1
|
Siemer CP, Siemer LC, Friedman AL, Alvis BD. Noninvasive Hemodynamic Monitors, What Is New and Old. Adv Anesth 2024; 42:151-170. [PMID: 39443047 DOI: 10.1016/j.aan.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This article reviews the evolution of noninvasive hemodynamic monitoring technologies, highlighting their importance in perioperative and critical care settings. Initially dominated by invasive methods, the field has shifted toward noninvasive techniques to reduce risks and improve patient safety. These advancements encompass various technologies, including bioimpedance/bioreactance, pulse contour analysis, and photoplethysmography, offering anesthesiologists dynamic tools for patient management. The article explores historical developments, traditional and advanced noninvasive monitors, and future trends, emphasizing the potential of integrating artificial intelligence and wearable technology in patient care.
Collapse
Affiliation(s)
- Christopher P Siemer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren C Siemer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amy L Friedman
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bret D Alvis
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Meng L, Sun Y, Zhao X, Meng DM, Liu Z, Adams DC, McDonagh DL, Rasmussen M. Effects of phenylephrine on systemic and cerebral circulations in humans: a systematic review with mechanistic explanations. Anaesthesia 2024; 79:71-85. [PMID: 37948131 DOI: 10.1111/anae.16172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/12/2023]
Abstract
We conducted a systematic review of the literature reporting phenylephrine-induced changes in blood pressure, cardiac output, cerebral blood flow and cerebral tissue oxygen saturation as measured by near-infrared spectroscopy in humans. We used the proportion change of the group mean values reported by the original studies in our analysis. Phenylephrine elevates blood pressure whilst concurrently inducing a reduction in cardiac output. Furthermore, despite increasing cerebral blood flow, it decreases cerebral tissue oxygen saturation. The extent of phenylephrine's influence on cardiac output (r = -0.54 and p = 0.09 in awake humans; r = -0.55 and p = 0.007 in anaesthetised humans), cerebral blood flow (r = 0.65 and p = 0.002 in awake humans; r = 0.80 and p = 0.003 in anaesthetised humans) and cerebral tissue oxygen saturation (r = -0.72 and p = 0.03 in awake humans; r = -0.24 and p = 0.48 in anaesthetised humans) appears closely linked to the magnitude of phenylephrine-induced blood pressure changes. When comparing the effects of phenylephrine in awake and anaesthetised humans, we found no evidence of a significant difference in cardiac output, cerebral blood flow or cerebral tissue oxygen saturation. There was also no evidence of a significant difference in effect on systemic and cerebral circulations whether phenylephrine was given by bolus or infusion. We explore the underlying mechanisms driving the phenylephrine-induced cardiac output reduction, cerebral blood flow increase and cerebral tissue oxygen saturation decrease. Individualised treatment approaches, close monitoring and consideration of potential risks and benefits remain vital to the safe and effective use of phenylephrine in acute care.
Collapse
Affiliation(s)
- L Meng
- Department of Anesthesia, Indiana University School of Medicine, IA, Indianapolis, USA
| | - Y Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - X Zhao
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - D M Meng
- Choate Rosemary Hall School, CT, Wallingford, USA
| | - Z Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, IA, Indianapolis, USA
| | - D C Adams
- Department of Anesthesia, Indiana University School of Medicine, IA, Indianapolis, USA
| | - D L McDonagh
- Departments of Anesthesiology and Pain Management, Neurological Surgery, Neurology and Neurotherapeutics, UT Southwestern Medical Center, TX, Dallas, USA
| | - M Rasmussen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Messina A, Calabrò L, Pugliese L, Lulja A, Sopuch A, Rosalba D, Morenghi E, Hernandez G, Monnet X, Cecconi M. Fluid challenge in critically ill patients receiving haemodynamic monitoring: a systematic review and comparison of two decades. Crit Care 2022; 26:186. [PMID: 35729632 PMCID: PMC9210670 DOI: 10.1186/s13054-022-04056-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
Fluid challenges are widely adopted in critically ill patients to reverse haemodynamic instability. We reviewed the literature to appraise fluid challenge characteristics in intensive care unit (ICU) patients receiving haemodynamic monitoring and considered two decades: 2000–2010 and 2011–2021.
Methods
We assessed research studies and collected data regarding study setting, patient population, fluid challenge characteristics, and monitoring. MEDLINE, Embase, and Cochrane search engines were used. A fluid challenge was defined as an infusion of a definite quantity of fluid (expressed as a volume in mL or ml/kg) in a fixed time (expressed in minutes), whose outcome was defined as a change in predefined haemodynamic variables above a predetermined threshold.
Results
We included 124 studies, 32 (25.8%) published in 2000–2010 and 92 (74.2%) in 2011–2021, overall enrolling 6,086 patients, who presented sepsis/septic shock in 50.6% of cases. The fluid challenge usually consisted of 500 mL (76.6%) of crystalloids (56.6%) infused with a rate of 25 mL/min. Fluid responsiveness was usually defined by a cardiac output/index (CO/CI) increase ≥ 15% (70.9%). The infusion time was quicker (15 min vs 30 min), and crystalloids were more frequent in the 2011–2021 compared to the 2000–2010 period.
Conclusions
In the literature, fluid challenges are usually performed by infusing 500 mL of crystalloids bolus in less than 20 min. A positive fluid challenge response, reported in 52% of ICU patients, is generally defined by a CO/CI increase ≥ 15%. Compared to the 2000–2010 decade, in 2011–2021 the infusion time of the fluid challenge was shorter, and crystalloids were more frequently used.
Collapse
|
4
|
Whittle RS, Stapleton LM, Petersen LG, Diaz-Artiles A. Indirect measurement of absolute cardiac output during exercise in simulated altered gravity is highly dependent on the method. J Clin Monit Comput 2021; 36:1355-1366. [PMID: 34677821 DOI: 10.1007/s10877-021-00769-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Altered gravity environments introduce cardiovascular changes that may require continuous hemodynamic monitoring in both spaceflight and terrestrial analogs. Conditions in such environments are often prohibitive to direct/invasive methods and therefore, indirect measurement techniques must be used. This study compares two common cardiac measurement techniques used in the human spaceflight domain, pulse contour analysis (PCA-Nexfin) and inert gas rebreathing (IGR-Innocor), in subjects completing ergometer exercise under altered gravity conditions simulated using a tilt paradigm. METHODS Seven subjects were tilted to three different angles representing Martian, Lunar, and microgravity conditions in the rostrocaudal direction. They completed a 36-min submaximal cardiovascular exercise protocol in each condition. Hemodynamics were continuously monitored using Nexfin and Innocor. RESULTS Linear mixed-effects models revealed a significant bias of [Formula: see text] ml ([Formula: see text]) in stroke volume and [Formula: see text] l/min ([Formula: see text]) in cardiac output, with Nexfin measuring greater than Innocor in both variables. These values are in agreement with a Bland-Altman analysis. The correlation of stroke volume and cardiac output measurements between Nexfin and Innocor were [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) respectively. CONCLUSION There is a poor agreement in absolute stroke volume and cardiac output values between measurement via PCA (Nexfin) and IGR (Innocor) in subjects who are exercising in simulated altered gravity environments. These results suggest that the chosen measurement method and device greatly impacts absolute measurements of cardiac output. However, there is a good level of agreement between the two devices when measuring relative changes. Either of these devices seem adequate to capture cardiac changes, but should not be solely relied upon for accurate measurement of absolute cardiac output.
Collapse
Affiliation(s)
- Richard S Whittle
- Department of Aerospace Engineering, Texas A&M University, 3141 TAMU, College Station, TX, 77843, USA
| | - Lindsay M Stapleton
- Department of Aerospace Engineering, Texas A&M University, 3141 TAMU, College Station, TX, 77843, USA
| | - Lonnie G Petersen
- Department of Radiology, University of California San Diego, 8929 University Center Lane, La Jolla, CA, 92122, USA
| | - Ana Diaz-Artiles
- Department of Aerospace Engineering, Texas A&M University, 3141 TAMU, College Station, TX, 77843, USA. .,Department of Health and Kinesiology, Texas A&M University, 4243 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Lee SW, Lee S, Kim H, Kim YJ, Kim M, Choi JH. Accuracy of noninvasive continuous arterial pressure monitoring using ClearSight during one-lung ventilation. Medicine (Baltimore) 2021; 100:e25152. [PMID: 33726000 PMCID: PMC7982160 DOI: 10.1097/md.0000000000025152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/23/2021] [Indexed: 01/05/2023] Open
Abstract
Noninvasive continuous arterial pressure monitoring may be clinically useful in patients who require continuous blood pressure monitoring in situations where arterial catheter placement is limited. Many previous studies on the accuracy of the noninvasive continuous blood pressure monitoring method reported various results. However, there is no research on the effectiveness of noninvasive arterial pressure monitoring during one-lung ventilation. The purpose of this study was to compare arterial blood pressure obtained through invasive method and noninvasive method by using ClearSight during one-lung ventilation.In this retrospective observational study, a total of 26 patients undergoing one-lung ventilation for thoracic surgery at a single institution between March and July 2019 were recruited. All patients in this study were cannulated on their radial artery to measure continuously invasive blood pressures and applied ClearSight on the ipsilateral side of the cannulated arm. We compared and analyzed the agreement and trendability of blood pressure recorded with invasive and noninvasive methods during one-lung ventilation.Blood pressure and pulse rate showed a narrower limit of agreement with a percentage error value of around 30%. In addition, the tracking ability of each measurement could be determined by the concordance rate, all of which were below acceptable limits (92%).In noninvasive arterial blood pressure monitoring using ClearSight, mean blood pressure and pulse rate show acceptable agreement with the invasive method.
Collapse
Affiliation(s)
- Sang-Wook Lee
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, Seoul
| | - Sangho Lee
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, Seoul
| | - Hyungtae Kim
- Department of Medicine, Graduate School, Kyung Hee University
| | - Yun-Jong Kim
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Hospital
| | - Mihyeon Kim
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Hospital
| | - Jeong-Hyun Choi
- Department of Anesthesiology and Pain Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
6
|
Chen YYK, Desai SP, Fox JA. Literature and new innovations leading to the rise and fall of the Swan-Ganz catheter. J Anesth Hist 2020; 6:21-25. [PMID: 33674026 DOI: 10.1016/j.janh.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/24/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND In 1970, Harold James Charles Swan and William Ganz published their work on the pulmonary artery catheter (PAC or Swan-Ganz catheter). They described the successful bedside use of a flow-directed catheter to continuously evaluate the heart, and it was used extensively in the years following to care for critically ill patients. In recent decades, clinicians have reevaluated the risks and benefits of the PAC. AIM We acknowledge the contributions of Swan and Ganz and discuss literature, including randomized controlled trials, and new technology surrounding the rise and fall in use of the PAC. METHODS We performed a literature search of retrospective and prospective studies, including randomized controlled trials, and editorials to understand the history and clinical outcomes of the PAC. RESULTS In the 1980s, clinicians began to question the benefits of the PAC. In 1996 and 2003, a large observational study and randomized controlled trial, respectively, showed no clear benefits in outcome. Thereafter, use of PACs began to drop precipitously. New less and noninvasive technology can estimate cardiac output and blood pressure continuously. CONCLUSIONS Swan and Ganz contributed to the bedside understanding of the pathophysiology of the heart. The history of the rise and fall in use of the PAC parallels the literature and invention of less-invasive technology. Although the PAC has not been shown to improve clinical outcomes in large randomized controlled trials, it may still be useful in select patients. New less-invasive and noninvasive technology may ultimately replace it if literature supports it.
Collapse
Affiliation(s)
- Yun-Yun K Chen
- Department of Anaesthesia - Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| | - Sukumar P Desai
- Department of Anaesthesia - Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA; Department of Anaesthesia - Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - John A Fox
- Department of Anaesthesia - Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Kanazawa H, Maeda T, Miyazaki E, Hotta N, Ito S, Ohnishi Y. Accuracy and Trending Ability of Blood Pressure and Cardiac Index Measured by ClearSight System in Patients With Reduced Ejection Fraction. J Cardiothorac Vasc Anesth 2020; 34:3293-3299. [DOI: 10.1053/j.jvca.2020.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
|
8
|
Klose P, Lorenzen U, Berndt R, Borzikowsky C, Hill M, Gruenewald M, Elke G, Renner J. Continuous noninvasive monitoring of arterial pressure using the vascular unloading technique in comparison to the invasive gold standard in elderly comorbid patients: A prospective observational study. Health Sci Rep 2020; 3:e204. [PMID: 33204849 PMCID: PMC7654630 DOI: 10.1002/hsr2.204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND AIMS Elderly patients aged ≥65 years represent a growing population in the perioperative field, particularly orthopedic and vascular surgery. The higher degree of age-related or comorbid-dependent vascular alterations renders these patients at risk for hemodynamic complications and likely denote a possible limitation for modern, non-invasive arterial pressure monitoring devices. The aim was to compare vascular unloading technique-derived to invasive measurements of systolic (SAP), diastolic (DAP), and mean arterial pressure (MAP) in elderly perioperative patients. METHODS This prospective observational study included patients aged ≥65 years scheduled for orthopedic and patients ≥50 years with peripheral artery disease Fontaine stage ≥ II scheduled for vascular surgery, respectively. Invasive radial artery and non-invasive finger-cuff (Nexfin system) arterial pressures were recorded before and after induction of general anesthesia and during surgery. Correlation, Bland-Altman, and concordance analyses were performed. Measurements of arterial pressure were also compared during intraoperative hypotension (MAP <70 mm Hg) and hypertension (MAP >105 mm Hg). RESULTS Sixty patients with orthopedic (N = 25, mean (SD) age 77 (5) years) and vascular surgery (N = 35, age 69 [10] years) were enrolled. Seven hundred data pairs of all patients were analysed and pooled bias and percentage error were: SAP: 14.43 mm Hg, 43.79%; DAP: -2.40 mm Hg, 53.78% and MAP: 1.73 mm Hg, 45.05%. Concordance rates were 84.01% for SAP, 77.87% for DAP, and 86.47% for MAP. Predefined criteria for interchangeability of absolute and trending values could neither be reached in the overall nor in the subgroup analyses orthopedic vs vascular surgery. During hypertension, percentage error was found to be lowest for all pressure values, still not reaching predefined criteria. CONCLUSION Arterial pressure monitoring with the vascular unloading technique did not reach criteria of interchangeability for absolute and trending values. Nevertheless, the putatively beneficial use of noninvasive arterial pressure measurements should be further evaluated in the elderly perioperative patient.
Collapse
Affiliation(s)
- Phil Klose
- Department of Anaesthesiology and Intensive Care MedicineUniversity Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Ulf Lorenzen
- Department of Anaesthesiology and Intensive Care MedicineUniversity Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Rouven Berndt
- Department of Cardiovascular SurgeryUniversity Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Christoph Borzikowsky
- Institute of Medical Informatics and StatisticsChristian‐Albrechts‐University Kiel, University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Moritz Hill
- Department of Anaesthesiology and Intensive Care MedicineUniversity Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Matthias Gruenewald
- Department of Anaesthesiology and Intensive Care MedicineUniversity Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Gunnar Elke
- Department of Anaesthesiology and Intensive Care MedicineUniversity Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Jochen Renner
- Department of AnesthesiologyHelios Kliniken SchwerinSchwerinGermany
| |
Collapse
|
9
|
Mukai A, Suehiro K, Kimura A, Tanaka K, Yamada T, Mori T, Nishikawa K. Effect of Systemic Vascular Resistance on the Reliability of Noninvasive Hemodynamic Monitoring in Cardiac Surgery. J Cardiothorac Vasc Anesth 2020; 35:1782-1791. [PMID: 33279380 DOI: 10.1053/j.jvca.2020.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To assess the effect of systemic vascular resistance (SVR) on the reliability of the ClearSight system (Edwards Lifesciences, Irvine, CA) for measuring blood pressure (BP) and cardiac output (CO). DESIGN Observational study. SETTING University hospital. PARTICIPANTS Twenty-five patients undergoing cardiac surgery. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS BP, measured using ClearSight and an arterial line, and CO, measured using ClearSight and a pulmonary artery catheter, were recorded before (T1) and two minutes after phenylephrine or ephedrine administration. Bland-Altman analysis was used to compare BP and CO measurements at T1. A polar plot was used to assess trending abilities. Patients were divided into the following three groups according to the SVR index (SVRI) at T1: low (<1,200 dyne s/cm5/m2), normal (1,200-25,00 dyne s/cm5/m2), and high (>2,500 dyne s/cm5/m2). The bias in BP and CO was -4.8 ± 8.9 mmHg and 0.10 ± 0.81 L/min, respectively, which was correlated significantly with SVRI (p < 0.05). The percentage error in CO was 40.6%, which was lower in the normal SVRI group (33.3%) than the low and high groups (46.3% and 47.7%, respectively). The angular concordance rate was 96.3% and 95.4% for BP and 87.0% and 92.5% for CO after phenylephrine and ephedrine administration, respectively. There was a low tracking ability for CO changes after phenylephrine administration in the low-SVRI group (angular concordance rate 33.3%). CONCLUSION The ClearSight system showed an acceptable accuracy in measuring BP and tracking BP changes in various SVR states; however, the accuracy of CO measurement and its trending ability in various SVR states was poor.
Collapse
Affiliation(s)
- Akira Mukai
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Koichi Suehiro
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan.
| | - Aya Kimura
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Katsuaki Tanaka
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Tokuhiro Yamada
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Takashi Mori
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Kiyonobu Nishikawa
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka City, Osaka, Japan
| |
Collapse
|
10
|
Continuous noninvasive pulse wave analysis using finger cuff technologies for arterial blood pressure and cardiac output monitoring in perioperative and intensive care medicine: a systematic review and meta-analysis. Br J Anaesth 2020; 125:25-37. [DOI: 10.1016/j.bja.2020.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/02/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
|
11
|
Fischer MO, Joosten A, Desebbe O, Boutros M, Debroczi S, Broch O, Malbrain ML, Ameloot K, Hofer CK, Bubenek-Turconi ŞI, Monnet X, Diouf M, Lorne E. Interchangeability of cardiac output measurements between non-invasive photoplethysmography and bolus thermodilution: A systematic review and individual patient data meta-analysis. Anaesth Crit Care Pain Med 2020; 39:75-85. [DOI: 10.1016/j.accpm.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/29/2019] [Accepted: 05/27/2019] [Indexed: 01/30/2023]
|
12
|
Ait-Hamou Z, Teboul JL, Anguel N, Monnet X. How to detect a positive response to a fluid bolus when cardiac output is not measured? Ann Intensive Care 2019; 9:138. [PMID: 31845003 PMCID: PMC6915177 DOI: 10.1186/s13613-019-0612-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
Background Volume expansion is aimed at increasing cardiac output (CO), but this variable is not always directly measured. We assessed the ability of changes in arterial pressure, pulse pressure variation (PPV) and heart rate (HR) or of a combination of them to detect a positive response of cardiac output (CO) to fluid administration. Methods We retrospectively included 491 patients with circulatory failure. Before and after a 500-mL normal saline infusion, we measured CO (PiCCO device), HR, systolic (SAP), diastolic (DAP), mean (MAP) and pulse (PP) arterial pressure, PPV, shock index (HR/SAP) and the PP/HR ratio. Results The fluid-induced changes in HR were not correlated with the fluid-induced changes in CO. The area under the receiver operating characteristic curve (AUROC) for changes in HR as detectors of a positive fluid response (CO increase ≥ 15%) was not different from 0.5. The fluid-induced changes in SAP, MAP, PP, PPV, shock index (HR/SAP) and the PP/HR ratio were correlated with the fluid-induced changes in CO, but with r < 0.4. The best detection was provided by increases in PP, but it was rough (AUROC = 0.719 ± 0.023, best threshold: increase ≥ 10%, sensitivity = 72 [66–77]%, specificity = 64 [57–70]%). Neither the decrease in shock index nor the changes in other indices combining changes in HR, shock index, PPV and PP provided a better detection of a positive fluid response than changes in PP. Conclusion A positive response to fluid was roughly detected by changes in PP and not detected by changes in HR. Changes in combined indices including the shock index and the PP/HR ratio did not provide a better diagnostic accuracy.
Collapse
Affiliation(s)
- Zakaria Ait-Hamou
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France. .,AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, 78, rue du Général Leclerc, 94 270, Le Kremlin-Bicêtre, France. .,Inserm UMR_S 999, Univ Paris-Saclay, Faculté de médecine, Le Kremlin-Bicêtre, France.
| | - Jean-Louis Teboul
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, 78, rue du Général Leclerc, 94 270, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Univ Paris-Saclay, Faculté de médecine, Le Kremlin-Bicêtre, France
| | - Nadia Anguel
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, 78, rue du Général Leclerc, 94 270, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Univ Paris-Saclay, Faculté de médecine, Le Kremlin-Bicêtre, France
| | - Xavier Monnet
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, 78, rue du Général Leclerc, 94 270, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Univ Paris-Saclay, Faculté de médecine, Le Kremlin-Bicêtre, France
| |
Collapse
|
13
|
Hansen RK, Nielsen PS, Schelske MW, Secher NH, Volianitis S. CO 2 supplementation dissociates cerebral oxygenation and middle cerebral artery blood velocity during maximal cycling. Scand J Med Sci Sports 2019; 30:399-407. [PMID: 31650627 DOI: 10.1111/sms.13582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
This study evaluated whether the reduction of prefrontal cortex oxygenation (ScO2 ) during maximal exercise depends on the hyperventilation-induced hypocapnic attenuation of middle cerebral artery blood velocity (MCA Vmean ). Twelve endurance-trained males (age: 25 ± 3 years, height: 183 ± 8 cm, weight: 75 ± 9 kg; mean ± SD) performed in three separate laboratory visits, a maximal oxygen uptake (VO2 max) test, an isocapnic (end-tidal CO2 tension (PetCO2 ) clamped at 40 ± 1 mmHg), and an ambient air controlled-pace constant load high-intensity ergometer cycling to exhaustion, while MCA Vmean (transcranial Doppler ultrasound) and ScO2 (near-infrared spectroscopy) were determined. Duration of exercise (12 min 25 s ± 1 min 18 s) was matched by performing the isocapnic trial first. Pulmonary VO2 was 90 ± 6% versus 93 ± 5% of the maximal value (P = .012) and PetCO2 40 ± 1 versus 34 ± 4 mmHg (P < .05) during the isocapnic and control trials, respectively. During the isocapnic trial MCA Vmean increased by 16 ± 13% until clamping was applied and continued to increase (by 14 ± 28%; P = .017) until the end of exercise, while there was no significant change during the control trial (P = .071). In contrast, ScO2 decreased similarly in both trials (-3.2 ± 5.1% and -4.1 ± 9.6%; P < .001, isocapnic and control, respectively) at exhaustion. The reduction in prefrontal cortex oxygenation during maximal exercise does not depend solely on lowered cerebral blood flow as indicated by middle cerebral blood velocity.
Collapse
Affiliation(s)
- Rasmus K Hansen
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Peter S Nielsen
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Markus W Schelske
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Niels H Secher
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stefanos Volianitis
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Pestel G, Fukui K, Higashi M, Schmidtmann I, Werner C. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults]. Anaesthesist 2019; 67:409-425. [PMID: 29789877 DOI: 10.1007/s00101-018-0452-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as studies evaluating alternatives to the finger for capturing the raw signals for hemodynamic assessment, and, finally, studies evaluating technologies based on a flow time measurement are current topics of clinical research.
Collapse
Affiliation(s)
- G Pestel
- Klinik für Anästhesiologie, Universitätsmedizin Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland.
| | - K Fukui
- Klinik für Anästhesiologie, Universitätsmedizin Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland
| | - M Higashi
- Klinik für Anästhesiologie, Universitätsmedizin Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland
| | - I Schmidtmann
- Institut für Medizinische Biometrie, Epidemiologie und Informatik (IMBEI), Universitätsmedizin Mainz, Mainz, Deutschland
| | - C Werner
- Klinik für Anästhesiologie, Universitätsmedizin Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland
| |
Collapse
|
15
|
Best practice & research clinical anaesthesiology: Advances in haemodynamic monitoring for the perioperative patient: Perioperative cardiac output monitoring. Best Pract Res Clin Anaesthesiol 2019; 33:139-153. [PMID: 31582094 DOI: 10.1016/j.bpa.2019.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022]
Abstract
Less invasive or even completely non-invasive haemodynamic monitoring technologies have evolved during the last decades. Even established, invasive devices such as the pulmonary artery catheter and transpulmonary thermodilution have still an evidence-based place in the perioperative setting, albeit only in special patient populations. Accumulating evidence suggests to use continuous haemodynamic monitoring, especially flow-based variables such as stroke volume or cardiac output to prevent occult hypoperfusion and, consequently, decrease morbidity and mortality perioperatively. However, there is still a substantial gap between evidence provided by randomised trials and the implementation of haemodynamic monitoring in daily clinical routine. Given the fact that perioperative morbidity and mortality are higher than anticipated and anaesthesiologists are in charge to deal with this problem, the recent advances in minimally invasive and non-invasive monitoring technologies may facilitate more widespread use in the operating theatre, as in addition to costs, the degree of invasiveness of any monitoring tool determines the frequency of its application, at least perioperatively. This review covers the currently available invasive, non-invasive and minimally invasive techniques and devices and addresses their indications and limitations.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Hemodynamic investigations are required in patients with shock to identify the type of shock, to select the most appropriate treatments and to assess the patient's response to the selected therapy. We discuss how to select the most appropriate hemodynamic monitoring techniques in patients with shock as well as the future of hemodynamic monitoring. RECENT FINDINGS Over the last decades, the hemodynamic monitoring techniques have evolved from intermittent toward continuous and real-time measurements and from invasive toward less-invasive approaches. In patients with shock, current guidelines recommend the echocardiography as the preferred modality for the initial hemodynamic evaluation. In patients with shock nonresponsive to initial therapy and/or in the most complex patients, it is recommended to monitor the cardiac output and to use advanced hemodynamic monitoring techniques. They also provide other useful variables that are useful for managing the most complex cases. Uncalibrated and noninvasive cardiac output monitors are not reliable enough in the intensive care setting. SUMMARY The use of echocardiography should be initially encouraged in patients with shock to identify the type of shock and to select the most appropriate therapy. The use of more invasive hemodynamic monitoring techniques should be discussed on an individualized basis.
Collapse
|
17
|
Noninvasive continuous arterial pressure monitoring with Clearsight during awake carotid endarterectomy: A prospective observational study. Eur J Anaesthesiol 2019; 36:144-152. [PMID: 30562226 DOI: 10.1097/eja.0000000000000938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Continuous noninvasive blood pressure (CNBP) measurement using the volume-clamp method is a less invasive alternative compared with invasive intra-arterial monitoring for awake patients during carotid endarterectomy (CEA) under regional anaesthesia. OBJECTIVE We investigated the agreement of blood pressure (BP) recorded with invasive and CNBP methods during awake CEA. DESIGN A prospective observational study for assessing agreement with Bland-Altman plots, agreement-tolerability indices (ATI), concordance and interchangeability. SETTING Azienda Ospedaliera Universitaria G. Martino, Messina, a University tertiary referral centre in Italy. PATIENTS In 30 consecutive patients, we recorded continuously ipsilateral invasive and noninvasive BPs, from 3 min before carotid cross-clamping to 5 min after unclamping. MAIN OUTCOME MEASURES Primary outcome was bias, 95% limits of agreement, ATI, concordance and interchangeability for mean arterial pressure (MAP). Secondary outcomes were agreements for systolic arterial pressure and diastolic arterial pressure. Tracking of changes was assessed with four-quadrant polar plots and the trend interchangeability method. Optimal bias was defined as 5 mmHg or less. RESULTS A total of 2672 invasive and CNBP paired measurements (93% of overall data) were analysed, with a median of 92 readings per patient [IQR 76 to 100]. Mean (SD) bias for MAP, systolic arterial pressure and DAP were -6.8 (6.7), -3.0 (9.7) and -9.0 (5.4) mmHg, respectively. The ATIs were 0.88, 0.95 and 0.71, respectively, where ATI of 1.0 or less and at least 2.0 defined acceptable, marginal and unacceptable agreements. The four-quadrant plot analysis for beat-to-beat differences showed concordance rates of 97.3%, 99.98% and 96.4%, respectively. Polar plot analysis showed 95% limits of agreement of -3 to 3, -2 to 2 and -2 to 2 mmHg respectively. Trend interchangeability method showed an interchangeability rate of 95% for MAP. CONCLUSION During CEA performed under regional anaesthesia, CNBP offers a less invasive approach for BP monitoring. We found acceptable agreement for MAP defined by an ATI of 0.88 and an excellent 95% global interchangeability rate. A suboptimal bias of 7 mmHg was found with CNBP for MAP.
Collapse
|
18
|
Sumiyoshi M, Maeda T, Miyazaki E, Hotta N, Sato H, Hamaguchi E, Kanazawa H, Ohnishi Y, Kamei M. Accuracy of the ClearSight™ system in patients undergoing abdominal aortic aneurysm surgery. J Anesth 2019; 33:364-371. [DOI: 10.1007/s00540-019-02632-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/16/2019] [Indexed: 11/28/2022]
|
19
|
Jackevičiūtė J, Kraujalytė G, Jaremko I, Stremaitytė V, Gudaitytė J. Comparison of two continuous non-invasive haemodynamic monitoring techniques in the perioperative setting. Acta Med Litu 2019; 26:31-37. [PMID: 31281214 PMCID: PMC6586383 DOI: 10.6001/actamedica.v26i1.3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The aim of the study was to identify the accuracy of and agreement between two non-invasive haemodynamic monitoring techniques in the perioperative setting - thoracic electrical bioimpedance (TEB) and Edwards Lifesciences ClearSight system (CS). MATERIALS AND METHODS The study included ten patients. Parametric quantitative data were expressed as mean ± SD. The Shapiro-Wilk test was used to test the normality of the distributions. A linear regression model was used to measure the strength of the linear relationship between TEB and CS. Bland-Altman analysis was performed to assess the mean difference, precision, and the limits of agreements (LOA). The Critchley and Critchley method was used to calculate the percentage error (PE), and if <30%, it was considered clinically acceptable. RESULTS Ten patients were involved in our study. The mean cardiac output (CO) with TEB was 6.15 ± 1.14 L/min vs. 4.78 ± 1.40 L/min with CS (p < 0.01). The relationship was significant (n = 144; r 2 = 0.7; p < 0.01). The mean bias, LOA, and PE were 1.37 ± 1.01 L/min, 3.35 L/min and -0.61 L/min and 36.22%, respectively. The mean stroke volume index (SVI) with TEB was 48.64 ± 9.8 ml/beat/m2 vs. 37.12 ± 9.14 ml/beat/m2 with CS (p < 0.01). The relationship was significant (n = 144; r 2 = 0.65; p < 0.01). The mean bias, LOA, and PE were 11.52 ± 7.92 ml/beat/m2, 27.04 ml/beat/m2 and -4 ml/beat/m2 and 36.19%. CONCLUSIONS The two methods of non-invasive haemodynamic monitoring are not compatible in the perioperative setting. However, the CS system has more advantages in terms of continuity and simplicity of monitoring, while measurements of TEB are interrupted by electrocautery.
Collapse
Affiliation(s)
- Jonė Jackevičiūtė
- Department of Anaesthesiology, Medical Academy, Lithuanian University of Health Sciences, Lithuania
| | - Greta Kraujalytė
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Inna Jaremko
- Department of Anaesthesiology, Medical Academy, Lithuanian University of Health Sciences, Lithuania
| | - Vilija Stremaitytė
- Department of Anaesthesiology, Medical Academy, Lithuanian University of Health Sciences, Lithuania
| | - Jūratė Gudaitytė
- Department of Anaesthesiology, Medical Academy, Lithuanian University of Health Sciences, Lithuania
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
20
|
Eyeington CT, Lloyd-Donald P, Chan MJ, Eastwood GM, Young H, Peck L, Jones DA, Bellomo R. Rapid response team review of hemodynamically unstable ward patients: The accuracy of cardiac index assessment. J Crit Care 2018; 49:187-192. [PMID: 30482613 DOI: 10.1016/j.jcrc.2018.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 11/18/2022]
Abstract
PURPOSE Intensive care doctors commonly attend rapid response team (RRT) reviews of hospital-ward patients with hemodynamic instability and estimate the patient's likely cardiac index (CI). We aimed to non-invasively measure the CI of such patients and assess the level of agreement between such measurements and clinically estimated CI categories (low <2L/min/m2, normal 2-2.99L/min/m2 or high ≥3L/min/m2). MATERIALS AND METHODS A prospective, observational study of non-invasive measurement and clinical estimation of CI categories in 50 adult hospital-ward patients who activated the RRT for 'hemodynamic instability' (tachycardia > 100BPM or hypotension < 90mmHg or both). RESULTS The CI was measured in 47/50(94%) patients and the mean CI was 3.5(95% CI 3.2-3.7) L/min/m2. Overall, 30(64%) patients had a high CI, 13(28%) and 4(9%) had a normal and a low CI, respectively. The level of agreement between measured and clinically estimated CI categories was low(19.2%). Sensitivity and positive predictive values of clinical estimation were low(0% and 3.3% for high CI, and 0% and 50% for low CI, respectively). CONCLUSIONS Non-invasive CI measurement was possible in almost all hospital-ward patients triggering RRT review for hemodynamic instability. In such patients, the CI was high, and intensive care clinicians were unable to identify a low or a high CI state.
Collapse
Affiliation(s)
| | | | - Matthew J Chan
- Department of Intensive Care, Austin Hospital, Melbourne, Victoria, Australia
| | - Glenn M Eastwood
- Department of Intensive Care, Austin Hospital, Melbourne, Victoria, Australia; ANZIC Research Centre, School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Helen Young
- Department of Intensive Care, Austin Hospital, Melbourne, Victoria, Australia.
| | - Leah Peck
- Department of Intensive Care, Austin Hospital, Melbourne, Victoria, Australia.
| | - Daryl A Jones
- Department of Intensive Care, Austin Hospital, Melbourne, Victoria, Australia; ANZIC Research Centre, School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, Victoria, Australia; Intensive Care Research, Austin Hospital, Melbourne, Victoria, Australia; Co-director ANZICS Research Centre, Monash University, Melbourne, Australia; Intensive Care, The University of Melbourne, Melbourne, Australia; Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
21
|
Truijen J, Westerhof BE, Kim YS, Stok WJ, de Mol BA, Preckel B, Hollmann MW, van Lieshout JJ. The effect of haemodynamic and peripheral vascular variability on cardiac output monitoring: thermodilution and non-invasive pulse contour cardiac output during cardiothoracic surgery. Anaesthesia 2018; 73:1489-1499. [DOI: 10.1111/anae.14380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 11/29/2022]
Affiliation(s)
- J. Truijen
- Laboratory for Clinical Cardiovascular Physiology; Department of Medical Biology, section Systems Physiology; Academic Medical Center; University of Amsterdam; The Netherlands
| | - B. E. Westerhof
- Department of Pulmonary Diseases; VU University Medical Center; Amsterdam The Netherlands
| | - Y.-S. Kim
- Department of Nephrology; VU University Medical Center; Amsterdam The Netherlands
| | - W. J. Stok
- Laboratory for Clinical Cardiovascular Physiology; Department of Medical Biology, section Systems Physiology; Academic Medical Center; University of Amsterdam; The Netherlands
| | - B. A. de Mol
- Department of Cardiothoracic Surgery; Academic Medical Center; University of Amsterdam; The Netherlands
| | - B. Preckel
- Department of Anaesthesiology; Academic Medical Center; University of Amsterdam; The Netherlands
| | - M. W. Hollmann
- Department of Anaesthesiology; Academic Medical Center; University of Amsterdam; The Netherlands
| | - J. J. van Lieshout
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research; School of Life Sciences; University of Nottingham Medical School; Queen's Medical Centre; Nottingham UK
- Department of Internal Medicine; Academic Medical Center; University of Amsterdam; The Netherlands
| |
Collapse
|
22
|
|
23
|
Ganter MT, Geisen M, Hartnack S, Dzemali O, Hofer CK. Prediction of fluid responsiveness in mechanically ventilated cardiac surgical patients: the performance of seven different functional hemodynamic parameters. BMC Anesthesiol 2018; 18:55. [PMID: 29788919 PMCID: PMC5964892 DOI: 10.1186/s12871-018-0520-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Functional hemodynamic parameters such as stroke volume and pulse pressure variation (SVV and PPV) have been shown to be reliable predictors of fluid responsiveness in mechanically ventilated patients. Today, different minimally- and non-invasive hemodynamic monitoring systems measure functional hemodynamic parameters. Although some of these parameters are described by the same name, they differ in their measurement technique and thus may provide different results. We aimed to test the performance of seven functional hemodynamic parameters simultaneously in the same clinical setting. Methods Hemodynamic measurements were done in 30 cardiac surgery patients that were mechanically ventilated. Before and after a standardized intravenous fluid bolus, hemodynamics were measured by the following monitoring systems: PiCCOplus (SVVPiCCO, PPVPiCCO), LiDCOrapid (SVVLiDCO, PPVLiDCO), FloTrac (SVVFloTrac), Philips Intellivue (PPVPhilips) and Masimo pulse oximeter (pleth variability index, PVI). Prediction of fluid responsiveness was tested by calculation of receiver operating characteristic (ROC) curves including a gray zone approach and compared using Fisher’s Z-Test. Results Fluid administration resulted in an increase in cardiac output, while all functional hemodynamic parameters decreased. A wide range of areas under the ROC-curve (AUC’s) was observed: AUC-SVVPiCCO = 0.91, AUC-PPVPiCCO = 0.88, AUC-SVVLiDCO = 0.78, AUC-PPVLiDCO = 0.89, AUC-SVVFloTrac = 0.87, AUC-PPVPhilips = 0.92 and AUC-PVI = 0.68. Optimal threshold values for prediction of fluid responsiveness ranged between 9.5 and 17.5%. Lowest threshold values were observed for SVVLiDCO, highest for PVI. Conclusion All functional hemodynamic parameters tested except for PVI showed that their use allows a reliable identification of potential fluid responders. PVI however, may not be suitable after cardiac surgery to predict fluid responsiveness. Trial registration NCT02571465, registered on October 7th, 2015 (retrospectively registered).
Collapse
Affiliation(s)
- Michael T Ganter
- Institute of Anesthesiology, Kantonsspital Winterthur, Brauerstr. 15, 8401, Winterthur, Switzerland
| | - Martin Geisen
- Institute of Anesthesiology and Intensive Care Medicine, Triemli City Hospital Zurich, Birmensdorferstr. 497, 8063, Zurich, Switzerland
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 270, 8057, Zurich, Switzerland
| | - Omer Dzemali
- Division of Cardiac Surgery, Triemli City Hospital Zurich, Birmensdorferstr. 497, 8063, Zurich, Switzerland
| | - Christoph K Hofer
- Institute of Anesthesiology and Intensive Care Medicine, Triemli City Hospital Zurich, Birmensdorferstr. 497, 8063, Zurich, Switzerland.
| |
Collapse
|
24
|
Harjola VP, Parissis J, Brunner-La Rocca HP, Čelutkienė J, Chioncel O, Collins SP, De Backer D, Filippatos GS, Gayat E, Hill L, Lainscak M, Lassus J, Masip J, Mebazaa A, Miró Ò, Mortara A, Mueller C, Mullens W, Nieminen MS, Rudiger A, Ruschitzka F, Seferovic PM, Sionis A, Vieillard-Baron A, Weinstein JM, de Boer RA, Crespo-Leiro MG, Piepoli M, Riley JP. Comprehensive in-hospital monitoring in acute heart failure: applications for clinical practice and future directions for research. A statement from the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 2018; 20:1081-1099. [PMID: 29710416 DOI: 10.1002/ejhf.1204] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
This paper provides a practical clinical application of guideline recommendations relating to the inpatient monitoring of patients with acute heart failure, through the evaluation of various clinical, biomarker, imaging, invasive and non-invasive approaches. Comprehensive inpatient monitoring is crucial to the optimal management of acute heart failure patients. The European Society of Cardiology heart failure guidelines provide recommendations for the inpatient monitoring of acute heart failure, but the level of evidence underpinning most recommendations is limited. Many tools are available for the in-hospital monitoring of patients with acute heart failure, and each plays a role at various points throughout the patient's treatment course, including the emergency department, intensive care or coronary care unit, and the general ward. Clinical judgment is the preeminent factor guiding application of inpatient monitoring tools, as the various techniques have different patient population targets. When applied appropriately, these techniques enable decision making. However, there is limited evidence demonstrating that implementation of these tools improves patient outcome. Research priorities are identified to address these gaps in evidence. Future research initiatives should aim to identify the optimal in-hospital monitoring strategies that decrease morbidity and prolong survival in patients with acute heart failure.
Collapse
Affiliation(s)
- Veli-Pekka Harjola
- Emergency Medicine, University of Helsinki, Department of Emergency Medicine and Services, Helsinki University Hospital, Helsinki, Finland
| | | | | | - Jelena Čelutkienė
- Vilnius University, Faculty of Medicine, Institute of Clinical Medicine, Clinic of Cardiac and Vascular Diseases, Vilnius, Lithuania
| | - Ovidiu Chioncel
- University of Medicine Carol Davila/Institute of Emergency for Cardiovascular Disease, Bucharest, Romania
| | - Sean P Collins
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel De Backer
- Department of Intensive Care Medicine, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Etienne Gayat
- Département d'Anesthésie- Réanimation-SMUR, Hôpitaux Universitaires Saint Louis-Lariboisière, INSERM-UMR 942, AP-, HP, Université Paris Diderot, Paris, France
| | | | - Mitja Lainscak
- Department of Internal Medicine and Department of Research and Education, General Hospital Murska Sobota, Murska Sobota, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Johan Lassus
- Cardiology, Heart and Lung Center, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Josep Masip
- Consorci Sanitari Integral, University of Barcelona, Barcelona, Spain.,Hospital Sanitas CIMA, Barcelona, Spain
| | - Alexandre Mebazaa
- U942 INSERM, AP-HP, Paris, France.,Investigation Network Initiative Cardiovascular and Renal Clinical Trialists (INI-CRCT), Nancy, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP-HP, Department of Anesthesia and Critical Care, Hôpitaux Universitaires Saint Louis-Lariboisière, Paris, France
| | - Òscar Miró
- Emergency Department, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Andrea Mortara
- Department of Cardiology, Policlinico di Monza, Monza, Italy
| | - Christian Mueller
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, Basel, Switzerland
| | - Wilfried Mullens
- Department of Cardiology, Ziekenhuis Oost Limburg, Genk - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Alain Rudiger
- Cardio-surgical Intensive Care Unit, University and University Hospital Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Petar M Seferovic
- Department of Internal Medicine, Belgrade University School of Medicine and Heart Failure Center, Belgrade University Medical Center, Belgrade, Serbia
| | - Alessandro Sionis
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoine Vieillard-Baron
- INSERM U-1018, CESP, Team 5 (EpReC, Renal and Cardiovascular Epidemiology), UVSQ, 94807 Villejuif, France, University Hospital Ambroise Paré, AP-, HP, Boulogne-Billancourt, France
| | | | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maria G Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), CIBERCV, UDC, La Coruña, Spain
| | - Massimo Piepoli
- Heart Failure Unit, Cardiology, G. da Saliceto Hospital, Piacenza, Italy
| | | |
Collapse
|
25
|
Noninvasive BP Monitoring in the Critically Ill: Time to Abandon the Arterial Catheter? Chest 2017; 153:1023-1039. [PMID: 29108815 DOI: 10.1016/j.chest.2017.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/11/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Although its reliability is often questioned, noninvasive BP (NIBP)-monitoring with an oscillometric arm cuff is widely used, even in critically ill patients in shock. When correctly implemented, modern arm NIBP devices can provide accurate and precise measurements of mean BP, as well as clinically meaningful information such as identification of hypotension and hypertension and monitoring of patient response to therapy. Even in specific circumstances such as arrhythmia, hypotension, vasopressor infusion, and possibly in obese patients, arm NIBP may be useful, contrary to widespread belief. Hence, postponing the arterial catheter insertion pending the initiation of more urgent diagnostic and therapeutic measures could be a suitable strategy. Given the arterial catheter-related burden, fully managing critically ill patients without any arterial catheter may also be an option. Indeed, the benefit that patients may experience from an arterial catheter has been questioned in studies failing to show that its use reduces mortality. However, randomized controlled trials to confirm that NIBP can safely fully replace the arterial catheter have yet to be performed. In addition to intermittent measurements, continuous NIBP monitoring is a booming field, as illustrated by the release onto the market of user-friendly devices, based on digital volume clamp and applanation tonometry. Although the imperfect accuracy and precision of these devices would probably benefit from technical refinements, their good ability to track, in real time, the direction of changes in BP is an undeniable asset. Their drawbacks and advantages and whether these devices are currently ready to use in the critically ill patient are discussed in this review.
Collapse
|
26
|
|
27
|
Geisen M, Ganter MT, Hartnack S, Dzemali O, Hofer CK, Zollinger A. Accuracy, Precision, and Trending of 4 Pulse Wave Analysis Techniques in the Postoperative Period. J Cardiothorac Vasc Anesth 2017; 32:715-722. [PMID: 29217236 DOI: 10.1053/j.jvca.2017.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to analyze the accuracy, precision, and trending ability of the following 4 pulse wave analysis devices to measure continuous cardiac output: PiCCO2 ([PCCO]; Pulsion Medical System, Munich, Germany); LiDCORapid ([LCCO]; LiDCO Ltd, London, UK); FloTrac/Vigileo ([FCCO]; Edwards Lifesciences, Irvine, CA); and Nexfin ([NCCO]; BMEYE, Amsterdam, The Netherlands). DESIGN Prospective, observational clinical study. SETTING Intensive care unit of a single-center, teaching hospital. PARTICIPANTS The study comprised 22 adult patients after elective coronary artery bypass surgery. INTERVENTIONS Three measurement cycles were performed in all patient durings their immediate postoperative intensive care stay before and after fluid loading. Hemodynamic measurements were performed 5 minutes before and immediately after the administration of 500 mL colloidal fluid over 20 minutes. MEASUREMENTS AND MAIN RESULTS PCCO, LCCO, FCCO, and NCCO were assessed and compared with cardiac output derived from intermittent transpulmonary thermodilution (ICO). One hundred thirty-two matched sets of data were available for analysis. Bland-Altman analysis using linear mixed effects models with random effects for patient and trial revealed a mean bias ±2 standard deviation (%error) of -0.86 ± 1.41 L/min (34.9%) for PCCO-ICO, -0.26 ± 2.81 L/min (46.3%) for LCCO-ICO, -0.28 ± 2.39 L/min (43.7%) for FCCO-ICO, and -0.93 ± 2.25 L/min (34.6%) for NCCO-ICO. Bland-Altman plots without adjustment for repeated measurements and replicates yielded considerably larger limits of agreement. Trend analysis for all techniques did not meet criteria for acceptable performance. CONCLUSIONS All 4 tested devices using pulse wave analysis for measuring cardiac output failed to meet current criteria for meaningful and adequate accuracy, precision, and trending ability in cardiac output monitoring.
Collapse
Affiliation(s)
- Martin Geisen
- Institute of Anaesthesiology and Intensive Care Medicine, Triemli Hospital Zurich, Zurich, Switzerland
| | - Michael T Ganter
- Institute of Anaesthesiology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Omer Dzemali
- Division of Cardiac Surgery, Triemli City Hospital Zurich, Zurich, Switzerland
| | - Christoph K Hofer
- Institute of Anaesthesiology and Intensive Care Medicine, Triemli Hospital Zurich, Zurich, Switzerland.
| | - Andreas Zollinger
- Institute of Anaesthesiology and Intensive Care Medicine, Triemli Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Toscani L, Aya HD, Antonakaki D, Bastoni D, Watson X, Arulkumaran N, Rhodes A, Cecconi M. What is the impact of the fluid challenge technique on diagnosis of fluid responsiveness? A systematic review and meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:207. [PMID: 28774325 PMCID: PMC5543539 DOI: 10.1186/s13054-017-1796-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
Background The fluid challenge is considered the gold standard for diagnosis of fluid responsiveness. The objective of this study was to describe the fluid challenge techniques reported in fluid responsiveness studies and to assess the difference in the proportion of ‘responders,’ (PR) depending on the type of fluid, volume, duration of infusion and timing of assessment. Methods Searches of MEDLINE and Embase were performed for studies using the fluid challenge as a test of cardiac preload with a description of the technique, a reported definition of fluid responsiveness and PR. The primary outcome was the mean PR, depending on volume of fluid, type of fluids, rate of infusion and time of assessment. Results A total of 85 studies (3601 patients) were included in the analysis. The PR were 54.4% (95% CI 46.9–62.7) where <500 ml was administered, 57.2% (95% CI 52.9–61.0) where 500 ml was administered and 60.5% (95% CI 35.9–79.2) where >500 ml was administered (p = 0.71). The PR was not affected by type of fluid. The PR was similar among patients administered a fluid challenge for <15 minutes (59.2%, 95% CI 54.2–64.1) and for 15–30 minutes (57.7%, 95% CI 52.4–62.4, p = 1). Where the infusion time was ≥30 minutes, there was a lower PR of 49.9% (95% CI 45.6–54, p = 0.04). Response was assessed at the end of fluid challenge, between 1 and 10 minutes, and >10 minutes after the fluid challenge. The proportions of responders were 53.9%, 57.7% and 52.3%, respectively (p = 0.47). Conclusions The PR decreases with a long infusion time. A standard technique for fluid challenge is desirable. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1796-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Toscani
- General Intensive Care Unit, Adult Intensive Care Directorate, St George's University Hospitals, NHS Foundation Trust and St George's University of London, St James Wing, First Floor, Blackshaw Road, London, SW17 0QT, UK.,Cristo Re Hospital, Via delle Calasanziane 25, 00167, Rome, Italy
| | - Hollmann D Aya
- General Intensive Care Unit, Adult Intensive Care Directorate, St George's University Hospitals, NHS Foundation Trust and St George's University of London, St James Wing, First Floor, Blackshaw Road, London, SW17 0QT, UK. .,Anaesthetic Department, East Surrey Hospital, Surrey & Sussex Healthcare Trust, Canada Avenue, Redhill, Surrey, RH1 5 RH, UK.
| | - Dimitra Antonakaki
- General Intensive Care Unit, Adult Intensive Care Directorate, St George's University Hospitals, NHS Foundation Trust and St George's University of London, St James Wing, First Floor, Blackshaw Road, London, SW17 0QT, UK.,Cardiology Department, Broomfield Hospital, Mid-Essex Healthcare Trust, Court Road, Broomfield, Chelmsford, CM1 7ET, UK
| | - Davide Bastoni
- General Intensive Care Unit, Adult Intensive Care Directorate, St George's University Hospitals, NHS Foundation Trust and St George's University of London, St James Wing, First Floor, Blackshaw Road, London, SW17 0QT, UK.,Dipartimento di Medicina Sperimentale, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Ximena Watson
- General Intensive Care Unit, Adult Intensive Care Directorate, St George's University Hospitals, NHS Foundation Trust and St George's University of London, St James Wing, First Floor, Blackshaw Road, London, SW17 0QT, UK
| | - Nish Arulkumaran
- General Intensive Care Unit, Adult Intensive Care Directorate, St George's University Hospitals, NHS Foundation Trust and St George's University of London, St James Wing, First Floor, Blackshaw Road, London, SW17 0QT, UK
| | - Andrew Rhodes
- General Intensive Care Unit, Adult Intensive Care Directorate, St George's University Hospitals, NHS Foundation Trust and St George's University of London, St James Wing, First Floor, Blackshaw Road, London, SW17 0QT, UK
| | - Maurizio Cecconi
- General Intensive Care Unit, Adult Intensive Care Directorate, St George's University Hospitals, NHS Foundation Trust and St George's University of London, St James Wing, First Floor, Blackshaw Road, London, SW17 0QT, UK
| |
Collapse
|
29
|
Raggi EP, Sakai T. Update on Finger-Application-Type Noninvasive Continuous Hemodynamic Monitors (CNAP and ccNexfin): Physical Principles, Validation, and Clinical Use. Semin Cardiothorac Vasc Anesth 2017; 21:321-329. [DOI: 10.1177/1089253217708620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CNAP HD Monitor (CNSystems, Graz, Austria) and the ccNexfin (The ClearSight System: Edwards Lifesciences Corporation, Irvine, CA) are continuous, noninvasive blood pressure monitors using a finger-application device. These devices show a promising ability to allow for rapid detection of hemodynamic derangement when compared with oscillometry. The accuracy and precision of these devices as blood pressure monitors has been evaluated when compared with intra-arterial catheters. Additionally, they can be used to measure beat-to-beat cardiac output (CO). As CO monitors, they are capable of trending changes in CO when compared with a transpulmonary thermodilution monitor. Difficulty with use in critically ill and awake patients has been encountered because of altered microvascular physiology and patient movement. The principles of operation and clinical validation of these devices are presented. The clinicians who are interested in using these devices in their clinical setting should be aware of the relatively large bias and CIs in the hemodynamic measurements.
Collapse
Affiliation(s)
- Eugene P. Raggi
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tetsuro Sakai
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Hemodynamic exploration is mandatory in patients with shock to identify the type of shock, to select the best therapeutic strategy, and to assess the efficacy of the selected therapy. In this review, we summarize the characteristics of the main available hemodynamic monitoring systems and emphasize on how to select the most appropriate ones in patients with circulatory shock. RECENT FINDINGS Over the past decade, hemodynamic monitoring techniques have progressively evolved from intermittent toward real-time measurements and from invasive toward less invasive approaches. Nowadays, echocardiography is recommended as the first-line modality of hemodynamic evaluation in patients with shock. Current guidelines recommend reserving advanced hemodynamic monitoring systems for patients not responding to the initial therapy and/or for complex conditions such as combination of shock with acute respiratory distress syndrome. Invasive and noninvasive uncalibrated cardiac output monitors, as well as esophageal Doppler, could find their place in the perioperative context rather than in patients with shock. SUMMARY The use of echocardiography should be encouraged at the initial period of shock to identify main involved mechanisms and to select the appropriate therapy. The use of more invasive monitoring systems should be discussed on an individualized basis.
Collapse
|
31
|
de Wilde RBP, de Wit F, Geerts BF, van Vliet AL, Aarts LPHJ, Vuyk J, Jansen JRC. Non-invasive continuous arterial pressure and pulse pressure variation measured with Nexfin®in patients following major upper abdominal surgery: a comparative study. Anaesthesia 2016; 71:788-97. [DOI: 10.1111/anae.13503] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 11/28/2022]
Affiliation(s)
- R. B. P. de Wilde
- Department of Intensive Care; Leiden University Medical Centre; Leiden the Netherlands
| | - F. de Wit
- Department of Anaesthesiology; Leiden University Medical Centre; Leiden the Netherlands
| | - B. F. Geerts
- Department of Anaesthesiology; Leiden University Medical Centre; Leiden the Netherlands
| | - A. L. van Vliet
- Department of Anaesthesiology; Leiden University Medical Centre; Leiden the Netherlands
| | - L. P. H. J. Aarts
- Department of Anaesthesiology; Leiden University Medical Centre; Leiden the Netherlands
| | - J. Vuyk
- Department of Anaesthesiology; Leiden University Medical Centre; Leiden the Netherlands
| | - J. R. C. Jansen
- Department of Intensive Care; Leiden University Medical Centre; Leiden the Netherlands
| |
Collapse
|
32
|
Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, Perel A, Pinsky MR, Reuter DA, Rhodes A, Squara P, Vincent JL, Scheeren TW. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med 2016; 42:1350-9. [DOI: 10.1007/s00134-016-4375-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/28/2016] [Indexed: 11/28/2022]
|
33
|
Renner J, Grünewald M, Bein B. Monitoring high-risk patients: minimally invasive and non-invasive possibilities. Best Pract Res Clin Anaesthesiol 2016; 30:201-16. [PMID: 27396807 DOI: 10.1016/j.bpa.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 12/19/2022]
Abstract
Over the past decades, there has been considerable progress in the field of less invasive haemodynamic monitoring technologies. Substantial evidence has accumulated, which supports the continuous measurement and optimization of flow-based variables such as stroke volume, that is, cardiac output, in order to prevent occult hypoperfusion and consequently to improve patients' outcome in the perioperative setting. However, there is a striking gap between the developments in haemodynamic monitoring and the increasing evidence to implement defined treatment protocols based on the measured variables, and daily clinical routine. Recent trials have shown that perioperative morbidity and mortality is higher than anticipated. This emphasizes the need for the anaesthesia community to address this issue and promotes the implementation of proven concepts into clinical practice in order to improve patients' outcome, especially in high-risk patients. The advances in minimally invasive and non-invasive monitoring techniques can be seen as a driving force in this respect, as the degree of invasiveness of any monitoring tool determines the frequency of its application, especially in the operating room (OR). From this point of view, we are very confident that some of these minimally invasive and non-invasive haemodynamic monitoring technologies will become an inherent part of our monitoring armamentarium in the OR and in the intensive care unit (ICU).
Collapse
Affiliation(s)
- Jochen Renner
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| | - Matthias Grünewald
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| | - Berthold Bein
- Department of Anaesthesiology and Intensive Care Medicine, Asklepios Klinik St. Georg, Hamburg, Germany.
| |
Collapse
|
34
|
Hendy A, Bubenek Ş. Pulse waveform hemodynamic monitoring devices: recent advances and the place in goal-directed therapy in cardiac surgical patients. Rom J Anaesth Intensive Care 2016; 23:55-65. [PMID: 28913477 DOI: 10.21454/rjaic.7518.231.wvf] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Hemodynamic monitoring has evolved and improved greatly during the past decades as the medical approach has shifted from a static to a functional approach. The technological advances have led to innovating calibrated or not, but minimally invasive and noninvasive devices based on arterial pressure waveform (APW) analysis. This systematic clinical review outlines the physiologic rationale behind these recent technologies. We describe the strengths and the limitations of each method in terms of accuracy and precision of measuring the flow parameters (stroke volume, cardiac output) and dynamic parameters which predict the fluid responsiveness. We also analyzed the place of the APW monitoring devices in goal-directed therapy (GDT) protocols in cardiac surgical patients. According to the data from the three GDT-randomized control trials performed in cardiac surgery (using two types of APW techniques PiCCO and FloTrac/Vigileo), these devices did not demonstrate that they played a role in decreasing mortality, but only decreasing the ventilation time and the ICU and hospital length of stay.
Collapse
Affiliation(s)
- Adham Hendy
- Carol Davila University of Medicine and Pharmacy, Bucharest, 1 Department of Cardiovascular Anaesthesia and Intensive Care, C.C. Iliescu Emergency Institute for Cardiovascular Diseases, Bucharest, Romania
| | - Şerban Bubenek
- Carol Davila University of Medicine and Pharmacy, Bucharest, 1 Department of Cardiovascular Anaesthesia and Intensive Care, C.C. Iliescu Emergency Institute for Cardiovascular Diseases, Bucharest, Romania
| |
Collapse
|
35
|
Blanié A, Soued M, Benhamou D, Mazoit JX, Duranteau J. A Comparison of Photoplethysmography Versus Esophageal Doppler for the Assessment of Cardiac Index During Major Noncardiac Surgery. Anesth Analg 2016; 122:430-6. [DOI: 10.1213/ane.0000000000001113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Chiam E, Weinberg L, Bailey M, McNicol L, Bellomo R. The haemodynamic effects of intravenous paracetamol (acetaminophen) in healthy volunteers: a double-blind, randomized, triple crossover trial. Br J Clin Pharmacol 2016; 81:605-12. [PMID: 26606263 DOI: 10.1111/bcp.12841] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/29/2022] Open
Abstract
AIM The haemodynamic effects of intravenous paracetamol have not been systematically investigated. We compared the physiological effects of intravenous mannitol-containing paracetamol, and an equivalent dosage of mannitol, and normal saline 0.9% in healthy volunteers. METHODS We performed a blinded, triple crossover, randomized trial of 24 adult healthy volunteers. Participants received i.v. paracetamol (1 g paracetamol +3.91 g mannitol 100 ml(-1) ), i.v. mannitol (3.91 g mannitol 100 ml(-1) ) and i.v. normal saline (100 ml). Composite primary end points were changes in mean arterial pressure (MAP), systolic blood pressure (SBP) and diastolic blood pressure (DBP) measured pre-infusion, during a 15 min infusion period and over a 45 min observation period. Systemic vascular resistance index (SVRI) and cardiac index were measured at the same time points. RESULTS Infusion of paracetamol induced a transient yet significant decrease in blood pressures from pre-infusion values (MAP -1.85 mmHg, 95% CI -2.6, -1.1, SBP -0.54 mmHg, 95% CI -1.7, 0.6 and DBP -1.92 mmHg, 95% CI -2.6, -1.2, P < 0.0001), associated with a transient reduction in SVRI and an increase in cardiac index. Changes were observed, but to a lesser extent with normal saline (MAP -0.15 mmHg, SBP +1.44 mmHg, DBP --0.73 mmHg, P < 0.0001), but not with mannitol (MAP +1.47 mmHg, SBP +4.03 mmHg, DBP +0.48 mmHg, P < 0.0001). CONCLUSIONS I.v. paracetamol caused a transient decrease in blood pressure immediately after infusion. These effects were not seen with mannitol or normal saline. The physiological mechanism was consistent with vasodilatation. This study provides plausible physiological data in a healthy volunteer setting, supporting transient changes in haemodynamic variables with i.v. paracetamol and justifies controlled studies in the peri-operative and critical care setting.
Collapse
Affiliation(s)
- Elizabeth Chiam
- Department of Surgery, The University of Melbourne, Victoria
| | - Laurence Weinberg
- Department of Surgery and Centre for Anesthesia, Perioperative and Pain Medicine, The University of Melbourne, Victoria
| | - Michael Bailey
- Department of Epidemiology and Preventive Medicine, Monash University, Victoria
| | - Larry McNicol
- Department of Surgery, The University of Melbourne, Victoria.,Department of Anesthesia, Austin Hospital, The University of Melbourne, Victoria
| | - Rinaldo Bellomo
- The University of Melbourne, Victoria.,Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| |
Collapse
|
37
|
Nicia SB, van Veelen TA, Stens J, Koopman MMW, Boer C. Detection of volume loss using the Nexfin device in blood donors. Anaesthesia 2015; 71:163-70. [PMID: 26566706 DOI: 10.1111/anae.13283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 12/13/2022]
Abstract
We investigated which haemodynamic parameters derived from Nexfin non-invasive continuous arterial blood pressure measurements are optimal to detect controlled volume loss in spontaneously breathing subjects. Haemodynamic monitoring was performed in 40 whole-blood donors. Mean arterial pressure, cardiac index, systemic vascular resistance index and pulse pressure variation were recorded during controlled breathing, and a Valsalva manoeuvre was performed before and after blood donation. Blood donation resulted in a reduction in cardiac index (from 3.96 ± 0.84 l.min(-1) .m(2) to 3.30 ± 0.61 l.min(-1) .m(2) ; p < 0.001), an increase in systemic vascular resistance (from 1811 ± 450 dyn.s.cm(-5) .m(2) to 2137 ± 428 dyn.s.cm(-5) .m(2) ; p < 0.001) and an increase in pulse pressure variation (from 13.4 ± 5.1 to 15.3 ± 5.4%; p = 0.02). The area under the receiver operating characteristic curve to detect volume loss was highest for cardiac index (0.94, 95% CI 0.88-0.99) and systemic vascular resistance (0.90, 95% CI 0.82-0.99). Nexfin is a non-invasive haemodynamic monitor that can feasibly detect volaemic changes in spontaneously breathing subjects.
Collapse
Affiliation(s)
- S B Nicia
- VU University Medical Centre, Amsterdam, the Netherlands
| | - T A van Veelen
- VU University Medical Centre, Amsterdam, the Netherlands
| | - J Stens
- VU University Medical Centre, Amsterdam, the Netherlands
| | - M M W Koopman
- Sanquin Blood Supply Foundation, Amsterdam, the Netherlands
| | - C Boer
- Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
38
|
Stens J, Oeben J, Van Dusseldorp AA, Boer C. Non-invasive measurements of pulse pressure variation and stroke volume variation in anesthetized patients using the Nexfin blood pressure monitor. J Clin Monit Comput 2015; 30:587-94. [PMID: 26318314 PMCID: PMC5023739 DOI: 10.1007/s10877-015-9759-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 08/20/2015] [Indexed: 11/25/2022]
Abstract
Nexfin beat-to-beat arterial blood pressure monitoring enables continuous assessment of hemodynamic indices like cardiac index (CI), pulse pressure variation (PPV) and stroke volume variation (SVV) in the perioperative setting. In this study we investigated whether Nexfin adequately reflects alterations in these hemodynamic parameters during a provoked fluid shift in anesthetized and mechanically ventilated patients. The study included 54 patients undergoing non-thoracic surgery with positive pressure mechanical ventilation. The provoked fluid shift comprised 15° Trendelenburg positioning, and fluid responsiveness was defined as a concomitant increase in stroke volume (SV) >10 %. Nexfin blood pressure measurements were performed during supine steady state, Trendelenburg and supine repositioning. Hemodynamic parameters included arterial blood pressure (MAP), CI, PPV and SVV. Trendelenburg positioning did not affect MAP or CI, but induced a decrease in PPV and SVV by 3.3 ± 2.8 and 3.4 ± 2.7 %, respectively. PPV and SVV returned back to baseline values after repositioning of the patient to baseline. Bland–Altman analysis of SVV and PPV showed a bias of −0.3 ± 3.0 % with limits of agreement ranging from −5.6 to 6.2 %. The SVV was more superior in predicting fluid responsiveness (AUC 0.728) than the PVV (AUC 0.636), respectively. The median bias between PPV and SVV was different for patients younger [−1.5 % (−3 to 0)] or older [+2 % (0–4.75)] than 55 years (P < 0.001), while there were no gender differences in the bias between PPV and SVV. The Nexfin monitor adequately reflects alterations in PPV and SVV during a provoked fluid shift, but the level of agreement between PPV and SVV was low. The SVV tended to be superior over PPV or Eadyn in predicting fluid responsiveness in our population.
Collapse
Affiliation(s)
- Jurre Stens
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jeroen Oeben
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ab A Van Dusseldorp
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Christa Boer
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Scully CG, Gomatam S, Forrest S, Strauss DG. Importance of re-calibration time on pulse contour analysis agreement with thermodilution measurements of cardiac output: a retrospective analysis of intensive care unit patients. J Clin Monit Comput 2015; 30:577-86. [PMID: 26285740 DOI: 10.1007/s10877-015-9749-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
We assessed the effect of re-calibration time on cardiac output estimation and trending performance in a retrospective analysis of an intensive care unit patient population using error grid analyses. Paired thermodilution and arterial blood pressure waveform measurements (N = 2141) from 222 patient records were extracted from the Multiparameter Intelligent Monitoring in Intensive Care II database. Pulse contour analysis was performed by implementing a previously reported algorithm at calibration times of 1, 2, 8 and 24 h. Cardiac output estimation agreement was assessed using Bland-Altman and error grid analyses. Trending was assessed by concordance and a 4-Quadrant error grid analysis. Error between pulse contour and thermodilution increased with longer calibration times. Limits of agreement were -1.85 to 1.66 L/min for 1 h maximum calibration time compared to -2.70 to 2.41 L/min for 24 h. Error grid analysis resulted in 74.2 % of points bounded by 20 % error limits of thermodilution measurements for 1 h calibration time compared to 65 % for 24 h. 4-Quadrant error grid analysis showed <75 % of changes in pulse contour estimates to be within ±80 % of the change in the thermodilution measurement at any calibration time. Shorter calibration times improved the agreement of cardiac output pulse contour estimates with thermodilution. Use of minimally invasive pulse contour methods in intensive care monitoring could benefit from prospective studies evaluating calibration protocols. The applied pulse contour analysis method and thermodilution showed poor agreement to monitor changes in cardiac output.
Collapse
Affiliation(s)
- Christopher G Scully
- Office of Science and Engineering Laboratories, Division of Biomedical Physics, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Shanti Gomatam
- Office of Surveillance and Biometrics, Division of Biostatistics, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Shawn Forrest
- Office of Device Evaluation, Division of Cardiovascular Devices, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - David G Strauss
- Office of Science and Engineering Laboratories, Division of Biomedical Physics, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
40
|
Bartels K, Thiele RH. Advances in photoplethysmography: beyond arterial oxygen saturation. Can J Anaesth 2015; 62:1313-28. [PMID: 26286382 DOI: 10.1007/s12630-015-0458-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/03/2015] [Accepted: 08/11/2015] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Photoplethysmography permits continuous measurement of heart rate and peripheral oxygen saturation and has been widely used to inform clinical decisions. Recently, a myriad of noninvasive hemodynamic monitoring devices using this same technology have been increasingly available. This narrative review aims to summarize the principles that form the basis for the function of these devices as well as to comment on trials evaluating their accuracy and clinical application. PRINCIPAL FINDINGS Advanced monitoring devices extend photoplethysmography technology beyond measuring oxygen concentration and heart rate. Quantification of respiratory variation of the photoplethysmographic waveform reflects respiratory variation of the arterial pressure waveform and can be used to gauge volume responsiveness. Both the volume-clamp and physiocal techniques are extensions of conventional photoplethysmography and permit continuous measurement of finger arterial blood pressure. Finger arterial pressure waveforms can subsequently inform estimations of cardiac output. CONCLUSIONS Although respiratory variations of the plethysmographic waveform correlate only modestly with the arterial blood pressure waveform, fluid responsiveness can be relatively consistently assessed using both approaches. Continuous blood pressure measurements obtained using the volume-clamp technique may be as accurate as conventional brachial noninvasive blood pressure measurements. Most importantly, clinical comparative effectiveness studies are still needed in order to determine if these technologies can be translated into improvement of relevant patient outcomes.
Collapse
Affiliation(s)
- Karsten Bartels
- Departments of Anesthesiology and Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Robert H Thiele
- Divisions of Cardiac, Thoracic, and Critical Care Anesthesiology, Departments of Anesthesiology and Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
41
|
Sakka SG. Hemodynamic Monitoring in the Critically Ill Patient - Current Status and Perspective. Front Med (Lausanne) 2015; 2:44. [PMID: 26284244 PMCID: PMC4522558 DOI: 10.3389/fmed.2015.00044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/26/2015] [Indexed: 01/20/2023] Open
Abstract
In the critically ill patient, early and effective hemodynamic management including fluid therapy and administration of vasoactive drugs to maintain vital organ perfusion and oxygen delivery is mandatory. Understanding the different approaches in the management of critically ill patients during the resuscitation and further management is essential to initiate adequate context- and time-specific interventions. Treatment of hemodynamic variables to achieve a balance between organ oxygen delivery and consumption is the cornerstone. In general, cardiac output is considered a major determinant of oxygen supply and thus its monitoring is regarded helpful. However, indicators of oxygen requirements are equally necessary to assess adequacy of oxygen supply. Currently, more and more less or even totally non-invasive monitoring systems have been developed and clinically introduced, but require validation in this particular patient population. Cardiac output monitors and surrogates of organ oxygenation only enable to adequately guide management, as patient's outcome is determined by acquisition and interpretation of accurate data, and finally suitable management decisions. This mini-review presents the currently available techniques in the field of hemodynamic monitoring in critically ill patients and briefly summarizes their advantages and limitations.
Collapse
Affiliation(s)
- Samir G Sakka
- Department of Anesthesiology and Operative Intensive Care Medicine, Medical Center Cologne Merheim, University Witten/Herdecke , Cologne , Germany
| |
Collapse
|
42
|
Wagner JY, Grond J, Fortin J, Negulescu I, Schöfthaler M, Saugel B. Continuous noninvasive cardiac output determination using the CNAP system: evaluation of a cardiac output algorithm for the analysis of volume clamp method-derived pulse contour. J Clin Monit Comput 2015; 30:487-93. [DOI: 10.1007/s10877-015-9744-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
|
43
|
Abstract
Although use of the classic pulmonary artery catheter has declined, several techniques have emerged to estimate cardiac output. Arterial pressure waveform analysis computes cardiac output from the arterial pressure curve. The method of estimating cardiac output for these devices depends on whether they need to be calibrated by an independent measure of cardiac output. Some newer devices have been developed to estimate cardiac output from an arterial curve obtained noninvasively with photoplethysmography, allowing a noninvasive beat-by-beat estimation of cardiac output. This article describes the different devices that perform pressure waveform analysis.
Collapse
Affiliation(s)
- Xavier Monnet
- Medical Intensive Care Unit, Bicêtre Hospital, Paris-Sud University Hospitals, 78, rue du Général Leclerc, F-94270 Le Kremlin-Bicêtre, France; EA4533, Paris-Sud University, 63 rue Gabriel Péri, F-94270 Le Kremlin-Bicêtre, France.
| | - Jean-Louis Teboul
- Medical Intensive Care Unit, Bicêtre Hospital, Paris-Sud University Hospitals, 78, rue du Général Leclerc, F-94270 Le Kremlin-Bicêtre, France; EA4533, Paris-Sud University, 63 rue Gabriel Péri, F-94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
44
|
The accuracy of noninvasive cardiac output and pressure measurements with finger cuff. Curr Opin Crit Care 2015; 21:232-9. [DOI: 10.1097/mcc.0000000000000198] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Hamzaoui O, Monnet X, Teboul JL. Evolving concepts of hemodynamic monitoring for critically ill patients. Indian J Crit Care Med 2015; 19:220-6. [PMID: 25878430 PMCID: PMC4397629 DOI: 10.4103/0972-5229.154556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The last decades have been characterized by a continuous evolution of hemodynamic monitoring techniques from intermittent toward continuous and real-time measurements and from an invasive towards a less invasive approach. The latter approach uses ultrasounds and pulse contour analysis techniques that have been developed over the last 15 years. During the same period, the concept of prediction of fluid responsiveness has also been developed and dynamic indices such as pulse pressure variation, stroke volume variation, and the real-time response of cardiac output to passive leg raising or to end-expiration occlusion, can be easily obtained and displayed with the minimally invasive techniques. In this article, we review the main hemodynamic monitoring devices currently available with their respective advantages and drawbacks. We also present the current viewpoint on how to choose a hemodynamic monitoring device in the most severely ill patients and especially in patients with circulatory shock.
Collapse
Affiliation(s)
- Olfa Hamzaoui
- Intensive Care Unit, Antoine Beclere Hospital, Clamart, France
| | - Xavier Monnet
- Medical Intensive Care Unit, Bicetre Hospital, Le Kremlin-Bicetre, France ; Paris-South University, Inserm U999, Le Kremlin-Bicetre, France
| | - Jean-Louis Teboul
- Medical Intensive Care Unit, Bicetre Hospital, Le Kremlin-Bicetre, France ; Paris-South University, Inserm U999, Le Kremlin-Bicetre, France
| |
Collapse
|
46
|
Saugel B, Cecconi M, Wagner J, Reuter D. Noninvasive continuous cardiac output monitoring in perioperative and intensive care medicine. Br J Anaesth 2015; 114:562-75. [DOI: 10.1093/bja/aeu447] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
47
|
Affiliation(s)
- Maxime Cannesson
- From the Department of Anesthesiology & Perioperative Care, University of California Irvine, Orange, California; and Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | |
Collapse
|
48
|
Laight NS, Levin AI. Transcardiopulmonary Thermodilution-Calibrated Arterial Waveform Analysis: A Primer for Anesthesiologists and Intensivists. J Cardiothorac Vasc Anesth 2015; 29:1051-64. [PMID: 26279223 DOI: 10.1053/j.jvca.2015.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Nicola S Laight
- Department of Anesthesiology and Critical Care, University of Stellenbosch, Tygerberg Hospital, Cape Town, South Africa
| | - Andrew I Levin
- Department of Anesthesiology and Critical Care, University of Stellenbosch, Tygerberg Hospital, Cape Town, South Africa.
| |
Collapse
|
49
|
Respiratory variation and cardiopulmonary interactions. Best Pract Res Clin Anaesthesiol 2014; 28:407-18. [DOI: 10.1016/j.bpa.2014.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022]
|
50
|
Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014; 40:1795-815. [PMID: 25392034 PMCID: PMC4239778 DOI: 10.1007/s00134-014-3525-z] [Citation(s) in RCA: 972] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock. METHODS The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit? (2) Should we monitor preload and fluid responsiveness in shock? (3) How and when should we monitor stroke volume or cardiac output in shock? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock? Four types of statements were used: definition, recommendation, best practice and statement of fact. RESULTS Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring. CONCLUSIONS This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock.
Collapse
Affiliation(s)
- Maurizio Cecconi
- Anaesthesia and Intensive Care, St George's Hospital and Medical School, SW17 0QT, London, UK,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|