation, and metabolism by integrating various environmental inputs including growth factors, nutrients, and energy, among others. mTOR signaling has been demonstrated to control almost all fundamental cellular processes, such as nucleotide, protein and lipid synthesis, autophagy, and apoptosis. Over the past fifteen years, mapping the network of the mTOR pathway has dramatically advanced our understanding of its upstream and downstream signaling. Dysregulation of the mTOR pathway is frequently associated with a variety of human diseases, such as cancers, metabolic diseases, and cardiovascular and neurodegenerative disorders. Besides genetic alterations, aberrancies in post-translational modifications (PTMs) of the mTOR components are the major causes of the aberrant mTOR signaling in a number of pathologies. In this review, we summarize current understanding of PTMs-mediated regulation of mTOR signaling, and also update the progress on targeting the mTOR pathway and PTM-related enzymes for treatment of human diseases.
Collapse
|
15
|
Zhang J. Targeting mTOR by CZ415 Suppresses Cell Proliferation and Promotes Apoptosis via Lipin-1 in Cervical Cancer In Vitro and In Vivo. Reprod Sci 2021; 28:524-531. [PMID: 32944878 DOI: 10.1007/s43032-020-00313-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
CZ415, a novel inhibitor of mammalian target of rapamycin (mTOR) kinase, has demonstrated anti-tumor activity in several types of cancer. However, its biological function and underlying mechanism of action in cervical cancer (CC) have not been fully studied. Two CC cell lines (Hela and Siha) were treated with increasing concentrations of CZ415. Cell viability was tested with the CCK-8 assay, cell proliferation was determined by Edu staining and the colony formation assay, and apoptosis was determined by flow cytometry and Hoechst 33342 staining. Protein expression was evaluated by western blotting. A nude mouse xenograft model was used to confirm the anti-tumor activity of CZ415 in vivo. Hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining were performed on samples of tumor tissue. Results showed that CZ415 inhibited CC cell survival in a dose- and time-dependent manner, and 100 nanomolar and 48 h were the optimal conditions. In vitro and in vivo experiments showed that treatment with CZ415 significantly inhibited spheroid formation, cell proliferation, and tumor growth. Further studies showed that the anti-cancer effects of CZ415 were due to an induction of apoptosis, which was accompanied by an upregulation of Bax and downregulation of Bcl-2 through Lipin-1. CZ415 also reduced the levels of mTOR/STAT3 expression. However, these phenotypic changes were reversed by overexpression of Lipin-1. Our results suggest that the novel mTOR inhibitor CZ415 mediates tumor malignancy via Lipin-1 and might be useful for treating CC.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Department of Women's Health Care, Xiaonan District Maternity and Child Healthcare Hospital, Xiaogan City, 432000, Hubei Province, China.
| |
Collapse
|
16
|
Miricescu D, Totan A, Stanescu-Spinu II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. Int J Mol Sci 2020; 22:E173. [PMID: 33375317 PMCID: PMC7796017 DOI: 10.3390/ijms22010173] [Citation(s) in RCA: 390] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a serious health problem worldwide, representing the second cause of death through malignancies among women in developed countries. Population, endogenous and exogenous hormones, and physiological, genetic and breast-related factors are involved in breast cancer pathogenesis. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) is a signaling pathway involved in cell proliferation, survival, invasion, migration, apoptosis, glucose metabolism and DNA repair. In breast tumors, PIK3CA somatic mutations have been reported, located in exon 9 and exon 20. Up to 40% of PIK3CA mutations are estrogen receptor (ER) positive and human epidermal growth factor receptor 2 (HER2) -negative in primary and metastatic breast cancer. HER2 is overexpressed in 20-30% of breast cancers. HER1, HER2, HER3 and HER4 are membrane receptor tyrosine kinases involved in HER signaling to which various ligands can be attached, leading to PI3K/AKT activation. Currently, clinical studies evaluate inhibitors of the PI3K/AKT/mTOR axis. The main purpose of this review is to present general aspects of breast cancer, the components of the AKT signaling pathway, the factors that activate this protein kinase B, PI3K/AKT-breast cancer mutations, PI3K/AKT/mTOR-inhibitors, and the relationship between everolimus, temsirolimus and endocrine therapy.
Collapse
Affiliation(s)
- Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.T.); (M.G.)
| | - Alexandra Totan
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.T.); (M.G.)
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.T.); (M.G.)
| | - Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 134 Calea Plevnei, 010825 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.T.); (M.G.)
| |
Collapse
|
17
|
Niu P, Li J, Chen H, Zhu Y, Zhou J, Shi D. Anti‑proliferative effect of cardamonin on mTOR inhibitor‑resistant cancer cells. Mol Med Rep 2019; 21:1399-1407. [PMID: 31894316 DOI: 10.3892/mmr.2019.10898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/04/2019] [Indexed: 11/06/2022] Open
Abstract
A number of mammalian target of rapamycin (mTOR) inhibitors have been approved for the treatment of certain types of cancer or are currently undergoing clinical trials. However, mTOR targeted therapy exerts selective pressure on tumour cells, which leads to the preferential growth of resistant subpopulations. There are two classes of mTOR inhibitors: i) The rapalogs, such as rapamycin, which bind to the 12‑kDa FK506‑binding protein/rapamycin‑binding domain of mTOR; and ii) the ATP‑competitive inhibitors, such as AZD8055, which block the mTOR kinase domain. Cardamonin inhibits mTOR by decreasing the expression of regulatory‑associated protein of mTOR (Raptor), a mechanism of action which differs from the currently available mTOR inhibitors. The present study investigated the inhibitory effects of cardamonin on mTOR inhibitor‑resistant cancer cells. HeLa cervical cancer cells and MCF‑7 breast cancer cells were exposed to high concentrations of mTOR inhibitors, until resistant clones emerged. Cytotoxicity was measured using the MTT and colony forming assays. The inhibitory effect of cardamonin on mTOR signalling was assessed by western blotting. The resistant cells were less sensitive to mTOR inhibitors compared with the parental cells. Consistent with the anti‑proliferation effect, rapamycin and AZD8055 had no effect on the phosphorylation of rapamycin‑sensitive sites on ribosomal protein S6 kinase B1 (S6K1) and AZD8055‑sensitive sites on protein kinase B and eukaryotic translation initiation factor 4E binding protein 1 (Thr 37/46), respectively, in rapamycin‑ and AZD8055‑resistant cells. Cardamonin inhibited cell proliferation and decreased the phosphorylation of mTOR and S6K1, as well as the protein level of raptor, in the mTOR inhibitor‑resistant cells. Therefore, cardamonin may serve as a therapeutic agent for patients with cervical and breast cancer resistant to mTOR inhibitors.
Collapse
Affiliation(s)
- Peiguang Niu
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jinsui Li
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Huajiao Chen
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yanting Zhu
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jintuo Zhou
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Daohua Shi
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
18
|
Chang L, Huang Z, Li S, Yao Z, Bao H, Wang Z, Li X, Chen X, Huang J, Zhang G. A low dose of AZD8055 enhances radiosensitivity of nasopharyngeal carcinoma cells by activating autophagy and apoptosis. Am J Cancer Res 2019; 9:1922-1937. [PMID: 31598395 PMCID: PMC6780664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023] Open
Abstract
Activation of the PI3K/mTOR pathways is significantly correlated with a poor prognosis in nasopharyngeal carcinoma (NPC). Inhibition of these pathways was reported to be effective in restoring radiosensitivity. In this study, the activity of the novel ATP-competitive, orally bioavailable mTOR inhibitor AZD8055 was found to inhibit the phosphorylated mTOR and NPC cells proliferation. The IC50 doses in CNE1 and CNE2 cell lines were 60 and 100 nanomolar, respectively. AZD8055 significantly enhanced the inhibitions of cell growth and colony formation induced by irradiation (P < 0.05 for all). AZD8055 at the IC50 doses prolonged G2/M arrest (P < 0.05) and promoted the apoptosis (P < 0.01) induced by irradiation and autophagy in NPC cells. Blocking autophagy weaken the cell growth inhibition and decreased apoptosis induced by AZD8055 combined with irradiation. Treatment with AZD8055 at 5, 10 and 20 mg/kg/d significantly enhanced NPC cell radiosensitivity in vivo and significantly induced apoptosis and autophagy in tumor tissues, Neither 5 nor 20 mg/kg/d AZD8055 induced significantly pro-apoptosis bax expressions in mouse livers and kidneys. 5 mg/kg/d produced good radiosensitivity but had little impact on body weight. We concluded that AZD8055 was a promising candidate radiosensitizer for NPC.
Collapse
Affiliation(s)
- Lihong Chang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University NO. 600 Tianhe Road, Guangzhou 510630, China
| | - Zizhen Huang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University NO. 600 Tianhe Road, Guangzhou 510630, China
| | - Shuaixiang Li
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University NO. 600 Tianhe Road, Guangzhou 510630, China
| | - Zhouzhou Yao
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University NO. 600 Tianhe Road, Guangzhou 510630, China
| | - Hongwei Bao
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University NO. 600 Tianhe Road, Guangzhou 510630, China
| | - Zhiyuan Wang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University NO. 600 Tianhe Road, Guangzhou 510630, China
| | - Xia Li
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University NO. 600 Tianhe Road, Guangzhou 510630, China
| | - Xiaohong Chen
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University NO. 600 Tianhe Road, Guangzhou 510630, China
| | - Jiancong Huang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University NO. 600 Tianhe Road, Guangzhou 510630, China
| | - Gehua Zhang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University NO. 600 Tianhe Road, Guangzhou 510630, China
| |
Collapse
|
19
|
Esakov EL, Hale J, Richards EG, Torre-Healy L, Gullapalli K, Trivedi D, Chumakova A, Wessely O, Jensen J, Lathia J, Reizes O. Therapeutic strategies to induce ERα in luminal breast cancer to enhance tamoxifen efficacy. Endocr Relat Cancer 2019; 26:689-698. [PMID: 31167163 PMCID: PMC6885119 DOI: 10.1530/erc-19-0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most prevalent malignancy and second leading cause of death in women worldwide, with hormone receptor-positive luminal breast cancers being the most widespread subtype. While these tumors are generally amenable to endocrine therapy, cellular heterogeneity and acquired ability of tumor cells to undergo cell state switching makes these populations difficult to be fully targeted and eradicated through conventional methods. We have leveraged a quality-by-design (QbD) approach that integrates biological responses with predictive mathematical modeling to identify key combinations of commercially available drugs to induce estrogen receptor expression for therapeutic targeting. This technology utilizes a high level of automation through a custom-built platform to reduce bias as well as design-of-experiments methodology to minimize the experimental iterations required. Utilizing this approach, we identified a combination of clinical compounds, each at concentrations well below their efficacious dose, able to induce the expression of estrogen receptor alpha (ESR1) in hormone-positive breast cancer cells. Induction of ESR1 in luminal cells leads to chemosensitization. These findings provide proof of concept for the utility of the QbD strategy and identify a unique drug cocktail able to sensitize breast cancer cells to tamoxifen.
Collapse
Affiliation(s)
- Emily L. Esakov
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - James Hale
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Elliott G. Richards
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Luke Torre-Healy
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | | | | | - Anastasia Chumakova
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Oliver Wessely
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | | | - Justin Lathia
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH
- Case Comprehensive Cancer Center, Cleveland, OH
- Co-Corresponding Authors: Ofer Reizes, Lerner Research Institute Cleveland Clinic, NC10, 9500 Euclid Avenue, Cleveland, Ohio 44195, , Justin Lathia, Lerner Research Institute Cleveland Clinic, NC10, 9500 Euclid Avenue, Cleveland, Ohio 44195,
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH
- Case Comprehensive Cancer Center, Cleveland, OH
- Co-Corresponding Authors: Ofer Reizes, Lerner Research Institute Cleveland Clinic, NC10, 9500 Euclid Avenue, Cleveland, Ohio 44195, , Justin Lathia, Lerner Research Institute Cleveland Clinic, NC10, 9500 Euclid Avenue, Cleveland, Ohio 44195,
| |
Collapse
|
20
|
Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol 2019; 12:71. [PMID: 31277692 PMCID: PMC6612215 DOI: 10.1186/s13045-019-0754-1] [Citation(s) in RCA: 569] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. mTOR is usually assembled into several complexes such as mTOR complex 1/2 (mTORC1/2). In cooperation with raptor, rictor, LST8, and mSin1, key components in mTORC1 or mTORC2, mTOR catalyzes the phosphorylation of multiple targets such as ribosomal protein S6 kinase β-1 (S6K1), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), Akt, protein kinase C (PKC), and type-I insulin-like growth factor receptor (IGF-IR), thereby regulating protein synthesis, nutrients metabolism, growth factor signaling, cell growth, and migration. Activation of mTOR promotes tumor growth and metastasis. Many mTOR inhibitors have been developed to treat cancer. While some of the mTOR inhibitors have been approved to treat human cancer, more mTOR inhibitors are being evaluated in clinical trials. Here, we update recent advances in exploring mTOR signaling and the development of mTOR inhibitors for cancer therapy. In addition, we discuss the mechanisms underlying the resistance to mTOR inhibitors in cancer cells.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingbin Kong
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Luo
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Patidar K, Panwar U, Vuree S, Sweta J, Sandhu MK, Nayarisseri A, Singh SK. An In silico Approach to Identify High Affinity Small Molecule
Targeting m-TOR Inhibitors for the Clinical Treatment of
Breast Cancer. Asian Pac J Cancer Prev 2019; 20:1229-1241. [PMID: 31030499 PMCID: PMC6948900 DOI: 10.31557/apjcp.2019.20.4.1229] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most frequent malignancy among women. It is a heterogeneous disease with different subtypes defined by its hormone receptor. A hormone receptor is mainly concerned with the progression of the PI3K/AKT/mTOR pathway which is often dysregulated in breast cancer. This is a major signaling pathway that controls the activities such as cell growth, cell division, and cell proliferation. The present study aims to suppress mTOR protein by its various inhibitors and to select one with the highest binding affinity to the receptor protein. Out of 40 inhibitors of mTOR against breast cancer, SF1126 was identified to have the best docking score of -8.705, using Schrodinger Suite which was further subjected for high throughput screening to obtain best similar compound using Lipinski’s filters. The compound obtained after virtual screening, ID: ZINC85569445 is seen to have the highest affinity with the target protein mTOR. The same result based on the binding free energy analysis using MM-GBSA showed that the compound ZINC85569445 to have the the highest binding free energy. The next study of interaction between the ligand and receptor protein with the pharmacophore mapping showed the best conjugates, and the ZINC85569445 can be further studied for future benefits of treatment of breast cancer.
Collapse
Affiliation(s)
- Khushboo Patidar
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India. ,
| | - Umesh Panwar
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi,Tamil Nadu, India
| | - Sugunakar Vuree
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Jajoriya Sweta
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India. ,
| | - Manpreet Kaur Sandhu
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India. ,
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India. , ,Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi,Tamil Nadu, India.,Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd., Indore, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi,Tamil Nadu, India
| |
Collapse
|
22
|
Curless BP, Uko NE, Matesic DF. Modulator of the PI3K/Akt oncogenic pathway affects mTOR complex 2 in human adenocarcinoma cells. Invest New Drugs 2018; 37:902-911. [DOI: 10.1007/s10637-018-0705-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
|
23
|
Velmurugan BK, Wang PC, Weng CF. 16-Hydroxycleroda-3,13-dien-15,16-olide and N-Methyl-Actinodaphine Potentiate Tamoxifen-Induced Cell Death in Breast Cancer. Molecules 2018; 23:molecules23081966. [PMID: 30082655 PMCID: PMC6222426 DOI: 10.3390/molecules23081966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/21/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated whether 16-hydroxycleroda-3,13-dien-15,16-olide (HCD) and N-methyl-actinodaphine (MA) could sensitize breast cancer cells to Tamoxifen (TMX) treatment. MA or HCD alone or in combination with TMX dose-dependently inhibited MCF-7 and MDA-MB-231 cell growth, with a more potent inhibition on MDA-MB 231 cells. Furthermore, this novel combination significantly induced S and G2/M cell cycle phase in MDA-MB 231 than MCF-7 cells. Further determination of the apoptotic induction showed that MA or HCD and TMX combination inhibited MDA-MB-231 and MCF-7 cancer cells by upregulating Bax and by downregulating Bcl-2 mRNA and protein expression without altering Caspase-8 and Caspase-12 expression. These results suggest that MA or HCD pretreatment may potentiate the anti-tumor effect of tamoxifen on breast cancer.
Collapse
Affiliation(s)
| | - Po-Chih Wang
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| |
Collapse
|
24
|
The mTOR inhibitor AZD8055 overcomes tamoxifen resistance in breast cancer cells by down-regulating HSPB8. Acta Pharmacol Sin 2018; 39:1338-1346. [PMID: 29345254 DOI: 10.1038/aps.2017.181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022] Open
Abstract
Tamoxifen, an important endocrine therapeutic agent, is widely used for the treatment of estrogen receptor positive (ER+) breast cancer. However, de novo or acquired resistance prevents patients from benefitting from endocrine approaches and necessitates alternative treatments. In this study, we report that small heat protein beta-8 (HSPB8) may serve as an important molecule in tamoxifen resistance. HSPB8 expression is enhanced in MCF-7 cells resistant to tamoxifen (MCF-7/R) compared to parent cells. Moreover, high expression of HSPB8 associates with poor prognosis in ER+ breast cancer patients but not in patients without classification. Stimulating ER signaling by heterogeneous expression of ERa or 17β-estradiol promotes HSPB8 expression and reduces the cell population in G1 phase. In contrast, blockage of ER signaling by tamoxifen down-regulates the expression of HSPB8. In addition, knocking down HSPB8 by specific siRNAs induces significant cell cycle arrest at G1 phase. AZD8055 was found to be more potent against the proliferation of MCF-7/R cells than that of parent cells, which was associated with down-regulation of HSPB8. We found that the anti-proliferative activity of AZD8055 was positively correlated with the HSPB8 expression level in ER+ breast cancer cells. Thus, AZD8055 was able to overcome tamoxifen resistance in breast cancer cells, and the expression of HSPB8 may predict the efficacy of AZD8055 in ER+ breast cancer. This hypothesis deserves further investigation.
Collapse
|
25
|
Xu DQ, Toyoda H, Qi L, Morimoto M, Hanaki R, Iwamoto S, Komada Y, Hirayama M. Induction of MEK/ERK activity by AZD8055 confers acquired resistance in neuroblastoma. Biochem Biophys Res Commun 2018; 499:425-432. [PMID: 29571732 DOI: 10.1016/j.bbrc.2018.03.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
Mammalian target of rapamycin (mTOR) complex (mTORC) is frequently activated in diverse cancers. Although dual mTORC1/2 inhibitors are currently under development to treat various malignancies, the emergence of drug resistance has proven to be a major complication. AZD8055 is a novel, potent ATP-competitive and specific inhibitor of mTOR kinase activity, which blocks both mTORC1 and mTORC2 activation. In this study, we acquired AZD8055-resistant neuroblastoma (NB) cell sublines by using prolonged stepwise escalation of AZD8055 exposure (4-12 weeks). Here we demonstrate that the AZD8055-resistant sublines (TGW-R and SMS-KAN-R) exhibited marked resistance to AZD8055 compared to the parent cells (TGW and SMS-KAN). The cell cycle G1/S transition was advanced in resistant cells. In addition, the resistance against AZD8055 correlated with over-activation of MEK/ERK signaling pathway. Furthermore, combination of AZD8055 and MEK inhibitor U0126 enhanced the growth inhibition of resistant cells significantly in vitro and in vivo. In conclusion, these data show that targeting mTOR kinase and MEK/ERK signaling simultaneously might help to overcome AZD8055 resistance in NB.
Collapse
Affiliation(s)
- Dong-Qing Xu
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Hidemi Toyoda
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Lei Qi
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Mari Morimoto
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Ryo Hanaki
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan.
| |
Collapse
|
26
|
Xu DQ, Toyoda H, Yuan XJ, Qi L, Chelakkot VS, Morimoto M, Hanaki R, Kihira K, Hori H, Komada Y, Hirayama M. Anti-tumor effect of AZD8055 against neuroblastoma cells in vitro and in vivo. Exp Cell Res 2018; 365:177-184. [PMID: 29499203 DOI: 10.1016/j.yexcr.2018.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/30/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
Abstract
Neuroblastoma (NB) is one of the most common solid tumors in children. High-risk NB remains lethal in about 50% of patients despite comprehensive and intensive treatments. Activation of PI3K/Akt/mTOR signaling pathway correlates with oncogenesis, poor prognosis and chemotherapy resistance in NB. Due to its central role in growth and metabolism, mTOR seems to be an important factor in NB, making it a possible target for NB. In this study, we investigated the effect of AZD8055, a potent dual mTORC1-mTORC2 inhibitor, in NB cell lines. Our data showed that mTOR signaling was extensively activated in NB cells. The activity of mTOR and downstream molecules were down-regulated in AZD8055-treated NB cells. Significantly, AZD8055 effectively inhibited cell growth and induced cell cycle arrest, autophagy and apoptosis in NB cells. Moreover, AZD8055 significantly reduced tumor growth in mice xenograft model without apparent toxicity. Taken together, our results highlight the potential of mTOR as a promising target for NB treatment. Therefore, AZD8055 may be further investigated for treatment in clinical trials for high risk NB.
Collapse
Affiliation(s)
- Dong-Qing Xu
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Hidemi Toyoda
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Xiao-Jun Yuan
- Department of Pediatric Hematology/Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei Qi
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Vipin Shankar Chelakkot
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Mari Morimoto
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Ryo Hanaki
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Kentarou Kihira
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Hiroki Hori
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan.
| |
Collapse
|
27
|
Criscitiello C, Viale G, Curigliano G, Goldhirsch A. Profile of buparlisib and its potential in the treatment of breast cancer: evidence to date. BREAST CANCER-TARGETS AND THERAPY 2018; 10:23-29. [PMID: 29430197 PMCID: PMC5796458 DOI: 10.2147/bctt.s134641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alteration of the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin signaling pathway is key for the growth and survival of several cancers, including breast cancer. In addition, dysregulation of PI3K signaling may contribute to resistance to several anticancer agents. PI3K inhibitors may, therefore, be effective as antineoplastic therapy. Buparlisib is a potent and highly specific oral inhibitor of the pan-class I PI3K family. Buparlisib specifically inhibits class I PIK3 in the PI3K/AKT kinase signaling pathway in an ATP-competitive manner, thus inhibiting the production of the secondary messenger phosphatidylinositol (3,4,5)-trisphosphate and activation of the PI3K signaling pathway. This may induce inhibition of tumor cell growth and survival in susceptible tumor cell populations. Buparlisib is currently under investigation in patients with a variety of solid tumors, including breast cancer. Buparlisib has been validated as a promising anticancer agent, and tremendous efforts have been taken to develop it. However, buparlisib monotherapy has resulted in humble benefit so far. Results from studies combining buparlisib with different anticancer agents - namely, endocrine therapy, anti-HER2 therapy, and chemotherapy - have showed variable efficacy with consistent substantial toxicity.
Collapse
|
28
|
Piggott L, Silva A, Robinson T, Santiago-Gómez A, Simões BM, Becker M, Fichtner I, Andera L, Young P, Morris C, Barrett-Lee P, Alchami F, Piva M, Vivanco MDM, Clarke RB, Gee J, Clarkson R. Acquired Resistance of ER-Positive Breast Cancer to Endocrine Treatment Confers an Adaptive Sensitivity to TRAIL through Posttranslational Downregulation of c-FLIP. Clin Cancer Res 2018; 24:2452-2463. [PMID: 29363524 DOI: 10.1158/1078-0432.ccr-17-1381] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/06/2017] [Accepted: 01/16/2018] [Indexed: 11/16/2022]
Abstract
Purpose: One third of ER-positive breast cancer patients who initially respond to endocrine therapy become resistant to treatment. Such treatment failure is associated with poor prognosis and remains an area of unmet clinical need. Here, we identify a specific posttranslational modification that occurs during endocrine resistance and which results in tumor susceptibility to the apoptosis-inducer TRAIL. This potentially offers a novel stratified approach to targeting endocrine-resistant breast cancer.Experimental Design: Cell line and primary-derived xenograft models of endocrine resistance were investigated for susceptibility to TRAIL. Tumor viability, cancer stem cell (CSC) viability (tumorspheres), tumor growth kinetics, and metastatic burden were assessed. Western blots for the TRAIL-pathway inhibitor, c-FLIP, and upstream regulators were performed. Results were confirmed in primary culture of 26 endocrine-resistant and endocrine-naïve breast tumors.Results: Breast cancer cell lines with acquired resistance to tamoxifen (TAMR) or faslodex were more sensitive to TRAIL than their endocrine-sensitive controls. Moreover, TRAIL eliminated CSC-like activity in TAMR cells, resulting in prolonged remission of xenografts in vivo In primary culture, TRAIL significantly depleted CSCs in 85% endocrine-resistant, compared with 8% endocrine-naïve, tumors, whereas systemic administration of TRAIL in endocrine-resistant patient-derived xenografts reduced tumor growth, CSC-like activity, and metastases. Acquired TRAIL sensitivity correlated with a reduction in intracellular levels of c-FLIP, and an increase in Jnk-mediated phosphorylation of E3-ligase, ITCH, which degrades c-FLIP.Conclusions: These results identify a novel mechanism of acquired vulnerability to an extrinsic cell death stimulus, in endocrine-resistant breast cancers, which has both therapeutic and prognostic potential. Clin Cancer Res; 24(10); 2452-63. ©2018 AACR.
Collapse
Affiliation(s)
- Luke Piggott
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | - Andreia Silva
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Timothy Robinson
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Angelica Santiago-Gómez
- Breast Biology Group, Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Bruno M Simões
- Breast Biology Group, Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Michael Becker
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin-Buch, Germany
| | - Iduna Fichtner
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin-Buch, Germany
| | - Ladislav Andera
- Department of Molecular Therapy, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Vestec, Prague, Czech Republic
| | - Philippa Young
- Cardiff and Vale UHB Breast Centre, University Hospital of Llandough, Llandough, United Kingdom
| | - Christine Morris
- Cardiff and Vale UHB Breast Centre, University Hospital of Llandough, Llandough, United Kingdom
| | | | - Fouad Alchami
- Cardiff and Vale UHB, Histopathology, University Hospital Wales, Heath Park, Cardiff, United Kingdom
| | - Marco Piva
- CIC bioGUNE, Technological Park of Bizkaia, Derio, Spain
| | | | - Robert B Clarke
- Breast Biology Group, Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Julia Gee
- School of Pharmacology and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff University, Cardiff, United Kingdom
| | - Richard Clarkson
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
29
|
Tsai TF, Lin JF, Chou KY, Lin YC, Chen HE, Hwang TIS. miR-99a-5p acts as tumor suppressor via targeting to mTOR and enhances RAD001-induced apoptosis in human urinary bladder urothelial carcinoma cells. Onco Targets Ther 2018; 11:239-252. [PMID: 29379304 PMCID: PMC5757495 DOI: 10.2147/ott.s114276] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction miR-99a-5p, known to play an important role in mammalian target of rapamycin (mTOR) regulation, is downregulated in human bladder cancer. The study aimed to investigate the anticancer activity of miR-99a-5p and the possible mechanism associated with mTOR in bladder cancer cells. Materials and methods Vectors expressing miR-99a-5p were transfected into human urinary bladder urothelial carcinoma (5637 and T24) cells. The level of miR-99a-5p was monitored by microRNA (miRNA) quantitative polymerase chain reaction (QPCR). Luciferase reporter assays were performed to verify the direct binding of miR-99a-5p to mTOR transcripts. The mTOR transcripts and protein levels were measured by QPCR and Western blot, respectively. Cell viability of miR-99a-5p-transfected cells was detected by tetrazolium salt (WST-1). Inhibition of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) signaling was detected by the phosphorylation of mTOR and AKT using Western blot. The ability of miR-99a-5p to enhance RAD001-induced apoptosis was determined as the expression of cleaved caspase 3 and levels of DNA fragmentation. Results Transfection of miR-99a-5p-expressing vector elevated the expression level of miR-99a-5p up to sixfold compared to vector-only controls. The results from luciferase assay verified that miR-99a-5p directly binds to the predicted sequence in the 3′ untranslated region (3′-UTR) of mTOR. The levels of mTOR RNA and protein were decreased in miR-99a-5p-transfected cells. Dual inhibition of mTORC1 and mTORC2 by miR-99a-5p was confirmed by the decreased phosphorylation of mTOR (at Ser2448 and Ser2481), phospho-rpS6 and phospho-4EBP1. The phosphorylation of AKT was significantly inhibited in miR-99a-5p-transfected cells upon RAD001 treatment. Enforced expression of miR-99a-5p potentiated RAD001-induced apoptosis in these cells. Conclusion This is the first study showing that miR-99a-5p markedly inhibits the growth of bladder cancer cells via dual inhibition of mTORC1 and mTORC2. Our data demonstrated that forced expression of miR-99a-5p inhibits the feedback of AKT survival pathway and enhances the induction of apoptosis in RAD001-treated bladder cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas I-Sheng Hwang
- Department of Urology.,Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital.,Department of Urology, Taipei Medical University.,Division of Urology, School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan, Republic of China
| |
Collapse
|
30
|
mTOR Signaling Pathway and Protein Synthesis: From Training to Aging and Muscle Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:139-151. [PMID: 30390251 DOI: 10.1007/978-981-13-1435-3_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In muscle tissue there is a balance between the processes muscle synthesis and degradation. The mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in regulating protein synthesis in order to maintain muscular protein turnover and trophism. Studies have shown that both down- and upregulation mechanisms are involved in this process in a manner dependent on stimulus and cellular conditions. Additionally, mTOR signaling has recently been implicated in several physiological conditions related to cell survival, such as self-digestion (autophagy), energy production, and the preservation of cellular metabolic balance over the lifespan. Here we briefly describe the mTOR structure and its regulatory protein synthesis pathway. Furthermore, the role of mTOR protein in autophagy, aging, and mitochondrial function in muscle tissue is presented.
Collapse
|
31
|
Geter PA, Ernlund AW, Bakogianni S, Alard A, Arju R, Giashuddin S, Gadi A, Bromberg J, Schneider RJ. Hyperactive mTOR and MNK1 phosphorylation of eIF4E confer tamoxifen resistance and estrogen independence through selective mRNA translation reprogramming. Genes Dev 2017; 31:2235-2249. [PMID: 29269484 PMCID: PMC5769768 DOI: 10.1101/gad.305631.117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
Abstract
Geter et al. show that tamoxifen resistance involves selective mRNA translational reprogramming to an anti-estrogen state by Runx2 and other mRNAs. Tamoxifen-resistant translational reprogramming is shown to be mediated by increased expression of eIF4E and its increased availability by hyperactive mTOR and to require phosphorylation of eIF4E at Ser209 by increased MNK activity. The majority of breast cancers expresses the estrogen receptor (ER+) and is treated with anti-estrogen therapies, particularly tamoxifen in premenopausal women. However, tamoxifen resistance is responsible for a large proportion of breast cancer deaths. Using small molecule inhibitors, phospho-mimetic proteins, tamoxifen-sensitive and tamoxifen-resistant breast cancer cells, a tamoxifen-resistant patient-derived xenograft model, patient tumor tissues, and genome-wide transcription and translation studies, we show that tamoxifen resistance involves selective mRNA translational reprogramming to an anti-estrogen state by Runx2 and other mRNAs. Tamoxifen-resistant translational reprogramming is shown to be mediated by increased expression of eIF4E and its increased availability by hyperactive mTOR and to require phosphorylation of eIF4E at Ser209 by increased MNK activity. Resensitization to tamoxifen is restored only by reducing eIF4E expression or mTOR activity and also blocking MNK1 phosphorylation of eIF4E. mRNAs specifically translationally up-regulated with tamoxifen resistance include Runx2, which inhibits ER signaling and estrogen responses and promotes breast cancer metastasis. Silencing Runx2 significantly restores tamoxifen sensitivity. Tamoxifen-resistant but not tamoxifen-sensitive patient ER+ breast cancer specimens also demonstrate strongly increased MNK phosphorylation of eIF4E. eIF4E levels, availability, and phosphorylation therefore promote tamoxifen resistance in ER+ breast cancer through selective mRNA translational reprogramming
Collapse
Affiliation(s)
- Phillip A Geter
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Amanda W Ernlund
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Sofia Bakogianni
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Amandine Alard
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Rezina Arju
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Shah Giashuddin
- New York Presbyterian-Brooklyn Methodist Hospital, Brooklyn, New York 11215, USA
| | - Abhilash Gadi
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Jacqueline Bromberg
- Memorial Sloan Kettering Cancer Institute, New York, New York 10016 USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016 USA
| | - Robert J Schneider
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA.,Memorial Sloan Kettering Cancer Institute, New York, New York 10016 USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016 USA
| |
Collapse
|
32
|
Hsu PY, Wu VS, Kanaya N, Petrossian K, Hsu HK, Nguyen D, Schmolze D, Kai M, Liu CY, Lu H, Chu P, Vito CA, Kruper L, Mortimer J, Chen S. Dual mTOR Kinase Inhibitor MLN0128 Sensitizes HR +/HER2 + Breast Cancer Patient-Derived Xenografts to Trastuzumab or Fulvestrant. Clin Cancer Res 2017; 24:395-406. [PMID: 29079660 DOI: 10.1158/1078-0432.ccr-17-1983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/24/2017] [Accepted: 10/23/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Therapeutic strategies against hormonal receptor-positive (HR+)/HER2+ breast cancers with poor response to trastuzumab need to be optimized.Experimental Design: Two HR+/HER2+ patient-derived xenograft (PDX) models named as COH-SC1 and COH-SC31 were established to explore targeted therapies for HER2+ breast cancers. RNA sequencing and RPPA (reverse phase protein array) analyses were conducted to decipher molecular features of the two PDXs and define the therapeutic strategy of interest, validated by in vivo drug efficacy examination and in vitro cell proliferation analysis.Results: Estrogen acted as a growth driver of trastuzumab-resistant COH-SC31 tumors but an accelerator in the trastuzumab-sensitive COH-SC1 model. In vivo trastuzumab efficacy examination further confirmed the consistent responses between PDXs and the corresponding tumors. Integrative omics analysis revealed that mammalian target of rapamycin (mTOR) and ERα signaling predominantly regulate tumor growth of the two HR+/HER2+ PDXs. Combination of the dual mTOR complex inhibitor MLN0128 and anti-HER2 trastuzumab strongly suppressed tumor growth of COH-SC1 PDX accompanied by increasing ER-positive cell population in vivo Instead, MLN0128 in combination with antiestrogen fulvestrant significantly halted the growth of HR+/HER2+ cancer cells in vitro and trastuzumab-resistant COH-SC31 as well as trastuzumab-sensitive COH-SC1 tumors in vivoConclusions: Compared with the standard trastuzumab treatment, this study demonstrates alternative therapeutic strategies against HR+/HER2+ tumors through establishment of two PDXs coupled with integrative omics analyses and in vivo drug efficacy examination. This work presents a prototype of future "co-clinical" trials to tailor personalized medicine in clinical practice. Clin Cancer Res; 24(2); 395-406. ©2017 AACR.
Collapse
Affiliation(s)
- Pei-Yin Hsu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Victoria Shang Wu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Karineh Petrossian
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Hang-Kai Hsu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Duc Nguyen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Daniel Schmolze
- Department of Pathology, City of Hope Medical Center, Duarte, California
| | - Masaya Kai
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Chun-Yu Liu
- Department of Oncology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hannah Lu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Peiguo Chu
- Department of Pathology, City of Hope Medical Center, Duarte, California
| | - Courtney A Vito
- Department of Surgery, City of Hope Medical Center, Duarte, California
| | - Laura Kruper
- Department of Surgery, City of Hope Medical Center, Duarte, California
| | - Joanne Mortimer
- Department of Medical Oncology and Therapeutic Research, City of Hope Medical Center, Duarte, California
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California.
| |
Collapse
|
33
|
Rashid MM, Oh HA, Lee H, Jung BH. Metabolite identification of AZD8055 in Sprague-Dawley rats after a single oral administration using ultra-performance liquid chromatography and mass spectrometry. J Pharm Biomed Anal 2017; 145:473-481. [DOI: 10.1016/j.jpba.2017.06.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/08/2023]
|
34
|
Semina SE, Scherbakov AM, Kovalev SV, Shevchenko VE, Krasil'nikov MA. Horizontal Transfer of Tamoxifen Resistance in MCF-7 Cell Derivates: Proteome Study. Cancer Invest 2017; 35:506-518. [DOI: 10.1080/07357907.2017.1368081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- S. E. Semina
- Laboratory of Molecular Endocrinology, N.N. Blokhin Cancer Research Centre, Moscow, Russia
| | - A. M. Scherbakov
- Laboratory of Oncoproteomics, N.N. Blokhin Cancer Research Centre, Moscow, Russia
| | - S. V. Kovalev
- Laboratory of Oncoproteomics, N.N. Blokhin Cancer Research Centre, Moscow, Russia
| | - V. E. Shevchenko
- Laboratory of Oncoproteomics, N.N. Blokhin Cancer Research Centre, Moscow, Russia
| | - M. A. Krasil'nikov
- Laboratory of Molecular Endocrinology, N.N. Blokhin Cancer Research Centre, Moscow, Russia
| |
Collapse
|
35
|
Abstract
Mechanistic target of rapamycin controls cell growth, metabolism, and aging in response to nutrients, cellular energy stage, and growth factors. In cancers including breast cancer, mechanistic target of rapamycin is frequently upregulated. Blocking mechanistic target of rapamycin with rapamycin, first-generation and second-generation mechanistic target of rapamycin inhibitors, called rapalogs, have shown potent reduction of breast cancer tumor growth in preclinical models and clinical trials. In this review, we summarize the fundamental role of the mechanistic target of rapamycin pathway in driving breast tumors. Moreover, we also review key molecules involved with aberrant mechanistic target of rapamycin pathway activation in breast cancer and current efforts to target these components for therapeutic gain. Further development of predictive biomarkers will be useful in the selection of patients who will benefit from inhibition of the mechanistic target of rapamycin pathway.
Collapse
Affiliation(s)
- Jia Liu
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Hui-Qing Li
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Fu-Xia Zhou
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Jie-Wen Yu
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Ling Sun
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Zhong-Hou Han
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| |
Collapse
|
36
|
Schaffrath J, Schmoll HJ, Voigt W, Müller LP, Müller-Tidow C, Mueller T. Efficacy of targeted drugs in germ cell cancer cell lines with differential cisplatin sensitivity. PLoS One 2017; 12:e0178930. [PMID: 28591197 PMCID: PMC5462387 DOI: 10.1371/journal.pone.0178930] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common malignancies in men between the age of 15 and 35. Although cisplatin-based chemotherapy is highly effective in advanced disease, approximately 20% of patients have an unfavorable prognosis due to primary or acquired cisplatin resistance. For these patients, new therapeutic options are urgently needed. In numerous tumor entities, combinations of monoclonal antibodies or kinase inhibitors with chemotherapy exerted promising preclinical or clinical results, which have led to new treatment concepts. This prompted us to investigate the activity of different targeted agents alone or in combination with cisplatin in a panel of TGCT cell lines.
Collapse
Affiliation(s)
- Judith Schaffrath
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hans-Joachim Schmoll
- Workgroup Clinical Studies in Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wieland Voigt
- Medical Innovations and Management, Innovation in Oncology, Steinbeis University, Berlin, Germany
| | - Lutz P. Müller
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Mueller
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| |
Collapse
|
37
|
Huang D, Yang F, Wang Y, Guan X. Mechanisms of resistance to selective estrogen receptor down-regulator in metastatic breast cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:148-156. [PMID: 28344099 DOI: 10.1016/j.bbcan.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Based on the prominent role estrogen receptor (ER) plays in breast cancer, endocrine therapy has been developed to block the ER pathway and has shown great effectiveness. Fulvestrant, the first selective ER down-regulator (SERD), was demonstrated to completely suppress ERα and notably efficient. However, resistance to fulvestrant occurs, either intrinsic or acquired during the treatment. Several potential mechanisms inducing fulvestrant resistance have been proposed, composed of activated ERα-independent compensatory growth factor signaling, stimulated downstream kinases, altered cell cycle mediators, etcetera. Experimentally, combinations of fulvestrant with targeted treatments were reported to eliminate the resistance and improve the effect of fulvestrant. Meanwhile, some clinical trials associated with the targeted combination therapies are in progress. This review focuses on the underlying mechanisms that contribute to fulvestrant resistance in ER-positive breast cancer and provides an overview of combined fulvestrant with targeted agents to shed light on optimal therapies for patients with ER-positive breast cancer.
Collapse
Affiliation(s)
- Doudou Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Yucai Wang
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China.
| |
Collapse
|
38
|
Augereau P, Patsouris A, Bourbouloux E, Gourmelon C, Abadie Lacourtoisie S, Berton Rigaud D, Soulié P, Frenel JS, Campone M. Hormonoresistance in advanced breast cancer: a new revolution in endocrine therapy. Ther Adv Med Oncol 2017; 9:335-346. [PMID: 28529550 PMCID: PMC5424863 DOI: 10.1177/1758834017693195] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 01/16/2017] [Indexed: 11/17/2022] Open
Abstract
Endocrine therapy is the mainstay of treatment of estrogen-receptor-positive (ER+) breast cancer with an overall survival benefit. However, some adaptive mechanisms in the tumor emerge leading to the development of a resistance to this therapy. A better characterization of this process is needed to overcome this resistance and to develop new tailored therapies. Mechanisms of resistance to hormone therapy result in activation of transduction signal pathways, including the cell cycle regulation with cyclin D/CDK4/6/Rb pathway. The strategy of combined hormone therapy with targeted agents has shown an improvement of progression-free survival (PFS) in several phase II or III trials, including three different classes of drugs: mTOR inhibitors, PI3K and CDK4/6 inhibitors. A recent phase III trial has shown that fulvestrant combined with a CDK 4/6 inhibitor doubles PFS in aromatase inhibitor-pretreated postmenopausal ER+ breast cancer. Other combinations are ongoing to disrupt the interaction between PI3K/AKT/mTOR and cyclin D/CDK4/6/Rb pathways. Despite these successful strategies, reliable and reproducible biomarkers are needed. Tumor genomics are dynamic over time, and blood-based biomarkers such as circulating tumor DNA represent a major hope to elucidate the adaptive mechanisms of endocrine resistance. The optimal combinations and biomarkers to guide this strategy need to be determined.
Collapse
Affiliation(s)
- Paule Augereau
- Department of Medical Oncology, Institut cancerologie de l'ouest site Paul Papin, 15 rue Andre Bocquel 49055 Angers Cedex 02, France
| | - Anne Patsouris
- Department of Medical Oncology, Institut cancerologie de l'ouest site Paul Papin, France
| | - Emmanuelle Bourbouloux
- Department of Medical Oncology, Institut cancerologie de l'ouest site René Gauducheau, Saint Herblain, France
| | - Carole Gourmelon
- Department of Medical Oncology, Institut cancerologie de l'ouest site René Gauducheau, Saint Herblain, France
| | | | - Dominique Berton Rigaud
- Department of Medical Oncology, Institut cancerologie de l'ouest site René Gauducheau, Saint Herblain, France
| | - Patrick Soulié
- Department of Medical Oncology, Institut cancerologie de l'ouest site Paul Papin, France
| | - Jean Sebastien Frenel
- Department of Medical Oncology, Institut cancerologie de l'ouest site René Gauducheau, Saint Herblain, France
| | - Mario Campone
- Department of Medical Oncology, Institut cancerologie de l'ouest site Paul Papin, France Department of Medical Oncology, Institut cancerologie de l'ouest site René Gauducheau, Saint Herblain, France
| |
Collapse
|
39
|
Hare SH, Harvey AJ. mTOR function and therapeutic targeting in breast cancer. Am J Cancer Res 2017; 7:383-404. [PMID: 28400999 PMCID: PMC5385631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 06/07/2023] Open
Abstract
The mTOR pathway was discovered in the late 1970s after the compound and natural inhibitor of mTOR, rapamycin was isolated from the bacterium Streptomyces hygroscopicus. mTOR is serine/threonine kinase belonging to the phosphoinositide 3-kinase related kinase (PIKK) family. It forms two distinct complexes; mTORC1 and mTORC2. mTORC1 has a key role in regulating protein synthesis and autophagy whilst mTORC2 is involved in regulating kinases of the AGC family. mTOR signaling is often over active in multiple cancer types including breast cancer. This can involve mutations in mTOR itself but more commonly, in breast cancer, this is related to an increase in activity of ErbB family receptors or alterations and mutations of PI3K signaling. Rapamycin and its analogues (rapalogues) bind to the intercellular receptor FKBP12, and then predominantly inhibit mTORC1 signaling via an allosteric mechanism. Research has shown that inhibition of mTOR is a useful strategy in tackling cancers, with it acting to slow tumor growth and limit the spread of a cancer. Rapalogues have now made their way into the clinic with the rapalogue everolimus (RAD-001/Afinitor) approved for use in conjunction with exemestane, in post-menopausal breast cancer patients with advanced disease who are HER-2 negative (normal expression), hormone receptor positive and whose prior treatment with non-steroidal aromatase inhibitors has failed. Testing across multiple trials has proven that everolimus and other rapalogues are a viable way of treating certain types of cancer. However, rapalogues have shown some drawbacks both in research and clinically, with their use often activating feedback pathways that counter their usefulness. As such, new types of inhibitors are being explored that work via different mechanisms, including inhibitors that are ATP competitive with mTOR and which act to perturb signaling from both mTOR complexes.
Collapse
Affiliation(s)
- Stephen H Hare
- Institute for Environment Health and Societies, Brunel University London Uxbridge, UB8 3PH, United Kingdom
| | - Amanda J Harvey
- Institute for Environment Health and Societies, Brunel University London Uxbridge, UB8 3PH, United Kingdom
| |
Collapse
|
40
|
Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Buchan JR, Cho WC. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. Int J Mol Sci 2017; 18:E367. [PMID: 28208579 PMCID: PMC5343902 DOI: 10.3390/ijms18020367] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/22/2017] [Accepted: 02/03/2017] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) constitutes 85% of all lung cancers, and is the leading cause of cancer-related death worldwide. The poor prognosis and resistance to both radiation and chemotherapy warrant further investigation into the molecular mechanisms of NSCLC and the development of new, more efficacious therapeutics. The processes of autophagy and apoptosis, which induce degradation of proteins and organelles or cell death upon cellular stress, are crucial in the pathophysiology of NSCLC. The close interplay between autophagy and apoptosis through shared signaling pathways complicates our understanding of how NSCLC pathophysiology is regulated. The apoptotic effect of autophagy is controversial as both inhibitory and stimulatory effects have been reported in NSCLC. In addition, crosstalk of proteins regulating both autophagy and apoptosis exists. Here, we review the recent advances of the relationship between autophagy and apoptosis in NSCLC, aiming to provide few insights into the discovery of novel pathogenic factors and the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Fen Pei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Fengqing Yang
- Department of Obstetrics and Gynecology, Dong'e No. 4 People's Hospital, Liaocheng 252200, China.
| | - Lingxiao Li
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Songnian Liu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|
41
|
Mimoto R, Nihira NT, Hirooka S, Takeyama H, Yoshida K. Diminished DYRK2 sensitizes hormone receptor-positive breast cancer to everolimus by the escape from degrading mTOR. Cancer Lett 2017; 384:27-38. [PMID: 27746162 DOI: 10.1016/j.canlet.2016.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
Mammalian target of rapamycin (mTOR) inhibitor, everolimus, provides benefit for metastatic hormone receptor positive breast cancer after failure of the endocrine therapy. The present report highlights Dual Specificity Tyrosine Phosphorylation Regulated Kinase 2 (DYRK2) as a predictive marker for everolimus sensitivity. The key node and KEGG pathway analyses revealed that mTORC1 pathway is activated in DYRK2-depleted cells. Everolimus was more effective in DYRK2-depleted cells compared with control cells. In xenograft model, everolimus treatment significantly inhibited tumor growth compared with vehicle or eribulin treatment. In clinical analysis, patients with low DYRK2 expression acquired longer treatment period and had higher clinical benefit rate than those with high DYRK2 expression (171 vs 82 days; P < 0.05 and 50% vs 12.5%, respectively). We further investigated the underlying mechanism by which DYRK2 regulates mTORC1 pathway. The ectopic expression of DYRK2 promoted phosphorylation of Thr631 for the ubiquitination and degradation of mTOR. DYRK2 expression levels may thus predict clinical responses to everolimus.
Collapse
Affiliation(s)
- Rei Mimoto
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan; Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Naoe T Nihira
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Shinichi Hirooka
- Department of Pathology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hiroshi Takeyama
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
42
|
Lui A, New J, Ogony J, Thomas S, Lewis-Wambi J. Everolimus downregulates estrogen receptor and induces autophagy in aromatase inhibitor-resistant breast cancer cells. BMC Cancer 2016; 16:487. [PMID: 27421652 PMCID: PMC4947349 DOI: 10.1186/s12885-016-2490-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/30/2016] [Indexed: 01/12/2023] Open
Abstract
Background mTOR inhibition of aromatase inhibitor (AI)-resistant breast cancer is currently under evaluation in the clinic. Everolimus/RAD001 (Afinitor®) has had limited efficacy as a solo agent but is projected to become part of combination therapy for AI-resistant breast cancer. This study was conducted to investigate the anti-proliferative and resistance mechanisms of everolimus in AI-resistant breast cancer cells. Methods In this study we utilized two AI-resistant breast cancer cell lines, MCF-7:5C and MCF-7:2A, which were clonally derived from estrogen receptor positive (ER+) MCF-7 breast cancer cells following long-term estrogen deprivation. Cell viability assay, colony formation assay, cell cycle analysis and soft agar anchorage-independent growth assay were used to determine the efficacy of everolimus in inhibiting the proliferation and tumor forming potential of MCF-7, MCF-7:5C, MCF-7:2A and MCF10A cells. Confocal microscopy and transmission electron microscopy were used to evaluate LC3-II production and autophagosome formation, while ERE-luciferase reporter, Western blot, and RT-PCR analyses were used to assess ER expression and transcriptional activity. Results Everolimus inhibited the proliferation of MCF-7:5C and MCF-7:2A cells with relatively equal efficiency to parental MCF-7 breast cancer cells. The inhibitory effect of everolimus was due to G1 arrest as a result of downregulation of cyclin D1 and p21. Everolimus also dramatically reduced estrogen receptor (ER) expression (mRNA and protein) and transcriptional activity in addition to the ER chaperone, heat shock protein 90 protein (HSP90). Everolimus restored 4-hydroxy-tamoxifen (4OHT) sensitivity in MCF-7:5C cells and enhanced 4OHT sensitivity in MCF-7 and MCF-7:2A cells. Notably, we found that autophagy is one method of everolimus insensitivity in MCF-7 breast cancer cell lines. Conclusion This study provides additional insight into the mechanism(s) of action of everolimus that can be used to enhance the utility of mTOR inhibitors as part of combination therapy for AI-resistant breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2490-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asona Lui
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Jacob New
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Joshua Ogony
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Sufi Thomas
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Joan Lewis-Wambi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,The University of Kansas Cancer Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
43
|
Ke B, Tian M, Li J, Liu B, He G. Targeting Programmed Cell Death Using Small-Molecule Compounds to Improve Potential Cancer Therapy. Med Res Rev 2016; 36:983-1035. [PMID: 27357603 DOI: 10.1002/med.21398] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 05/04/2016] [Accepted: 05/28/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Bowen Ke
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Mao Tian
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Jingjing Li
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Bo Liu
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Gu He
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| |
Collapse
|
44
|
Moschovi M, Critselis E, Cen O, Adamaki M, Lambrou GI, Chrousos GP, Vlahopoulos S. Drugs acting on homeostasis: challenging cancer cell adaptation. Expert Rev Anticancer Ther 2015; 15:1405-1417. [PMID: 26523494 DOI: 10.1586/14737140.2015.1095095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Cancer treatment aims to exploit properties that define malignant cells. In recent years, it has become apparent that malignant cells often survive cancer treatment and ensuing cell stress by switching on auxiliary turnover pathways, changing cellular metabolism and, concomitantly, the gene expression profile. The changed profile impacts the material exchange of cancer cells with affected tissues. Herein, we show that pathways of proteostasis and energy generation regulate common transcription factors. Namely, when one pathway of intracellular turnover is blocked, it triggers alternative turnover mechanisms, which induce transcription factor proteins that control expression of cytokines and regulators of apoptosis, cell division, differentiation, metabolism, and response to hormones. We focus on several alternative turnover mechanisms that can be blocked by drugs already used in clinical practice for the treatment of other non-cancer related diseases. We also discuss paradigms on the challenges posed by cancer cell adaptation mechanisms.
Collapse
Affiliation(s)
- Maria Moschovi
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
- b 2 University of Athens, Pediatric Hematology/Oncology Unit, First Department of Pediatrics, University of Athens, "Aghia Sofia" Children's Hospital, Thivon & Levadeias, 11527 Goudi, Athens, Greece
| | - Elena Critselis
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
| | - Osman Cen
- c 3 Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago Ave, Chicago, IL 60611, USA
| | - Maria Adamaki
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
- b 2 University of Athens, Pediatric Hematology/Oncology Unit, First Department of Pediatrics, University of Athens, "Aghia Sofia" Children's Hospital, Thivon & Levadeias, 11527 Goudi, Athens, Greece
| | - George I Lambrou
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
| | - George P Chrousos
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
| | - Spiros Vlahopoulos
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
| |
Collapse
|
45
|
Qi L, Toyoda H, Xu DQ, Zhou Y, Sakurai N, Amano K, Kihira K, Hori H, Azuma E, Komada Y. PDK1-mTOR signaling pathway inhibitors reduce cell proliferation in MK2206 resistant neuroblastoma cells. Cancer Cell Int 2015; 15:91. [PMID: 26421002 PMCID: PMC4587771 DOI: 10.1186/s12935-015-0239-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/04/2015] [Indexed: 02/08/2023] Open
Abstract
Purpose AKT plays a pivotal role in the signal transduction of cancer cells. MK2206, an AKT inhibitor, has been shown to be an effective anti-cancer drug to a variety of cancer cell lines. However, some cancer cells acquire resistance to MK2206 and new strategies to suppress these cell lines remain to be developed. Experimental design Acquired MK-2206-resistant neuroblastoma (NB) cell sublines were induced by stepwise escalation of MK-2206 exposure (4–12 weeks). MTT assay was used to validate cell proliferation. Flow cytometry was performed for cell cycle analysis. Western blot assay was used for cell signaling study. Results MK2206 (5–10 µmol) significantly suppressed cell growth of MK2206 non-resistant NB cells (LAN-1, KP-N-SIFA, NB-19 and SK-N-DZ), but is less efficient in inhibiting that of resistant sublines, even after 2-week MK2206-free incubation. MK2206 acted in mTOR-S6K dependent and independent methods. MK-2206 resistant sublines (LAN-1-MK, KP-N-SIFA-MK, and SK-N-DZ-MK) showed lower IC50 of GSK2334470 (PDK1 inhibitor). The cell growth of all sublines was prohibited by AZD8805 (mTOR inhibitor), with IC50 of AZD8805 3–10 times lower than MK2206 non-resistant cells. The signaling profiles of these resistant sublines were characterized by elevated PDK1-mTOR-S6K activity, accompanying by low phosphorylation of AKT compared with non-resistant counterparts. GSK2334470 and AZD8055 effectively inhibited phosphorylation of PDK1 and mTOR, respectively, and induced higher G0–G1 ratio in LAN-1-MK than that in LAN-1 as well. PDK1 and mTOR inhibitors effected on phosphorylation of GSK3β in some of resistant sublines. Conclusion NB cells can acquire MK2206 resistance after exposure for 4–12 weeks. Resistant cells feature reliance on PDK1-mTOR-S6K pathway and are more sensitive to PDK1 and mTOR inhibitors than the non-resistant counterparts. Thus, suppression of PDK1-mTOR-S6K signaling pathway is an effective way to overcome the MK2206 resistance, and this may be a promising strategy for targeted therapy.
Collapse
Affiliation(s)
- Lei Qi
- Department of Pediatrics and Developmental Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan ; Department of Pediatrics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092 China
| | - Hidemi Toyoda
- Department of Pediatrics and Developmental Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Dong-Qing Xu
- Department of Pediatrics and Developmental Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan ; Department of Pediatrics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092 China
| | - Ye Zhou
- Department of Child Health Nursing, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Naoto Sakurai
- Department of Pediatrics and Developmental Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Keishirou Amano
- Department of Pediatrics and Developmental Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Kentaro Kihira
- Department of Pediatrics and Developmental Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Hiroki Hori
- Department of Pediatrics and Developmental Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Eiichi Azuma
- Department of Pediatrics and Developmental Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Yoshihiro Komada
- Department of Pediatrics and Developmental Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| |
Collapse
|
46
|
Guichard SM, Curwen J, Bihani T, D'Cruz CM, Yates JWT, Grondine M, Howard Z, Davies BR, Bigley G, Klinowska T, Pike KG, Pass M, Chresta CM, Polanska UM, McEwen R, Delpuech O, Green S, Cosulich SC. AZD2014, an Inhibitor of mTORC1 and mTORC2, Is Highly Effective in ER+ Breast Cancer When Administered Using Intermittent or Continuous Schedules. Mol Cancer Ther 2015; 14:2508-18. [PMID: 26358751 DOI: 10.1158/1535-7163.mct-15-0365] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/30/2015] [Indexed: 01/01/2023]
Abstract
mTOR is an atypical serine threonine kinase involved in regulating major cellular functions, such as nutrients sensing, growth, and proliferation. mTOR is part of the multiprotein complexes mTORC1 and mTORC2, which have been shown to play critical yet functionally distinct roles in the regulation of cellular processes. Current clinical mTOR inhibitors only inhibit the mTORC1 complex and are derivatives of the macrolide rapamycin (rapalogs). Encouraging effects have been observed with rapalogs in estrogen receptor-positive (ER(+)) breast cancer patients in combination with endocrine therapy, such as aromatase inhibitors. AZD2014 is a small-molecule ATP competitive inhibitor of mTOR that inhibits both mTORC1 and mTORC2 complexes and has a greater inhibitory function against mTORC1 than the clinically approved rapalogs. Here, we demonstrate that AZD2014 has broad antiproliferative effects across multiple cell lines, including ER(+) breast models with acquired resistance to hormonal therapy and cell lines with acquired resistance to rapalogs. In vivo, AZD2014 induces dose-dependent tumor growth inhibition in several xenograft and primary explant models. The antitumor activity of AZD2014 is associated with modulation of both mTORC1 and mTORC2 substrates, consistent with its mechanism of action. In combination with fulvestrant, AZD2014 induces tumor regressions when dosed continuously or using intermittent dosing schedules. The ability to dose AZD2014 intermittently, together with its ability to block signaling from both mTORC1 and mTORC2 complexes, makes this compound an ideal candidate for combining with endocrine therapies in the clinic. AZD2014 is currently in phase II clinical trials.
Collapse
Affiliation(s)
| | - Jon Curwen
- AstraZeneca Oncology, Macclesfield, Cheshire, United Kingdom
| | | | | | - James W T Yates
- AstraZeneca Oncology, CRUK Cambridge Institute, Cambridge, United Kingdom
| | | | | | - Barry R Davies
- AstraZeneca Oncology, Macclesfield, Cheshire, United Kingdom
| | - Graham Bigley
- AstraZeneca Oncology, Macclesfield, Cheshire, United Kingdom
| | | | - Kurt G Pike
- AstraZeneca Oncology, Cambridge, United Kingdom
| | - Martin Pass
- AstraZeneca Oncology, Cambridge, United Kingdom
| | | | | | - Robert McEwen
- AstraZeneca Oncology, Macclesfield, Cheshire, United Kingdom
| | - Oona Delpuech
- AstraZeneca Oncology, CRUK Cambridge Institute, Cambridge, United Kingdom
| | - Stephen Green
- AstraZeneca Oncology, Macclesfield, Cheshire, United Kingdom
| | - Sabina C Cosulich
- AstraZeneca Oncology, CRUK Cambridge Institute, Cambridge, United Kingdom.
| |
Collapse
|
47
|
Steiner J, Davis J, McClellan J, Enos R, Carson J, Fayad R, Nagarkatti M, Nagarkatti P, Altomare D, Creek K, Murphy E. Dose-dependent benefits of quercetin on tumorigenesis in the C3(1)/SV40Tag transgenic mouse model of breast cancer. Cancer Biol Ther 2015; 15:1456-67. [PMID: 25482952 DOI: 10.4161/15384047.2014.955444] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the leading cause of cancer related death in women. Quercetin is a flavonol shown to have anti-carcinogenic actions. However, few studies have investigated the dose-dependent effects of quercetin on tumorigenesis and none have used the C3(1)/SV40 Tag breast cancer mouse model. At 4 weeks of age female C3(1)/SV40 Tag mice were randomized to one of four dietary treatments (n = 15-16/group): control (no quercetin), low-dose quercetin (0.02% diet), moderate-dose quercetin (0.2% diet), or high-dose quercetin (2% diet). Tumor number and volume was assessed twice a week and at sacrifice (20 wks). Results showed an inverted 'U' dose-dependent effect of dietary quercetin on tumor number and volume; at sacrifice the moderate dose was most efficacious and reduced tumor number 20% and tumor volume 78% compared to control mice (C3-Con: 9.0 ± 0.9; C3-0.2%: 7.3 ± 0.9) and (C3-Con: 2061.8 ± 977.0 mm(3); and C3-0.2%: 462.9 ± 75.9 mm(3)). Tumor volume at sacrifice was also reduced by the moderate dose compared to the high and low doses (C3-2%: 1163.2 ± 305.9 mm(3); C3-0.02%: 1401.5 ± 555.6 mm(3)), as was tumor number (C3-2%: 10.7 ± 1.3 mm(3); C3-0.02%: 8.1 ± 1.1 mm(3)). Gene expression microarray analysis performed on mammary glands from C3-Con and C3-0.2% mice determined that 31 genes were down-regulated and 9 genes were up-regulated more than 2-fold (P < 0.05) by quercetin treatment. We report the novel finding that there is a distinct dose-dependent effect of quercetin on tumor number and volume in a transgenic mouse model of human breast cancer, which is associated with a specific gene expression signature related to quercetin treatment.
Collapse
Key Words
- BW, body weight
- DCIS, ductal carcinoma in situ
- DEPTOR, DEP domain containing mTOR-interacting protein
- DEXA, dual-energy X-ray absorptiometry
- ERα, estrogen receptor alpha
- FABP7, fatty acid binding protein-7
- GREB1, growth regulation by estrogen in breast cancer
- MIN, mammary intraepithelial neoplasia
- Muc13, Mucin 13
- NGFR, nerve growth factor receptor
- TIMP4, tissue inhibitor of metalloproteinases-4
- TMPRSS4, transmembrane protease serine 4
- dose-response
- flavonoid
- gene expression microarray
- krt6a/b, keratin 6A/B
- mammary tumorigenesis
Collapse
Affiliation(s)
- Jl Steiner
- a Department of Pathology Microbiology and Immunology ; University of South Carolina School of Medicine ; Columbia , SC USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Agrawal A, Robertson JFR, Cheung KL, Gutteridge E, Ellis IO, Nicholson RI, Gee JMW. Biological effects of fulvestrant on estrogen receptor positive human breast cancer: short, medium and long-term effects based on sequential biopsies. Int J Cancer 2015; 138:146-59. [PMID: 26178788 PMCID: PMC4879515 DOI: 10.1002/ijc.29682] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/07/2015] [Accepted: 06/17/2015] [Indexed: 02/06/2023]
Abstract
We report the first study of the biological effect of fulvestrant on ER positive clinical breast cancer using sequential biopsies through to progression. Thirty-two locally/systemically advanced breast cancers treated with first-line fulvestrant (250 mg/month) were biopsied at therapy initiation, 6 weeks, 6 months and progression and immunohistochemically-analyzed for Ki67, ER, EGFR and HER2 expression/signaling activity. This series showed good fulvestrant responses (duration of response [DoR] = 25.8 months; clinical benefit = 81%). Ki67 fell (p < 0.001) in 79% of tumours by 6 months and lower Ki67 at all preprogression time-points predicted for longer DoR. ER and PR significantly decreased in all tumours by 6 months (p < 0.001), with some declines in ER (serine 118) phosphorylation and Bcl-2 (p = 0.007). There were modest HER2 increases (p = 0.034, 29% tumours) and loss of any detectable EGFR phosphorylation (p = 0.024, 50% tumours) and MAP kinase (ERK1/2) phosphorylation (p = 0.019, 65% tumours) by 6 months. While ER remained low, there was some recovery of Ki67, Bcl-2 and (weakly) EGFR/MAPK activity in 45-67% patients at progression. Fulvestrant's anti-proliferative impact is related to DoR, but while commonly downregulating ER and indicators of its signaling and depleting EGFR/MAPK signaling in some patients, additional elements must determine response duration. Residual ER at fulvestrant relapse explains reported sensitivity to further endocrine therapies. Occasional modest treatment-induced HER2 and weakly detectable EGFR/HER2/MAPK signaling at relapse suggests targeting of such activity might have value alongside fulvestrant in some patients. However, unknown pathways must drive relapse in most. Ki67 has biomarker potential to predict fulvestrant outcome and as a quantitative measure of response.
Collapse
Affiliation(s)
- Amit Agrawal
- Division of Breast Surgery, School of Graduate Entry Medicine and Health, Royal Derby Hospital, University of Nottingham, Derby, DE22 3DT, United Kingdom.,Cambridge Breast Unit, Cambridge University Hospitals, Cambridge, CB2 0QQ, United Kingdom
| | - John F R Robertson
- Division of Breast Surgery, School of Graduate Entry Medicine and Health, Royal Derby Hospital, University of Nottingham, Derby, DE22 3DT, United Kingdom
| | - Kwok L Cheung
- Division of Breast Surgery, School of Graduate Entry Medicine and Health, Royal Derby Hospital, University of Nottingham, Derby, DE22 3DT, United Kingdom
| | - Eleanor Gutteridge
- University of Nottingham, Nottingham City Hospital, NG5 1PB, United Kingdom
| | - Ian O Ellis
- University of Nottingham, Nottingham City Hospital, NG5 1PB, United Kingdom
| | - Robert I Nicholson
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, United Kingdom
| | - Julia M W Gee
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, United Kingdom
| |
Collapse
|
49
|
Timmermans-Sprang EPM, Gracanin A, Mol JA. High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression. BMC Cancer 2015. [PMID: 26205886 PMCID: PMC4513708 DOI: 10.1186/s12885-015-1544-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Elevated basal, ligand-independent, Wnt signaling in some canine breast cancer cells is not caused by classical mutations in APC, β-Catenin or GSK3β but, at least partially, by enhanced LEF1 expression. We examined the expression and function of EGFR/HER-regulated pathways on the ligand-independent Wnt signaling. Methods Twelve canine mammary tumor cell lines with previously reported differential basal Wnt activity were used. The expression levels of genes related to EGF-signaling were analyzed by cluster analysis. Cell lines with a combined overexpression of EGF-related genes and enhanced basal Wnt activity were treated with PI3K/mTor or cSRC inhibitors or transfected with a construct expressing wild-type PTEN. Subsequently, effects were measured on Wnt activity, cell proliferation, gene expression and protein level. Results High basal Wnt/LEF1 activity was associated with overexpression of HER2/3, ID1, ID2, RAC1 and HSP90 together with low to absent cMET and PTEN mRNA expression, suggesting a connection between Wnt- and HER-signaling pathways. Inhibition of the HER-regulated PI3K/mTor pathway using the dual PI3K/mTor inhibitor BEZ235 or the mTor inhibitor Everolimus® resulted in reduced cell proliferation. In the cell line with high basal Wnt activity, however, an unexpected further increased Wnt activity was found that could be greatly reduced after inhibition of the HER-regulated cSRC activity. Inhibition of the PI3K/mTor pathway was associated with enhanced expression of β-Catenin, Axin2, MUC1, cMET, EGFR and HER2 and a somewhat increased β-Catenin protein content, whereas cSRC inhibition was associated with slightly enhanced HER3 and SLUG mRNA expression. A high protein expression of HER3 was found only in a cell line with high basal Wnt activity. Conclusions High basal Wnt activity in some mammary cancer cell lines is associated with overexpression of HER-receptor related genes and HER3 protein, and the absence of PTEN. Inhibition of the PI3K/mTor pathway further stimulated, however, canonical Wnt signaling, whereas the inhibitory effect with the cSRC inhibitor Src-I1 on the Wnt activity further suggested a connection between Wnt and HER2/3-signaling.
Collapse
Affiliation(s)
- Elpetra P M Timmermans-Sprang
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.
| | - Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.
| |
Collapse
|
50
|
He SQ, Gao M, Fu YF, Zhang YN. Glycyrrhizic acid inhibits leukemia cell growth and migration via blocking AKT/mTOR/STAT3 signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5175-5181. [PMID: 26191214 PMCID: PMC4503086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Glycyrrhizic acid (GA) is the bioactive compound of licorice and has been used as an herbal medicine because of its anti-viral, anti-cancer, and anti-inflammatory properties. This study was designed to investigate the effects of GA on leukemia cells growth, migration, and the mechanisms underlying the anti-cancer activities of GA. MTT test was used to detect the effect of GA on TF-1 leukemia cell growth. Wound closure assay and Transwell were adopted to assess the effect of GA on TF-1 migration and invasion. Migration and invasion related proteins including AKT and mTOR were detected by western blot assay. We further used western blot and immunofluorescence assay to evaluate the effect of GA on STAT3 phosphorylation in vitro. We also evaluated the anti-tumor effect of GA in TF-1 tumor bearing BALB/c mice model. The present study showed GA significant inhibit of TF-1 proliferation in a dose and time-dependent manner. GA could remarkably inhibit TF-1 cell migration and invasion; meanwhile effectively suppress AKT, mTOR, and STAT3 phosphorylation in TF-1 cells. GA in 100 mg/kg/ could inhibit the tumor growth in vivo and down-regulated AKT, mTOR, and STAT3 phosphorylation in TF-1 tumor tissues. Our findings suggest that GA is a promising therapeutic agent for leukemia that targets the AKT/mTOR/STAT3 pathway.
Collapse
Affiliation(s)
- Si-Qi He
- The Third Xiangya Hospital, Central South University Changsha 410013, China
| | - Meng Gao
- The Third Xiangya Hospital, Central South University Changsha 410013, China
| | - Yun-Feng Fu
- The Third Xiangya Hospital, Central South University Changsha 410013, China
| | - Ya-Nan Zhang
- The Third Xiangya Hospital, Central South University Changsha 410013, China
| |
Collapse
|