1
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
2
|
Davis JA, Grau JW. Protecting the injured central nervous system: Do anesthesia or hypothermia ameliorate secondary injury? Exp Neurol 2023; 363:114349. [PMID: 36775099 DOI: 10.1016/j.expneurol.2023.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Traumatic injury to the central nervous system (CNS) and stroke initiate a cascade of processes that expand the area of tissue loss. The current review considers recent studies demonstrating that the induction of an anesthetic state or cooling the affected tissue (hypothermia) soon after injury can have a therapeutic effect. We first provide an overview of the neurobiological processes that fuel tissue loss after traumatic brain injury (TBI), spinal cord injury (SCI) and stroke. We then examine the rehabilitative effectiveness of therapeutic anesthesia across a variety of drug categories through a systematic review of papers in the PubMed database. We also review the therapeutic benefits hypothermia, another treatment that quells neural activity. We conclude by considering factors related to the safety, efficacy and timing of treatment, as well as the mechanisms of action. Clinical implications are also discussed.
Collapse
Affiliation(s)
- Jacob A Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Xuan W, Lu X, Yang Z, Li J, Jin W, Li Y. Propofol Protects Against Erastin-Induced Ferroptosis in HT-22 Cells. J Mol Neurosci 2022; 72:1797-1808. [PMID: 35727524 DOI: 10.1007/s12031-022-02017-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
Propofol is a short-acting intravenous anesthetic that is widely used in clinical treatment. Previous articles have indicated that propofol is a therapeutic target for anti-apoptosis, anti-inflammation, anti-lipid peroxidation, and anti-reactive oxygen species (ROS). Moreover, cell ferroptosis is strongly correlated with cellular ROS, inflammatory responses, and lipid peroxidation. However, the mechanisms by which propofol attenuates neuronal injury by reducing ferroptosis remain unknown. Hence, we hypothesized that propofol could protect neurons by reducing ferroptosis. To test this hypothesis, HT-22 cells were treated with a specific ferroptosis activator (erastin) in the presence of propofol (50 μM). We found that propofol reduced erastin-induced high Fe2+ concentrations, lipid peroxides, and excess ROS. Western blotting results also suggested that propofol could rescue erastin-induced low expression of GXP4 and system Xc-. Further experiments indicated that propofol attenuated p-ALOX5 expression at Ser663 independent of ERK. In addition, we built two transient transfection cell lines, ALOX5 OE and Ser663Ala-ALOX5 OE, to confirm the target of propofol. We found that the Ser663 point is the critical role of propofol in rescuing erastin-induced cell injury/lipid peroxidation. In conclusion, propofol may help attenuate ferroptosis, which may provide a new therapeutic method to treat neuronal injury or the brain inflammatory response.
Collapse
Affiliation(s)
- Wenting Xuan
- Dept of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.,Dept of Anesthesiology, the First Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xinyi Lu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zeyong Yang
- Dept of Anesthesiology, International Peace Maternity & Child Health Hospital of China, Shanghai, 200030, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Weilin Jin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuanhai Li
- Dept of Anesthesiology, the First Hospital of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Fan Y, Zhu S, Wang J, Zhao Y, Wang X. Propofol protects against oxygen/glucose deprivation‑induced cell injury via gap junction inhibition in astrocytes. Mol Med Rep 2020; 22:2896-2904. [PMID: 32945367 PMCID: PMC7453496 DOI: 10.3892/mmr.2020.11357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022] Open
Abstract
Stroke is one of the leading causes of mortality and disability worldwide with limited clinical therapies available. The present study isolated primary astrocytes from the brains of rats and treated them with oxygen-glucose deprivation and re-oxygenation (OGD/R) to mimic hypoxia/reperfusion (H/R) injury in vitro to investigate stroke. It was revealed that propofol (2,6-diisopropylphenol), an intravenous sedative and anesthetic agent, protected against oxygen/glucose-deprivation (OGD) and induced cell injury. Furthermore, propofol exerted a protective effect by inhibiting gap junction function, which was also revealed to promote cell death in astrocytes. The present study further identified that propofol suppressed gap junction function by downregulating the protein expression levels of connexin43 (Cx43), which is one of the most essential components of gap junctions in astrocytes. In addition, when the expression levels of Cx43 were downregulated using small interfering RNA, OGD/R-induced cell death was decreased. Conversely, cell death was enhanced when Cx43 was overexpressed, which was reversed following propofol treatment. In summary, propofol protects against OGD-induced injury in astrocytes by decreasing the protein expression levels of Cx43 and suppressing gap junction function. The present study improved our understanding of how propofol protects astrocytes from OGD/R-induced injury.
Collapse
Affiliation(s)
- Yanting Fan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Siyu Zhu
- Department of Medical Imaging, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jing Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yuping Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Xudong Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
5
|
Grüßer L, Blaumeiser-Debarry R, Rossaint R, Krings M, Kremer B, Höllig A, Coburn M. A 6-Step Approach to Gain Higher Quality Results From Organotypic Hippocampal Brain Slices in a Traumatic Brain Injury Model. Basic Clin Neurosci 2020; 10:485-498. [PMID: 32284838 PMCID: PMC7149959 DOI: 10.32598/bcn.9.10.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/27/2018] [Accepted: 03/22/2019] [Indexed: 01/20/2023] Open
Abstract
Introduction Organotypic Hippocampal Brain Slices (OHBS) provide an advantageous alternative to in vivo models to scrutinize Traumatic Brain Injury (TBI). We followed a well-established TBI protocol, but noticed that several factors may influence the results in such a setup. Here, we describe a structured approach to generate more comparable results and discuss why specific eligibility criteria should be applied. Methods We defined necessary checkpoints and developed inclusion and exclusion criteria that take the observed variation in such a model into consideration. Objective measures include the identification and exclusion of pre-damaged slices and outliers. Six steps were outlined in this study. Results A six-step approach to enhance comparability is proposed and summarized in a flowchart. We applied the suggested measures to data derived from our TBI-experiments examining the impact of three different interventions in 1459 OHBS. Our exemplary results show that through equal requirements set for all slices more precise findings are ensured. Conclusion Results in a TBI experiment on OHBS should be analyzed critically as inhomogeneities may occur. In order to ensure more precise findings, a structured approach of comparing the results should be followed. Further research is recommended to confirm and further develop this framework.
Collapse
Affiliation(s)
- Linda Grüßer
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Rolf Rossaint
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Matthias Krings
- Department of Anesthesiology and Intensive Care, Medizinisches Zentrum StaedteRegion Aachen, Aachen, Germany
| | - Benedikt Kremer
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
6
|
Lauder GR, Thomas M, von Ungern-Sternberg BS, Engelhardt T. Volatiles or TIVA: Which is the standard of care for pediatric airway procedures? A pro-con discussion. Paediatr Anaesth 2020; 30:209-220. [PMID: 31886922 DOI: 10.1111/pan.13809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022]
Abstract
Anesthesia for pediatric airway procedures constitutes a true art form that requires training and experience. Communication between anesthetist and surgeon to establish procedure goals is essential in determining the most appropriate anesthetic management. But does the mode of anesthesia have an impact? Traditionally, inhalational anesthesia was the most common anesthesia technique used during airway surgery. Introduction of agents used for total intravenous anesthesia (TIVA) such as propofol, short-acting opioids, midazolam, and dexmedetomidine has driven change in practice. Ongoing debates abound as to the advantages and disadvantages of volatile-based anesthesia versus TIVA. This pro-con discussion examines both volatiles and TIVA, from the perspective of effectiveness, safety, cost, and environmental impact, in an endeavor to justify which technique is the best specifically for pediatric airway procedures.
Collapse
Affiliation(s)
- Gillian R Lauder
- Department of Anesthesia, BC Children's Hospital, Vancouver, Canada.,Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, Canada
| | - Mark Thomas
- Department of Anaesthesia, Great Ormond St Hospital, London, UK
| | - Britta S von Ungern-Sternberg
- Department of Anaesthesia and Pain Management, Perth Children's Hospital, Perth, Australia.,Medical School, The University of Western Australia, Perth, Australia.,Telethon Kids Institute, Perth, Australia
| | - Thomas Engelhardt
- Department of Anesthesia, McGill University Health Centre, Montreal Children's Hospital, Montreal, QC, Canada
| |
Collapse
|
7
|
Khallaf M, Thabet AM, Ali M, Sharkawy E, Abdel-rehim S. The effect of dexmedetomidine versus propofol in traumatic brain injury: evaluation of some hemodynamic and intracranial pressure changes. EGYPTIAN JOURNAL OF NEUROSURGERY 2019. [DOI: 10.1186/s41984-019-0041-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro. Cell Death Dis 2018; 9:932. [PMID: 30224699 PMCID: PMC6141459 DOI: 10.1038/s41419-018-0996-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Parthanatos is a new form of programmed cell death. It has been recognized to be critical in cerebral ischemia–reperfusion injury, and reactive oxygen species (ROS) can induce parthanatos. Recent studies found that propofol, a widely used intravenous anesthetic agent, has an inhibitory effect on ROS and has neuroprotective in many neurological diseases. However, the functional roles and mechanisms of propofol in parthanatos remain unclear. Here, we discovered that the ROS–ER–calcium–mitochondria signal pathway mediated parthanatos and the significance of propofol in parthanatos. Next, we found that ROS overproduction would cause endoplasmic reticulum (ER) calcium release, leading to mitochondria depolarization with the loss of mitochondrial membrane potential. Mitochondria depolarization caused mitochondria to release more ROS, which, in turn, contributed to parthanatos. Also, we found that propofol inhibited parthanatos through impeding ROS overproduction, calcium release from ER, and mitochondrial depolarization in parthanatos. Importantly, our results indicated that propofol protected cerebral ischemia–reperfusion via parthanatos suppression, amelioration of mitochondria, and ER swelling. Our findings provide new insights into the mechanisms of how ER and mitochondria contribute to parthanatos. Furthermore, our studies elucidated that propofol has a vital role in parthanatos prevention in vivo and in vitro, and propofol can be a promising therapeutic approach for nerve injury patients.
Collapse
|
9
|
Are We Ready for a Human Head Transplant? The Obstacles That Must Be Overcome. CURRENT TRANSPLANTATION REPORTS 2018. [DOI: 10.1007/s40472-018-0196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Li P, Jiang H, Wu H, Wu D, Li H, Yu J, Lai J. AH6809 decreases production of inflammatory mediators by PGE 2 - EP2 - cAMP signaling pathway in an experimentally induced pure cerebral concussion in rats. Brain Res 2018; 1698:11-28. [PMID: 29792868 DOI: 10.1016/j.brainres.2018.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 12/31/2022]
Abstract
Increasing evidence suggests that PGE2 metabolic pathway is involved in pathological changes of the secondary brain injury after traumatic brain injury. However, the underlying mechanisms, in particular, the correlation between various key enzymes and the brain injury, has remained to be fully explored. More specifically, it remains to be ascertained whether AH6809 (an EP2 receptor antagonist) would interfere with the downstream of the PGE2, regulate the inflammatory mediators and improve neuronal damage in the hippocampus by PGE2 - EP2 - cAMP signaling pathway. The expression and pathological changes of cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), microsomal prostaglandin-E synthase-1 (mPGES-1), E-prostanoid receptor 2 (EP2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inducible nitricoxide synthase (iNOS) in the CA1 area of hippocampus were evaluated by immunohistochemistry, Western blot and RT-PCR after pure cerebral concussion (PCC) induced by a metal pendulum closed brain injury in rats followed by AH6809 treatment. The morphology and number of neurons in CA1 region were analyzed by cresyl violet staining. The concentration of prostaglandin E2 (PGE2) and cyclic adenosine monophosphate (cAMP) was assayed by ELISA. Many neurons in hippocampal CA1 area appeared to undergo necrosis and the number of neurons was concomitantly reduced after PCC injury. With the passage of time, the protein and mRNA expression of various key enzymes including COX-1, COX-2 and mPGES-1, EP2 receptor, and inflammatory mediators including TNF-α, IL-1β and iNOS was increased; meanwhile, the concentration of PGE2 and cAMP was enhanced. After PCC injury given AH6809 intervention, injury of neurons in hippocampal CA1 area was attenuated. The protein and mRNA expression of COX-1, COX-2, mPGES-1, EP2, TNF-α, IL-1β and iNOS was decreased, this was coupled with reduction of PGE2 and cAMP. The results suggest that PGE2 metabolic pathway is involved in secondary pathological changes of PCC. AH6809 improves the recovery of injured neurons in the hippocampal CA1 area and downregulates the inflammatory mediators by PGE2 - EP2 - cAMP signaling pathway.
Collapse
Affiliation(s)
- Ping Li
- College of Forensic Science, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an 710061, Shaanxi, PR China; Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Hongyan Jiang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, PR China
| | - Deye Wu
- Department of Human Anatomy and Histology/Embryology, Qilu Medical University, 246 West Outer Ring Road, Boshan Economic and Technological Development Zone, Zibo 255213, Shandong, PR China
| | - Hengxi Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Jianyun Yu
- College of Forensic Science and Key Laboratory of Brain Injury, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
11
|
Jiang S, Wu Y, Fang DF, Chen Y. Hypothermic preconditioning but not ketamine reduces oxygen and glucose deprivation induced neuronal injury correlated with downregulation of COX-2 expression in mouse hippocampal slices. J Pharmacol Sci 2018; 137:30-37. [PMID: 29681435 DOI: 10.1016/j.jphs.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/03/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Hypothermic preconditioning is an effective treatment for limiting ischemic injury, but the mechanism is poorly understood. This study was aimed to explore the effect of hypothermic and ketamine preconditioning on oxygen and glucose deprivation (OGD) induced neuronal injury in mouse hippocampal slices, and to investigate its possible mechanism. The population spike (PS) was recorded in the CA1 region of mouse hippocampal slices using extracellular recordings, Na+/K+ ATPase activity in slices was determined by spectrophotometer and the expression of Cyclooxygenase-2 (COX-2) was measured by Western blot. Ten min of OGD induced a poor recovery of PS in slices after reoxygenation. Hypothermic (33 °C) preconditioning delayed the appearance of transient recovery (TR) of PS and improved the recovery amplitude of PS after reoxygenation. Hypothermic preconditioning also decreased the expression of COX-2 and increased Na+/K+ ATPase activity in slices. Pretreatment of ketamine, a non-competitive NMDA receptor antagonist at a subanesthetic dose has no effect on OGD induced neuronal injury. Moreover, the protection of hypothermic preconditioning was not added by ketamine. The downregulation of COX-2 expression and the increase of Na+/K+ ATPase activity may be associated with the effectiveness of hypothermic preconditioning in increasing tolerance to an OGD insult.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, China; Department of Anatomy and Physiology, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang, China
| | - Yong Wu
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - De-Fang Fang
- Department of Anatomy and Physiology, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang, China
| | - Ying Chen
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, China.
| |
Collapse
|
12
|
|
13
|
Alnemari AM, Krafcik BM, Mansour TR, Gaudin D. A Comparison of Pharmacologic Therapeutic Agents Used for the Reduction of Intracranial Pressure After Traumatic Brain Injury. World Neurosurg 2017; 106:509-528. [PMID: 28712906 DOI: 10.1016/j.wneu.2017.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In neurotrauma care, a better understanding of treatments after traumatic brain injury (TBI) has led to a significant decrease in morbidity and mortality in this population. TBI represents a significant medical problem, and complications after TBI are associated with the initial injury and postevent intracranial processes such as increased intracranial pressure and brain edema. Consequently, appropriate therapeutic interventions are required to reduce brain tissue damage and improve cerebral perfusion. We present a contemporary review of literature on the use of pharmacologic therapies to reduce intracranial pressure after TBI and a comparison of their efficacy. METHODS This review was conducted by PubMed query. Only studies discussing pharmacologic management of patients after TBI were included. This review includes prospective and retrospective studies and includes randomized controlled trials as well as cohort, case-control, observational, and database studies. Systematic literature reviews, meta-analyses, and studies that considered conditions other than TBI or pediatric populations were not included. RESULTS Review of the literature describing the current pharmacologic treatment for intracranial hypertension after TBI most often discussed the use of hyperosmolar agents such as hypertonic saline and mannitol, sedatives such as fentanyl and propofol, benzodiazepines, and barbiturates. Hypertonic saline is associated with faster resolution of intracranial hypertension and restoration of optimal cerebral hemodynamics, although these advantages did not translate into long-term benefits in morbidity or mortality. In patients refractory to treatment with hyperosmolar therapy, induction of a barbiturate coma can reduce intracranial pressure, although requires close monitoring to prevent adverse events. CONCLUSIONS Current research suggests that the use of hypertonic saline after TBI is the best option for immediate decrease in intracranial pressure. A better understanding of the efficacy of each treatment option can help to direct treatment algorithms during the critical early hours of trauma care and continue to improve morbidity and mortality after TBI.
Collapse
Affiliation(s)
- Ahmed M Alnemari
- Division of Neurological Surgery, Department of Surgery, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Brianna M Krafcik
- Division of Neurological Surgery, Department of Surgery, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Tarek R Mansour
- Division of Neurological Surgery, Department of Surgery, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Daniel Gaudin
- Division of Neurological Surgery, Department of Surgery, University of Toledo Medical Center, Toledo, Ohio, USA.
| |
Collapse
|
14
|
Grüßer L, Blaumeiser-Debarry R, Krings M, Kremer B, Höllig A, Rossaint R, Coburn M. Argon attenuates the emergence of secondary injury after traumatic brain injury within a 2-hour incubation period compared to desflurane: an in vitro study. Med Gas Res 2017; 7:93-100. [PMID: 28744361 PMCID: PMC5510299 DOI: 10.4103/2045-9912.208512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite years of research, treatment of traumatic brain injury (TBI) remains challenging. Considerable data exists that some volatile anesthetics might be neuroprotective. However, several studies have also revealed a rather neurotoxic profile of anesthetics. In this study, we investigated the effects of argon 50%, desflurane 6% and their combination in an in vitro TBI model with incubation times similar to narcotic time slots in a daily clinical routine. Organotypic hippocampal brain slices of 5- to 7-day-old mice were cultivated for 14 days before TBI was performed. Slices were eventually incubated for 2 hours in an atmosphere containing no anesthetic gas, argon 50% or desflurane 6% or both. Trauma intensity was evaluated via fluorescent imagery. Our results show that neither argon 50% nor desflurane 6% nor their combination could significantly reduce the trauma intensity in comparison to the standard atmosphere. However, in comparison to desflurane 6%, argon 50% displayed a rather neuroprotective profile within the first 2 hours after a focal mechanical trauma (P = 0.015). A 2-hour incubation in an atmosphere containing both gases, argon 50% and desflurane 6%, did not result in significant effects in comparison to the argon 50% group or the desflurane 6% group. Our findings demonstrate that within a 2-hour incubation time neither argon nor desflurane could affect propidium iodide-detectable cell death in an in vitro TBI model in comparison to the standard atmosphere, although cell death was less with argon 50% than with desflurane 6%. The results show that within this short time period processes concerning the development of secondary injury are already taking place and may be manipulated by argon.
Collapse
Affiliation(s)
- Linda Grüßer
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Matthias Krings
- Department of Anesthesiology and Intensive Care, Medizinisches Zentrum StaedteRegion Aachen, Wuerselen, Germany
| | - Benedikt Kremer
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
15
|
Nobiletin improves propofol-induced neuroprotection via regulating Akt/mTOR and TLR 4/NF-κB signaling in ischemic brain injury in rats. Biomed Pharmacother 2017; 91:494-503. [PMID: 28478273 DOI: 10.1016/j.biopha.2017.04.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Stroke is regarded as one of the main health concerns globally, presenting with high mortality and morbidity rates. Cerebral ischemic damage and infarction are critically associated with stroke. Various mechanisms related to inflammation, oxidative stress and excitotoxicity are found to be involved in ischemic damage. Very short time period for treatment has necessitated in development of more effective neuroprotective agents. Study aimed in investigated the effects of nobiletin on experimentally induced ischemic brain injury and also to assess whether nobiletin potentiated the neuroprotective effects of propofol. METHODS Male Sprague-Dawley rats were subjected to ischemia/reperfusion (I/R) injury. Induction of cerebral infarction and I/R was done by middle cerebral artery occlusion (MCAO). Nobiletin (100 or 200mg/kg b.wt.) was intragastrically administered to rats for 9 days before ischemia induction and on the day of induction nobiletin was administered an hour prior. Separate group of rats were post-conditioned with propofol (50mg/kg/h; i.v.) for 30min following 24h of reperfusion. RESULTS Propofol post-conditioning either with or without administration of nobiletin prior I/R injury attenuated pulmonary edema, neuronal apoptosis and reduced cerebral infarct volume. Overproduction of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and nitric oxide following I/R were reduced. Propofol either alone or with prior nobiletin treatment had down-regulated TLR4 and TLR4-mediated NF-κB signaling and caused activation of Akt/mTOR cascade. CONCLUSION Propofol post-conditioning either with nobiletin prior I/R injury was found to be more effective than propofol alone, suggesting the positive effects of nobiletin on propofol-mediated anti-inflammatory and neuroprotective effects.
Collapse
|
16
|
Zhou X, Wei Y, Qiu S, Xu Y, Zhang T, Zhang S. Propofol Decreases Endoplasmic Reticulum Stress-Mediated Apoptosis in Retinal Pigment Epithelial Cells. PLoS One 2016; 11:e0157590. [PMID: 27311010 PMCID: PMC4910991 DOI: 10.1371/journal.pone.0157590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
Age-related macular degeneration (AMD) is the major cause of loss of sight globally. There is currently no effective treatment available. Retinal pigment epithelial (RPE) cells are an important part of the outer blood-retina barrier and their death is a determinant of AMD. Propofol, a common clinically used intravenous anesthetic agent, has been shown to act as an efficacious neuroprotective agent with antioxidative and anti-inflammatory properties in vivo and in vitro. However, little is known about its effects on RPE cells. The purpose of our research was to investigate whether propofol could protect RPE cells from apoptosis through endoplasmic reticulum (ER) stress–dependent pathways. To this end, prior to stimulation with thapsigargin (TG), ARPE-19 cells were pretreated with varying concentrations of propofol. A protective effect of propofol in TG-treated ARPE-9 was apparent, TUNEL and flow cytometric assays showed decreased apoptosis. We further demonstrated that propofol pretreatment attenuated or inhibited the effects caused by TG, such as upregulation of Bax, BiP, C/EBP homologous protein (CHOP), active caspase 12, and cleaved caspase 3, and downregulation of Bcl2. It also decreased the TG-induced levels of ER stress–related molecules such as p-PERK, p-eIF2α, and ATF4. Furthermore, it downregulated the expression of nuclear factor κB (NF-κB). This study elucidated novel propofol-induced cellular mechanisms for antiapoptotic activities in RPE cells undergoing ER stress and demonstrated the potential value of using propofol in the treatment of AMD.
Collapse
Affiliation(s)
- Xuezhi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suo Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaochong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
17
|
Posttraumatic Propofol Neurotoxicity Is Mediated via the Pro-Brain-Derived Neurotrophic Factor-p75 Neurotrophin Receptor Pathway in Adult Mice. Crit Care Med 2016; 44:e70-82. [PMID: 26317567 DOI: 10.1097/ccm.0000000000001284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. DESIGN Randomized laboratory animal study. SETTING University research laboratory. SUBJECTS Adult C57BL/6N and nerve growth factor receptor-deficient mice. INTERVENTIONS Sedation by IV propofol bolus application delayed after controlled cortical impact injury. MEASUREMENTS AND MAIN RESULTS Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. CONCLUSIONS This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation with propofol and other compounds with GABA receptor activity are frequently used in patients with acute brain pathologies to facilitate sedation or surgical and interventional procedures.
Collapse
|
18
|
Wang Y, Wu C, Han B, Xu F, Mao M, Guo X, Wang J. Dexmedetomidine attenuates repeated propofol exposure-induced hippocampal apoptosis, PI3K/Akt/Gsk-3β signaling disruption, and juvenile cognitive deficits in neonatal rats. Mol Med Rep 2016; 14:769-75. [PMID: 27222147 PMCID: PMC4918603 DOI: 10.3892/mmr.2016.5321] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 05/03/2016] [Indexed: 11/06/2022] Open
Abstract
Propofol is one of the most widely used intravenous anesthetics. However, repeated exposure to propofol may cause neurodegeneration in the developing brain. Dexmedetomidine (Dex), an α2 adrenoceptor agonist, has been previously demonstrated to provide neuroprotection against neuroapoptosis and neurocognitive impairments induced by several anesthetics. Thus, the current study aimed to investigate the effect of Dex on neonatal propofol-induced neuroapoptosis and juvenile spatial learning/memory deficits. Propofol (30 mg/kg) was intraperiotoneally administered to 7‑day‑old Sprague Dawley rats (n=75) three times each day at 90 min intervals for seven consecutive days with or without Dex (75 µg/kg) treatment 20 min prior to propofol injection. Following repeated propofol exposure, reduced Akt and GSK‑3β phosphorylation, increased cleaved caspase‑3 expression levels, an increased Bax/Bcl‑2 ratio, and increased terminal deoxynucleotidyl transferase‑mediated dUTP nick‑end labeling (TUNEL)‑positive cells in the CA1 hippocampal subregion were observed. Morris Water Maze testing at postnatal day 29 also demonstrated spatial learning and memory deficits following propofol treatment compared with the control group. Notably, these changes were significantly attenuated by Dex pretreatment. The results of the current study demonstrated that Dex ameliorates the neurocognitive impairment induced by repeated neonatal propofol challenge in rats, partially via its anti‑apoptotic action and normalization of the disruption to the PI3K/Akt/GSK‑3β signaling pathway. The present study provides preliminary evidence demonstrating the safety of propofol on the neonatal brain and the potential use of dexmedetomidine pretreatment in pediatric patients.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Changyi Wu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Bin Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Fei Xu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Mingfeng Mao
- Department of Otolaryngology, 316 Hospital of People's Liberation Army, Beijing 100093, P.R. China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jun Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
19
|
Krings M, Höllig A, Liu J, Grüsser L, Rossaint R, Coburn M. Desflurane impairs outcome of organotypic hippocampal slices in an in vitro model of traumatic brain injury. Med Gas Res 2016; 6:3-9. [PMID: 27826417 PMCID: PMC5075680 DOI: 10.4103/2045-9912.179338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Decreased mortality and disability after traumatic brain injury is a significant medical challenge. Desflurane, a widely used volatile anesthetic has proven to be neuroprotective in a variety of in vitro and in vivo models of ischemic brain injury. The aim of this study was to investigate whether desflurane exhibits neuroprotective properties in an in vitro model of traumatic brain injury. Organotypic hippocampal slice cultures were prepared from brains of 5–7-day-old C57/BL6 mouse pups. After 14 days of culture, the slices were subjected to a focal mechanical trauma and thereafter incubated with three different concentrations of desflurane (2, 4 and 6%) for 2, 24 and 72 hours. Cell injury was assessed with propodium iodide uptake. Our results showed that after 2 hours of desflurane exposure, no significant change in trauma intensity was observed. However, 2% and 4% desflurane could reduce the trauma intensity significantly in the no trauma group than in the no desflurane and trauma group. Incubation with 4% desflurane for 24 hours doubled the trauma intensity in comparison to the trauma control group and the trauma intensity further increased after 72 hours of incubation. Furthermore, a dose-dependent increase of trauma intensity after 24 hours exposure was observed. Our results suggest that a general neuroprotective attribute of desflurane in an in vitro model of traumatic brain injury was not observed.
Collapse
Affiliation(s)
- Matthias Krings
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Jingjin Liu
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Linda Grüsser
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
20
|
Delayed application of the anesthetic propofol contrasts the neurotoxic effects of kainate on rat organotypic spinal slice cultures. Neurotoxicology 2016; 54:1-10. [PMID: 26947011 DOI: 10.1016/j.neuro.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 11/24/2022]
Abstract
Excitotoxicity due to hyperactivation of glutamate receptors is thought to underlie acute spinal injury with subsequent strong deficit in spinal network function. Devising an efficacious protocol of neuroprotection to arrest excitotoxicity might, therefore, spare a substantial number of neurons and allow later recovery. In vitro preparations of the spinal cord enable detailed measurement of spinal damage evoked by the potent glutamate analogue kainate. Any clinically-relevant neuroprotective treatment should start after the initial lesion and spare networks for at least 24h when cell damage plateaus. Using this strategy, we have observed that the gas anesthetic methoxyflurane provided strong, delayed neuroprotection. It is unclear if this beneficial effect was due to the mechanism of action by methoxyflurane, or it was the consequence of anesthetic depression. To test this hypothesis, we investigated the effect by propofol (commonly injected i.v. for general anesthesia) after kainate excitotoxicity induced on organotypic spinal slices. At 5μM concentration, propofol significantly attenuated cell death, including neuronal losses and, especially, damage to the highly vulnerable motoneurons. The action by propofol was fully prevented when co-applied with the GABAA antagonist bicuculline, indicating that neuroprotection required intact GABAA receptor function. Although bicuculline per se was not neurotoxic, it largely enhanced the lesional effects of kainate, suggesting that GABAA receptor activity could limit excitotoxicity. Our data might offer an explanation for the beneficial clinical outcome of neurosurgery performed as soon as possible after spinal lesion: we posit that general anesthesia contributes to this outcome, regardless of the type of anesthetic used.
Collapse
|
21
|
Tian Y, Guo S, Guo Y, Jian L. Anesthetic Propofol Attenuates Apoptosis, Aβ Accumulation, and Inflammation Induced by Sevoflurane Through NF-κB Pathway in Human Neuroglioma Cells. Cell Mol Neurobiol 2015; 35:891-8. [PMID: 25809614 DOI: 10.1007/s10571-015-0184-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/17/2015] [Indexed: 01/22/2023]
Abstract
Anesthetics have been reported to promote Alzheimer's disease neuropathogenesis by inducing amyloid beta (Aβ) protein accumulation and apoptosis. The aim of this study was to evaluate the effect of propofol on the apoptosis, Aβ accumulation, and inflammation induced by sevoflurane in human neuroglioma cells. Human neuroglioma cells were treated with or without sevoflurane and then co-incubated with or without propofol. Cell apoptosis was evaluated by fluorescence-activated cell sorting analysis (FACS) using AV-PI kits, and data showed that apoptosis induced by sevoflurane was significantly attenuated by propofol treatment. In addition, with the reactive oxygen species (ROS) production measured by FACS after staining with dichloro-dihydrofluorescein diacetate, propofol could significantly reduce the production of ROS as well as the accumulation of Aβ induced by sevoflurane assessed by enzyme-linked immuno sorbent assay (ELISA) analysis. On the other hand, the same treatment decreased the inflammation factor production of interleukin-6. Moreover, the level of nuclear factor-kappa B (NF-κB) was tested by Western blot and immunofluorescence assay. We found that the activation of NF-κB pathway was suppressed by propofol. The results suggest that propofol can effectively attenuate the apoptosis, Aβ accumulation, and inflammation induced by sevoflurane in human neuroglioma cells through NF-κB signal pathway.
Collapse
Affiliation(s)
- Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | | | | | | |
Collapse
|
22
|
Abstract
More than one-half million patients are hospitalized annually for traumatic brain injury (TBI). One-quarter demonstrate sleep-disordered breathing, up to 50% experience insomnia, and half have hypersomnia. Sleep disturbances after TBI may result from injury to sleep-regulating brain tissue, nonspecific neurohormonal responses to systemic injury, ICU environmental interference, and medication side effects. A diagnosis of sleep disturbances requires a high index of suspicion and appropriate testing. Treatment starts with a focus on making the ICU environment conducive to normal sleep. Treating sleep-disordered breathing likely has outcome benefits in TBI. The use of sleep promoting sedative-hypnotics and anxiolytics should be judicious.
Collapse
|
23
|
Miller AP, Shah AS, Aperi BV, Budde MD, Pintar FA, Tarima S, Kurpad SN, Stemper BD, Glavaski-Joksimovic A. Effects of blast overpressure on neurons and glial cells in rat organotypic hippocampal slice cultures. Front Neurol 2015; 6:20. [PMID: 25729377 PMCID: PMC4325926 DOI: 10.3389/fneur.2015.00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/25/2015] [Indexed: 11/13/2022] Open
Abstract
Due to recent involvement in military conflicts, and an increase in the use of explosives, there has been an escalation in the incidence of blast-induced traumatic brain injury (bTBI) among US military personnel. Having a better understanding of the cellular and molecular cascade of events in bTBI is prerequisite for the development of an effective therapy that currently is unavailable. The present study utilized organotypic hippocampal slice cultures (OHCs) exposed to blast overpressures of 150 kPa (low) and 280 kPa (high) as an in vitro bTBI model. Using this model, we further characterized the cellular effects of the blast injury. Blast-evoked cell death was visualized by a propidium iodide (PI) uptake assay as early as 2 h post-injury. Quantification of PI staining in the cornu Ammonis 1 and 3 (CA1 and CA3) and the dentate gyrus regions of the hippocampus at 2, 24, 48, and 72 h following blast exposure revealed significant time dependent effects. OHCs exposed to 150 kPa demonstrated a slow increase in cell death plateauing between 24 and 48 h, while OHCs from the high-blast group exhibited a rapid increase in cell death already at 2 h, peaking at ~24 h post-injury. Measurements of lactate dehydrogenase release into the culture medium also revealed a significant increase in cell lysis in both low- and high-blast groups compared to sham controls. OHCs were fixed at 72 h post-injury and immunostained for markers against neurons, astrocytes, and microglia. Labeling OHCs with PI, neuronal, and glial markers revealed that the blast-evoked extensive neuronal death and to a lesser extent loss of glial cells. Furthermore, our data demonstrated activation of astrocytes and microglial cells in low- and high-blasted OHCs, which reached a statistically significant difference in the high-blast group. These data confirmed that our in vitro bTBI model is a useful tool for studying cellular and molecular changes after blast exposure.
Collapse
Affiliation(s)
- Anna P Miller
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Alok S Shah
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Brandy V Aperi
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Frank A Pintar
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Sergey Tarima
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Brian D Stemper
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Aleksandra Glavaski-Joksimovic
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| |
Collapse
|
24
|
Shao H, Zhang Y, Dong Y, Yu B, Xia W, Xie Z. Chronic treatment with anesthetic propofol improves cognitive function and attenuates caspase activation in both aged and Alzheimer's disease transgenic mice. J Alzheimers Dis 2015; 41:499-513. [PMID: 24643139 DOI: 10.3233/jad-132792] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is a need to seek new treatment(s) for Alzheimer's disease (AD). A recent study showed that AD patients may have decreased levels of functional GABA receptors. Propofol, a commonly used anesthetic, is a GABA receptor agonist. We therefore set out to perform a proof of concept study to determine whether chronic treatment with propofol (50 mg/kg/week) can improve cognitive function in both aged wild-type (WT) and AD transgenic (Tg) mice. Propofol was administrated to the WT and AD Tg mice once a week for 8 or 12 weeks, respectively. Morris water maze was used to assess the cognitive function of the mice following the propofol treatment. Activation of caspase-3, caspase-9, and caspase-8 was investigated using western blot analysis at the end of the propofol treatment. In the mechanistic studies, effects of propofol, amyloid-β protein (Aβ), and GABA receptor antagonist flumazenil on caspase-3 activation and opening of the mitochondrial permeability transition pore were assessed in H4 human neuroglioma and mouse neuroblastoma cells by western blot analysis and flow cytometry. Here we showed that the propofol treatment improved cognitive function and attenuated brain caspase-3 and caspase-9 activation in both aged WT and AD Tg mice. Propofol attenuated Aβ-induced caspase-3 activation and opening of the mitochondrial permeability transition pore in the cells, and flumazenil inhibited the propofol's effects. These results suggested that propofol might improve cognitive function via attenuating the Aβ-induced mitochondria dysfunction and caspase activation, which explored the potential that anesthetic propofol could improve cognitive function in elderly and AD patients.
Collapse
Affiliation(s)
- Haijun Shao
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Weiming Xia
- Department of Veterans Affairs, Medical Research and Development Service and Geriatric Research, Education and Clinical Center, Bedford, MA, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
25
|
Monticelli P, Seymour CJ. Prolonged seizure‐like phenomena in an English springer spaniel after total intravenous anaesthesia with propofol. VETERINARY RECORD CASE REPORTS 2015. [DOI: 10.1136/vetreccr-2015-000251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Paolo Monticelli
- Cinical Sciences and ServicesRoyal Veterinary CollegeHatfieldHertfordshireUK
| | | |
Collapse
|
26
|
Lauder GR. Total intravenous anesthesia will supercede inhalational anesthesia in pediatric anesthetic practice. Paediatr Anaesth 2015; 25:52-64. [PMID: 25312700 DOI: 10.1111/pan.12553] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2014] [Indexed: 11/29/2022]
Abstract
Inhalational anesthesia has dominated the practice of pediatric anesthesia. However, as the introduction of agents such as propofol, short-acting opioids, midazolam, and dexmedetomidine a monumental change has occurred. With increasing use, the overwhelming advantages of total intravenous anesthesia (TIVA) have emerged and driven change in practice. These advantages, outlined in this review, will justify why TIVA will supercede inhalational anesthesia in future pediatric anesthetic practice.
Collapse
Affiliation(s)
- Gillian R Lauder
- Department of Pediatric Anesthesia, British Columbia's Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
27
|
Colton K, Yang S, Hu PF, Chen HH, Bonds B, Stansbury LG, Scalea TM, Stein DM. Pharmacologic Treatment Reduces Pressure Times Time Dose and Relative Duration of Intracranial Hypertension. J Intensive Care Med 2014; 31:263-9. [PMID: 25320157 DOI: 10.1177/0885066614555692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/18/2014] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Past work has shown the importance of the "pressure times time dose" (PTD) of intracranial hypertension (intracranial pressure [ICP] > 19 mm Hg) in predicting outcome after severe traumatic brain injury. We used automated data collection to measure the effect of common medications on the duration and dose of intracranial hypertension. METHODS Patients >17 years old, admitted and requiring ICP monitoring between 2008 and 2010 at a single, large urban tertiary care facility, were retrospectively enrolled. Timing and dose of ICP-directed therapy were recorded from paper and electronic medical records. The ICP data were collected automatically at 6-second intervals and averaged over 5 minutes. The percentage of time of intracranial hypertension (PTI) and PTD (mm Hg h) were calculated. RESULTS A total of 98 patients with 664 treatment instances were identified. Baseline PTD ranged from 27 (before administration of propofol and fentanyl) to 150 mm Hg h (before mannitol). A "small" dose of hypertonic saline (HTS; ≤250 mL 3%) reduced PTD by 38% in the first hour and 37% in the second hour and reduced the time with ICP >19 by 38% and 39% after 1 and 2 hours, respectively. A "large" dose of HTS reduced PTD by 40% in the first hour and 63% in the second (PTI reduction of 36% and 50%, respectively). An increased dose of propofol or fentanyl infusion failed to decrease PTD but reduced PTI between 14% (propofol alone) and 30% (combined increase in propofol and fentanyl, after 2 hours). Barbiturates failed to decrease PTD but decreased PTI by 30% up to 2 hours after administration. All reductions reported are significantly changed from baseline, P < .05. CONCLUSION Baseline PTD values before drug administration reflects varied patient criticality, with much higher values seen before the use of mannitol or barbiturates. Treatment with HTS reduced PTD and PTI burden significantly more than escalation of sedation or pain management, and this effect remained significant at 2 hours after administration.
Collapse
Affiliation(s)
- Katharine Colton
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA Duke University School of Medicine, Durham, NC, USA
| | - S Yang
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | - P F Hu
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | - H H Chen
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | - B Bonds
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | - L G Stansbury
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | - T M Scalea
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | - D M Stein
- Shock Trauma Anesthesia Research Organized Research Center, University of Maryland School of Medicine and R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| |
Collapse
|
28
|
Petraglia AL, Dashnaw ML, Turner RC, Bailes JE. Models of Mild Traumatic Brain Injury. Neurosurgery 2014; 75 Suppl 4:S34-49. [DOI: 10.1227/neu.0000000000000472] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
29
|
Wang L, Tang W, Jiang T, Lu P, Li Y, Sun A, Shen Y, Chen Y, Wang H, Zong Z, Wang Y, Chen L, Shen Y. Endoplasmic reticulum stress is involved in the neuroprotective effect of propofol. Neurochem Res 2014; 39:1741-52. [PMID: 24962313 DOI: 10.1007/s11064-014-1369-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/15/2023]
Abstract
Propofol is a common clinically used intravenous anaesthetic agent with antioxidative property. It has been thought to have neuroprotection in vitro and in vivo. However, the underlying mechanisms remain unclear. Endoplasmic reticulum (ER) stress plays an important role in regulating the signaling pathways concerning cell death and survival. Therefore, we wondered whether the neuroprotective effects of propofol are associated with its regulation on ER stress. In this study, we found that propofol up-regulated BiP and attenuated tunicamycin-induced neural cell death. Propofol pretreatment also inhibited tunicamycin-induced up-regulation of C/EBP homologous protein (CHOP). We also found that propofol or tunicamycin alone increased the levels of spliced XBP1 (XBP1s) and cleaved activating transcription factor 6 (ATF6), an active form of ATF6. However, pretreatment with propofol attenuated the levels of phosphorylated protein kinase receptor-like ER kinase, phosphorylated elF2α, ATF4, and caspase-3, but failed to affect the increase of cleaved ATF6 and XBP1s, induced by tunicamycin. Knockdown endogenous BiP with siRNA abolished the suppression of propofol on tunicamycin-mediated activation of CHOP and caspase-3. Meanwhile, knockdown BiP attenuated the protective effects of propofol on the neural cells exposed to tunicamycin. These data suggest that ER stress is involved in the neuroprotection of propofol via differentially regulating the unfolded protein response pathway, in which BiP plays an important role in initiating the adaptive ER stress and inhibiting the apoptotic ER stress.
Collapse
Affiliation(s)
- Likui Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Petraglia AL, Plog BA, Dayawansa S, Chen M, Dashnaw ML, Czerniecka K, Walker CT, Viterise T, Hyrien O, Iliff JJ, Deane R, Nedergaard M, Huang JH. The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: a novel mouse model of chronic traumatic encephalopathy. J Neurotrauma 2014; 31:1211-24. [PMID: 24766454 DOI: 10.1089/neu.2013.3255] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There has been an increased focus on the neurological sequelae of repetitive mild traumatic brain injury (TBI), particularly neurodegenerative syndromes, such as chronic traumatic encephalopathy (CTE); however, no animal model exists that captures the behavioral spectrum of this phenomenon. We sought to develop an animal model of CTE. Our novel model is a modification and fusion of two of the most popular models of TBI and allows for controlled closed-head impacts to unanesthetized mice. Two-hundred and eighty 12-week-old mice were divided into control, single mild TBI (mTBI), and repetitive mTBI groups. Repetitive mTBI mice received six concussive impacts daily for 7 days. Behavior was assessed at various time points. Neurological Severity Score (NSS) was computed and vestibulomotor function tested with the wire grip test (WGT). Cognitive function was assessed with the Morris water maze (MWM), anxiety/risk-taking behavior with the elevated plus maze, and depression-like behavior with the forced swim/tail suspension tests. Sleep electroencephalogram/electromyography studies were performed at 1 month. NSS was elevated, compared to controls, in both TBI groups and improved over time. Repetitive mTBI mice demonstrated transient vestibulomotor deficits on WGT. Repetitive mTBI mice also demonstrated deficits in MWM testing. Both mTBI groups demonstrated increased anxiety at 2 weeks, but repetitive mTBI mice developed increased risk-taking behaviors at 1 month that persist at 6 months. Repetitive mTBI mice exhibit depression-like behavior at 1 month. Both groups demonstrate sleep disturbances. We describe the neurological sequelae of repetitive mTBI in a novel mouse model, which resemble several of the neuropsychiatric behaviors observed clinically in patients sustaining repetitive mild head injury.
Collapse
Affiliation(s)
- Anthony L Petraglia
- 1 Department of Neurosurgery, University of Rochester Medical Center , Rochester, New York
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Y, Shao H, Dong Y, Swain CA, Yu B, Xia W, Xie Z. Chronic treatment with anesthetic propofol attenuates β-amyloid protein levels in brain tissues of aged mice. Transl Neurodegener 2014; 3:8. [PMID: 24725331 PMCID: PMC3989795 DOI: 10.1186/2047-9158-3-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/01/2014] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. At the present time, however, AD still lacks effective treatments. Our recent studies showed that chronic treatment with anesthetic propofol attenuated brain caspase-3 activation and improved cognitive function in aged mice. Accumulation of β-amyloid protein (Aβ) is a major component of the neuropathogenesis of AD dementia and cognitive impairment. We therefore set out to determine the effects of chronic treatment with propofol on Aβ levels in brain tissues of aged mice. Propofol (50 mg/kg) was administrated to aged (18 month-old) wild-type mice once a week for 8 weeks. The brain tissues of mice were harvested one day after the final propofol treatment. The harvested brain tissues were then subjected to enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Here we report that the propofol treatment reduced Aβ (Aβ40 and Aβ42) levels in the brain tissues of the aged mice. Moreover, the propofol treatment decreased the levels of β-site amyloid precursor protein cleaving enzyme (the enzyme for Aβ generation), and increased the levels of neprilysin (the enzyme for Aβ degradation) in the brain tissues of the aged mice. These results suggested that the chronic treatment with propofol might reduce brain Aβ levels potentially via decreasing brain levels of β-site amyloid precursor protein cleaving enzyme, thus decreasing Aβ generation; and via increasing brain neprilysin levels, thus increasing Aβ degradation. These preliminary findings from our pilot studies have established a system and postulated a new hypothesis for future research.
Collapse
Affiliation(s)
- Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA 02129-2060, USA
| | - Haijun Shao
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA 02129-2060, USA.,Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, P.R. China
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA 02129-2060, USA
| | - Celeste A Swain
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA 02129-2060, USA
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, P.R. China
| | - Weiming Xia
- Department of Veterans Affairs, Medical Research and Development Service and Geriatric Research, Education and Clinical Center, Bedford, MA 01730, UK
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA 02129-2060, USA
| |
Collapse
|
32
|
Propofol impairs neurogenesis and neurologic recovery and increases mortality rate in adult rats after traumatic brain injury. Crit Care Med 2014; 42:129-41. [PMID: 24126440 DOI: 10.1097/ccm.0b013e3182a639fd] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Limited data are available on the influence of sedation for critical care therapy with the widely used anesthetic propofol on recovery from acute traumatic brain injury. To establish the influence of propofol on endogenous neurogenesis and functional recovery after traumatic brain injury, rats were sedated with propofol either during or 2 hours after experimental traumatic brain injury. DESIGN Randomized controlled animal study. SETTING University research laboratory. SUBJECTS One hundred sixteen male Sprague Dawley rats. INTERVENTIONS Mechanical brain lesion by controlled cortical impact. MEASUREMENTS AND MAIN RESULTS This study investigated the dose-dependent influence of propofol (36 or 72 mg/kg/hr) either during controlled cortical impact induction or in a delayed application protocol 2 hours after experimental traumatic brain injury. Infusion of propofol resulted in 1) aggravation of neurologic dysfunction, 2) increased 28-day mortality rate, and 3) impaired posttraumatic neurogenesis (5-bromo-2-deoxyuridine + NeuN-positive cells). Application of propofol during trauma induction afforded a significant stronger effect in the high-dose group compared with low-dose propofol. In the posttrauma protocol, animals were sedated with sevoflurane during the controlled cortical impact injury, and propofol was given after an awake phase. In these animals, propofol increased mortality rate and impaired neurologic function and neurogenesis compared with animals without delayed propofol anesthesia. CONCLUSIONS The results show that propofol may prevent or limit reparative processes in the early-phase postinjury. The results therefore indicate that anesthetics may be potentially harmful not only in very young mammalians but also in adult animals following acute cerebral injuries. The results provide first evidence for an altered sensitivity for anesthesia-related negative effects on neurogenesis, functional outcome, and survival in adult rats with brain lesions.
Collapse
|
33
|
|
34
|
Neural and immune consequences of traumatic brain injury: does propofol reduce the impact? Anesthesiology 2014; 119:1241-3. [PMID: 24113646 DOI: 10.1097/aln.0000000000000019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Nakajima A, Tsuji M, Inagaki M, Tamura Y, Kato M, Niiya A, Usui Y, Oguchi K. Neuroprotective effects of propofol on ER stress-mediated apoptosis in neuroblastoma SH-SY5Y cells. Eur J Pharmacol 2014; 725:47-54. [DOI: 10.1016/j.ejphar.2014.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 11/27/2022]
|
36
|
Huang Y, Zitta K, Bein B, Scholz J, Steinfath M, Albrecht M. Effect of propofol on hypoxia re-oxygenation induced neuronal cell damage in vitro*. Anaesthesia 2012; 68:31-9. [PMID: 23088185 DOI: 10.1111/j.1365-2044.2012.07336.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Propofol may protect neuronal cells from hypoxia re-oxygenation injury, possibly via an antioxidant actions under hypoxic conditions. This study investigated the molecular effects of propofol on hypoxia-induced cell damage using a neuronal cell line. Cultured human IMR-32 cells were exposed to propofol (30 μm) and biochemical and molecular approaches were used to assess cellular effects. Propofol significantly reduced hypoxia-mediated increases in lactate dehydrogenase, a marker of cell damage (mean (SD) for normoxia: 0.39 (0.07) a.u.; hypoxia: 0.78 (0.21) a.u.; hypoxia+propofol: 0.44 (0.17) a.u.; normoxia vs hypoxia, p<0.05; hypoxia vs hypoxia+propofol, p<0.05), reactive oxygen species and hydrogen peroxide. Propofol also diminished the morphological signs of cell damage. Increased amounts of catalase, which degrades hydrogen peroxide, were detected under hypoxic conditions. Propofol decreased the amount of catalase produced, but increased its enzymatic activity. Propofol protects neuronal cells from hypoxia re-oxygenation injury, possibly via a combined direct antioxidant effect along with induced cellular antioxidant mechanisms.
Collapse
Affiliation(s)
- Y Huang
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Zhang Y, Dong Y, Xu Z, Xie Z. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore. Med Gas Res 2012; 2:20. [PMID: 22901676 PMCID: PMC3489514 DOI: 10.1186/2045-9912-2-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/03/2012] [Indexed: 11/25/2022] Open
Abstract
Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP) and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+), propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP) (H4 APP cells) and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.
Collapse
Affiliation(s)
- Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Room 4310, Charlestown, MA, 02129-2060, USA.
| | | | | | | |
Collapse
|
38
|
Schoeler M, Loetscher PD, Rossaint R, Fahlenkamp AV, Eberhardt G, Rex S, Weis J, Coburn M. Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury. BMC Neurol 2012; 12:20. [PMID: 22494498 PMCID: PMC3350422 DOI: 10.1186/1471-2377-12-20] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 04/11/2012] [Indexed: 11/10/2022] Open
Abstract
Background The α2-adrenoreceptor agonist dexmedetomidine is known to provide neuroprotection under ischemic conditions. In this study we investigated whether dexmedetomidine has a protective effect in an in vitro model for traumatic brain injury. Methods Organotypic hippocampal slice cultures were subjected to a focal mechanical trauma and then exposed to varying concentrations of dexmedetomidine. After 72 h cell injury was assessed using propidium iodide. In addition, the effects of delayed dexmedetomidine application, of hypothermia and canonical signalling pathway inhibitors were examined. Results Dexmedetomidine showed a protective effect on traumatically injured hippocampal cells with a maximum effect at a dosage of 1 μM. This effect was partially reversed by the simultaneous administration of the ERK inhibitor PD98059. Conclusion In this TBI model dexmedetomidine had a significant neuroprotective effect. Our results indicate that activation of ERK might be involved in mediating this effect.
Collapse
Affiliation(s)
- Marc Schoeler
- Department of Anesthesiology, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Y, Zhen Y, Dong Y, Xu Z, Yue Y, Golde TE, Tanzi RE, Moir RD, Xie Z. Anesthetic propofol attenuates the isoflurane-induced caspase-3 activation and Aβ oligomerization. PLoS One 2011; 6:e27019. [PMID: 22069482 PMCID: PMC3206055 DOI: 10.1371/journal.pone.0027019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/07/2011] [Indexed: 11/30/2022] Open
Abstract
Accumulation and deposition of β-amyloid protein (Aβ) are the hallmark features of Alzheimer's disease. The inhalation anesthetic isoflurane has been shown to induce caspase activation and increase Aβ accumulation. In addition, recent studies suggest that isoflurane may directly promote the formation of cytotoxic soluble Aβ oligomers, which are thought to be the key pathological species in AD. In contrast, propofol, the most commonly used intravenous anesthetic, has been reported to have neuroprotective effects. We therefore set out to compare the effects of isoflurane and propofol alone and in combination on caspase-3 activation and Aβ oligomerization in vitro and in vivo. Naïve and stably-transfected H4 human neuroglioma cells that express human amyloid precursor protein, the precursor for Aβ; neonatal mice; and conditioned cell culture media containing secreted human Aβ40 or Aβ42 were treated with isoflurane and/or propofol. Here we show for the first time that propofol can attenuate isoflurane-induced caspase-3 activation in cultured cells and in the brain tissues of neonatal mice. Furthermore, propofol-mediated caspase inhibition occurred when there were elevated levels of Aβ. Finally, isoflurane alone induces Aβ42, but not Aβ40, oligomerization, and propofol can inhibit the isoflurane-mediated oligomerization of Aβ42. These data suggest that propofol may mitigate the caspase-3 activation by attenuating the isoflurane-induced Aβ42 oligomerization. Our findings provide novel insights into the possible mechanisms of isoflurane-induced neurotoxicity that may aid in the development of strategies to minimize potential adverse effects associated with the administration of anesthetics to patients.
Collapse
Affiliation(s)
- Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Yu Zhen
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- Department of Anesthesia, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Zhipeng Xu
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Yun Yue
- Department of Anesthesia, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Todd E. Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Robert D. Moir
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| |
Collapse
|
40
|
Wu GJ, Chen WF, Hung HC, Jean YH, Sung CS, Chakraborty C, Lee HP, Chen NF, Wen ZH. Effects of propofol on proliferation and anti-apoptosis of neuroblastoma SH-SY5Y cell line: new insights into neuroprotection. Brain Res 2011; 1384:42-50. [PMID: 21315692 DOI: 10.1016/j.brainres.2011.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/29/2011] [Accepted: 02/02/2011] [Indexed: 12/22/2022]
Abstract
Recently, it has been suggested that anesthetic agents may have neuroprotective potency. The notion that anesthetic agents can offer neuroprotection remains controversial. Propofol, which is a short-acting intravenous anesthetic agent, may have potential as a neuroprotective agent. In this study, we tried to determine whether propofol affected the viability of human neuroblastoma SH-SY5Y cells by using the MTT assay. Surprisingly, our results showed that propofol at a dose of 1-10 μM could improve cell proliferation. However, at higher doses (200 μM), propofol appears to be cytotoxic. On the other hand, propofol could up-regulate the expression of key proteins involved in neuroprotection including B-cell lymphoma 2 at a dose range of 1-10 μM, activation of phospho-serine/threonine protein kinase at a dose range of 0.5-10 μM, and activation of phospho-extracellular signal-regulated kinases at a dose range of 5-10 μM. Similarly, we demonstrate that propofol (10 μM) could elevate protein levels of heat shock protein 90 and heat shock protein 70. Therefore, we choose to utilize a 10 μM concentration of propofol to assess neuroprotective activities in our studies. In the following experiments, we used dynorphin A to generate cytotoxic effects on SH-SY5Y cells. Our data indicate that propofol (10 μM) could inhibit the cytotoxicity in SH-SY5Y cells induced by dynorphin A. Furthermore, propofol (10 μM) could decrease the expression of the p-P38 protein as well. These data together suggest that propofol may have the potential to act as a neuroprotective agent against various neurologic diseases. However, further delineation of the precise neuroprotective effects of propofol will need to be examined.
Collapse
Affiliation(s)
- Gong-Jhe Wu
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fahlenkamp AV, Coburn M, Czaplik M, Ryang YM, Kipp M, Rossaint R, Beyer C. Expression analysis of the early chemokine response 4 h after in vitro traumatic brain injury. Inflamm Res 2010; 60:379-87. [PMID: 21104293 DOI: 10.1007/s00011-010-0281-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/15/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE AND DESIGN The importance of cytokine- and chemokine-mediated neuroinflammation in the progress of brain injury is becoming increasingly evident. We investigated the early local cytokine and chemokine expression and the development of tissue injury after moderate mechanical hippocampus trauma. MATERIAL OR SUBJECTS Mouse organotypic hippocampal slice cultures. TREATMENT Drop-weight trauma in the CA1 region of the hippocampus. METHODS Staining of necrotic tissue, PCR array and evaluation, real-time PCR, statistical analysis with a two-tailed, independent t test. RESULTS At 12 and 24 h after trauma, the tissue injury spread from the primary mechanical lesion to the entire hippocampal formation. A pronounced up-regulation of distinct chemokine transcripts was found 4 h after in vitro traumatic brain injury which preceded the development of the secondary injury. CONCLUSIONS The enhanced expression of inflammatory genes might contribute to the development of the secondary trauma and could pinpoint future neuroinflammatory and neuroprotective targets for research and treatment.
Collapse
Affiliation(s)
- Astrid V Fahlenkamp
- Department of Anesthesiology, University Hospital Aachen, RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Roehl AB, Hein M, Loetscher PD, Rossaint J, Weis J, Rossaint R, Coburn M. Neuroprotective properties of levosimendan in an in vitro model of traumatic brain injury. BMC Neurol 2010; 10:97. [PMID: 20964834 PMCID: PMC2978146 DOI: 10.1186/1471-2377-10-97] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 10/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We investigated the neuroprotective properties of levosimendan, a novel inodilator, in an in vitro model of traumatic brain injury. METHODS Organotypic hippocampal brain slices from mouse pups were subjected to a focal mechanical trauma. Slices were treated after the injury with three different concentrations of levosimendan (0.001, 0.01 and 0.1 μM) and compared to vehicle-treated slices. After 72 hrs, the trauma was quantified using propidium iodide to mark the injured cells. RESULTS A significant dose-dependent reduction of both total and secondary tissue injury was observed in cells treated with either 0.01 or 0.1 μM levosimendan compared to vehicle-treated slices. CONCLUSION Levosimendan represents a promising new pharmacological tool for neuroprotection after brain injury and warrants further investigation in an in vivo model.
Collapse
Affiliation(s)
- Anna B Roehl
- Department of Anaesthesiology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Loetscher PD, Rossaint J, Rossaint R, Weis J, Fries M, Fahlenkamp A, Ryang YM, Grottke O, Coburn M. Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R206. [PMID: 20017934 PMCID: PMC2811924 DOI: 10.1186/cc8214] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/23/2009] [Accepted: 12/17/2009] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Recently, it has been shown in several experimental settings that the noble gases xenon and helium have neuroprotective properties. In this study we tested the hypothesis that the noble gas argon has a neuroprotective potential as well. Since traumatic brain injury and stroke are widespread and generate an enormous economic and social burden, we investigated the possible neuroprotective effect in in vitro models of traumatic brain injury and cerebral ischemia. METHODS Organotypic hippocampal slice cultures from mice pups were subjected to either oxygen-glucose deprivation or to a focal mechanical trauma and subsequently treated with three different concentrations (25, 50 and 74%) of argon immediately after trauma or with a two-or-three-hour delay. After 72 hours of incubation tissue injury assessment was performed using propidium iodide, a staining agent that becomes fluorescent when it diffuses into damaged cells via disintegrated cell membranes. RESULTS We could show argon's neuroprotective effects at different concentrations when applied directly after oxygen-glucose deprivation or trauma. Even three hours after application, argon was still neuroprotective. CONCLUSIONS Argon showed a neuroprotective effect in both in vitro models of oxygen-glucose deprivation and traumatic brain injury. Our promising results justify further in vivo animal research.
Collapse
Affiliation(s)
- Philip D Loetscher
- Department of Anesthesiology, University Hospital of the RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|