1
|
Kim SG, Wang SX, Foley SL. Complete genome sequence of two chromosomes of Vibrio metoecus strain ZF102 isolated from the abdominal cavity of moribund laboratory zebrafish ( Danio rerio). Microbiol Resour Announc 2024; 13:e0021624. [PMID: 38712933 PMCID: PMC11237558 DOI: 10.1128/mra.00216-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Vibrio metoecus was isolated from the abdominal cavity of moribund laboratory zebrafish. We report complete genomic sequences of V. metoecus strain ZF102 that has two circular chromosomes of 2,872,299 and 1,170,691 bp and two plasmids of 5,265 and 2,361 bp.
Collapse
Affiliation(s)
- Sung Guk Kim
- Surveillance/Diagnostic Laboratory, Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Sharon X Wang
- Surveillance/Diagnostic Laboratory, Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
2
|
Gogou C, Japaridze A, Dekker C. Mechanisms for Chromosome Segregation in Bacteria. Front Microbiol 2021; 12:685687. [PMID: 34220773 PMCID: PMC8242196 DOI: 10.3389/fmicb.2021.685687] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
The process of DNA segregation, the redistribution of newly replicated genomic material to daughter cells, is a crucial step in the life cycle of all living systems. Here, we review DNA segregation in bacteria which evolved a variety of mechanisms for partitioning newly replicated DNA. Bacterial species such as Caulobacter crescentus and Bacillus subtilis contain pushing and pulling mechanisms that exert forces and directionality to mediate the moving of newly synthesized chromosomes to the bacterial poles. Other bacteria such as Escherichia coli lack such active segregation systems, yet exhibit a spontaneous de-mixing of chromosomes due to entropic forces as DNA is being replicated under the confinement of the cell wall. Furthermore, we present a synopsis of the main players that contribute to prokaryotic genome segregation. We finish with emphasizing the importance of bottom-up approaches for the investigation of the various factors that contribute to genome segregation.
Collapse
Affiliation(s)
- Christos Gogou
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
3
|
Baker KS. Microbe hunting in the modern era: reflecting on a decade of microbial genomic epidemiology. Curr Biol 2020; 30:R1124-R1130. [PMID: 33022254 PMCID: PMC7534602 DOI: 10.1016/j.cub.2020.06.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since the first recognition that infectious microbes serve as the causes of many human diseases, physicians and scientists have sought to understand and control their spread. For the past 150+ years, these ‘microbe hunters’ have learned to combine epidemiological information with knowledge of the infectious agent(s). In this essay, I reflect on the evolution of microbe hunting, beginning with the history of pre-germ theory epidemiological studies, through the microbiological and molecular eras. Now in the genomic age, modern-day microbe hunters are combining pathogen whole-genome sequencing with epidemiological data to enhance epidemiological investigations, advance our understanding of the natural history of pathogens and drivers of disease, and ultimately reshape our plans and priorities for global disease control and eradication. Indeed, as we have seen during the ongoing Covid-19 pandemic, the role of microbe hunters is now more important than ever. Despite the advances already made by microbial genomic epidemiology, the field is still maturing, with many more exciting developments on the horizon.
Collapse
Affiliation(s)
- Kate S Baker
- University of Liverpool, Institute for Infection, Ecology and Veterinary Sciences, Department of Clinical Infection, Microbiology, and Immunology, Liverpool L69 7ZB, UK.
| |
Collapse
|
4
|
Sozhamannan S, Waldminghaus T. Exception to the exception rule: synthetic and naturally occurring single chromosome Vibrio cholerae. Environ Microbiol 2020; 22:4123-4132. [PMID: 32237026 DOI: 10.1111/1462-2920.15002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022]
Abstract
The genome of Vibrio cholerae, the etiological agent of cholera, is an exception to the single chromosome rule found in the vast majority of bacteria and has its genome partitioned between two unequally sized chromosomes. This unusual two-chromosome arrangement in V. cholerae has sparked considerable research interest since its discovery. It was demonstrated that the two chromosomes could be fused by deliberate genome engineering or forced to fuse spontaneously by blocking the replication of Chr2, the secondary chromosome. Recently, natural isolates of V. cholerae with chromosomal fusion have been found. Here, we summarize the pertinent findings on this exception to the exception rule and discuss the potential utility of single-chromosome V. cholerae to address fundamental questions on chromosome biology in general and DNA replication in particular.
Collapse
Affiliation(s)
- Shanmuga Sozhamannan
- Defense Biological Product Assurance Office, CBRND-Enabling Biotechnologies, 110 Thomas Johnson Drive, Frederick, MD, 21702, USA.,Logistics Management Institute, Tysons, VA, 22102, USA
| | - Torsten Waldminghaus
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
5
|
Kemter FS, Schallopp N, Sperlea T, Serrania J, Sobetzko P, Fritz G, Waldminghaus T. Stringent response leads to continued cell division and a temporal restart of DNA replication after initial shutdown in Vibrio cholerae. Mol Microbiol 2019; 111:1617-1637. [PMID: 30873684 DOI: 10.1111/mmi.14241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2019] [Indexed: 11/29/2022]
Abstract
Vibrio cholerae is an aquatic bacterium with the potential to infect humans and cause the cholera disease. While most bacteria have single chromosomes, the V. cholerae genome is encoded on two replicons of different size. This study focuses on the DNA replication and cell division of this bi-chromosomal bacterium during the stringent response induced by starvation stress. V. cholerae cells were found to initially shut DNA replication initiation down upon stringent response induction by the serine analog serine hydroxamate. Surprisingly, cells temporarily restart their DNA replication before finally reaching a state with fully replicated single chromosome sets. This division-replication pattern is very different to that of the related single chromosome model bacterium Escherichia coli. Within the replication restart phase, both chromosomes of V. cholerae maintained their known order of replication timing to achieve termination synchrony. Using flow cytometry combined with mathematical modeling, we established that a phase of cellular regrowth be the reason for the observed restart of DNA replication after the initial shutdown. Our study shows that although the stringent response induction itself is widely conserved, bacteria developed different ways of how to react to the sensed nutrient limitation, potentially reflecting their individual lifestyle requirements.
Collapse
Affiliation(s)
- Franziska S Kemter
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Nadine Schallopp
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Theodor Sperlea
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Javier Serrania
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Georg Fritz
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
6
|
Bruhn M, Schindler D, Kemter FS, Wiley MR, Chase K, Koroleva GI, Palacios G, Sozhamannan S, Waldminghaus T. Functionality of Two Origins of Replication in Vibrio cholerae Strains With a Single Chromosome. Front Microbiol 2018; 9:2932. [PMID: 30559732 PMCID: PMC6284228 DOI: 10.3389/fmicb.2018.02932] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
Chromosomal inheritance in bacteria usually entails bidirectional replication of a single chromosome from a single origin into two copies and subsequent partitioning of one copy each into daughter cells upon cell division. However, the human pathogen Vibrio cholerae and other Vibrionaceae harbor two chromosomes, a large Chr1 and a small Chr2. Chr1 and Chr2 have different origins, an oriC-type origin and a P1 plasmid-type origin, respectively, driving the replication of respective chromosomes. Recently, we described naturally occurring exceptions to the two-chromosome rule of Vibrionaceae: i.e., Chr1 and Chr2 fused single chromosome V. cholerae strains, NSCV1 and NSCV2, in which both origins of replication are present. Using NSCV1 and NSCV2, here we tested whether two types of origins of replication can function simultaneously on the same chromosome or one or the other origin is silenced. We found that in NSCV1, both origins are active whereas in NSCV2 ori2 is silenced despite the fact that it is functional in an isolated context. The ori2 activity appears to be primarily determined by the copy number of the triggering site, crtS, which in turn is determined by its location with respect to ori1 and ori2 on the fused chromosome.
Collapse
Affiliation(s)
- Matthias Bruhn
- LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Daniel Schindler
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Franziska S Kemter
- LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Michael R Wiley
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kitty Chase
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Galina I Koroleva
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Shanmuga Sozhamannan
- Defense Biological Product Assurance Office, Frederick, MD, United States.,The Tauri Group, LLC, Alexandria, VA, United States
| | - Torsten Waldminghaus
- LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
7
|
Sulca MA, Orozco R, Alvarado DE. Antimicrobial resistance not related to 1,2,3 integrons and Superintegron in Vibrio spp. isolated from seawater sample of Lima (Peru). MARINE POLLUTION BULLETIN 2018; 131:370-377. [PMID: 29886960 DOI: 10.1016/j.marpolbul.2018.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobial resistance (AMR) in microorganisms has been attributed to integrons, which have the ability to capture antimicrobial resistance gene cassettes and express them in their hosts. 170 strains of Vibrio spp. were isolated from Lima (Peru) seawater samples and identified by biochemical tests and PCR. AMR profiles were generated using 15 standard antibiotics. The presence of class 1, 2 and 3 integrons and Superintegron in these strains were also investigated by PCR. Ten species of Vibrio were identified with V. alginolyticus the most frequent. All strains were resistant to antibiotics, especially to penicillin group. No resistance to norfloxacin or tetracycline was observed. Class 1, 2 and 3 integrons were not found, only one Superintegron containing the mutT gene was identified in V. cholerae L22 strain. This indicated that AMR is not related to integrons as mentioned previously and that these strains can be reservoirs of resistance genes in marine environments.
Collapse
Affiliation(s)
- Marcos A Sulca
- Molecular Microbiology and Biotechnology Laboratory, Faculty of Biological Science, National University of San Marcos, Lima, Peru; Aquatic Microbiology Laboratory, Alexander von Humboldt Aquaculture Research Center - IMARPE, Lima, Peru.
| | - Rita Orozco
- Aquatic Microbiology Laboratory, Alexander von Humboldt Aquaculture Research Center - IMARPE, Lima, Peru
| | - Débora E Alvarado
- Molecular Microbiology and Biotechnology Laboratory, Faculty of Biological Science, National University of San Marcos, Lima, Peru
| |
Collapse
|
8
|
Baron S, Lesne J, Jouy E, Larvor E, Kempf I, Boncy J, Rebaudet S, Piarroux R. Antimicrobial Susceptibility of Autochthonous Aquatic Vibrio cholerae in Haiti. Front Microbiol 2016; 7:1671. [PMID: 27818656 PMCID: PMC5073147 DOI: 10.3389/fmicb.2016.01671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022] Open
Abstract
We investigated the antimicrobial susceptibility of 50 environmental isolates of Vibrio cholerae non-O1/non-O139 collected in surface waters in Haiti in July 2012, during an active cholera outbreak. A panel of 16 antibiotics was tested on the isolates using the disk diffusion method and PCR detection of seven resistance-associated genes (strA/B, sul1/2, ermA/B, and mefA). All isolates were susceptible to amoxicillin-clavulanic acid, cefotaxime, imipenem, ciprofloxacin, norfloxacin, amikacin, and gentamicin. Nearly a quarter (22.0%) of the isolates were susceptible to all 16 antimicrobials tested and only 8.0% of the isolates (n = 4) were multidrug-resistant. The highest proportions of resistant isolates were observed for sulfonamide (70.0%), amoxicillin (12.0%), and trimethoprim-sulfamethoxazole (10.0%). One strain was resistant to erythromycin and one to doxycycline, two antibiotics used to treat cholera in Haiti. Among the 50 isolates, 78% possessed at least two resistance-associated genes, and the genes sul1, ermA, and strB were detected in all four multidrug-resistant isolates. Our results clearly indicate that the autochthonous population of V. cholerae non-O1/non-O139 found in surface waters in Haiti shows antimicrobial patterns different from that of the outbreak strain. The presence in the Haitian aquatic environment of V. cholerae non-O1/non-O139 with reduced susceptibility or resistance to antibiotics used in human medicine may constitute a mild public health threat.
Collapse
Affiliation(s)
- Sandrine Baron
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Jean Lesne
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Eric Jouy
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Emeline Larvor
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Isabelle Kempf
- Mycoplasmology-Bacteriology Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental and Occupational Health & SafetyPloufragan, France; Vie-Agro-Santé, Bretagne-Loire UniversityRennes, France
| | - Jacques Boncy
- National Public Health Laboratory, Ministry of Public Health and Population Port au Prince, Haiti
| | | | | |
Collapse
|
9
|
Dillon MM, Sung W, Sebra R, Lynch M, Cooper VS. Genome-Wide Biases in the Rate and Molecular Spectrum of Spontaneous Mutations in Vibrio cholerae and Vibrio fischeri. Mol Biol Evol 2016; 34:93-109. [PMID: 27744412 PMCID: PMC5854121 DOI: 10.1093/molbev/msw224] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The vast diversity in nucleotide composition and architecture among bacterial genomes may be partly explained by inherent biases in the rates and spectra of spontaneous mutations. Bacterial genomes with multiple chromosomes are relatively unusual but some are relevant to human health, none more so than the causative agent of cholera, Vibrio cholerae Here, we present the genome-wide mutation spectra in wild-type and mismatch repair (MMR) defective backgrounds of two Vibrio species, the low-%GC squid symbiont V. fischeri and the pathogen V. cholerae, collected under conditions that greatly minimize the efficiency of natural selection. In apparent contrast to their high diversity in nature, both wild-type V. fischeri and V. cholerae have among the lowest rates for base-substitution mutations (bpsms) and insertion-deletion mutations (indels) that have been measured, below 10-3/genome/generation. Vibrio fischeri and V. cholerae have distinct mutation spectra, but both are AT-biased and produce a surprising number of multi-nucleotide indels. Furthermore, the loss of a functional MMR system caused the mutation spectra of these species to converge, implying that the MMR system itself contributes to species-specific mutation patterns. Bpsm and indel rates varied among genome regions, but do not explain the more rapid evolutionary rates of genes on chromosome 2, which likely result from weaker purifying selection. More generally, the very low mutation rates of Vibrio species correlate inversely with their immense population sizes and suggest that selection may not only have maximized replication fidelity but also optimized other polygenic traits relative to the constraints of genetic drift.
Collapse
Affiliation(s)
- Marcus M Dillon
- Microbiology Graduate Program, University of New Hampshire, Durham, NH
| | - Way Sung
- Department of Bioinformatics and Genomics, University of North Carolina Charlotte, Charlotte, NC.,Department of Biology, Indiana University, Bloomington, IN
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN
| | - Vaughn S Cooper
- Microbiology Graduate Program, University of New Hampshire, Durham, NH .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
10
|
Menezes FGRD, Neves SDS, Sousa OVD, Vila-Nova CMVM, Maggioni R, Theophilo GND, Hofer E, Vieira RHSDF. Detection of virulence genes in environmental strains of Vibrio cholerae from estuaries in northeastern Brazil. Rev Inst Med Trop Sao Paulo 2015; 56:427-32. [PMID: 25229224 PMCID: PMC4172115 DOI: 10.1590/s0036-46652014000500010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 02/25/2014] [Indexed: 11/21/2022] Open
Abstract
The objectives of this study were to detect the presence of
Vibrio cholerae in tropical estuaries (Northeastern
Brazil) and to search for virulence factors in the environmental isolates.
Water and sediment samples were inoculated onto a vibrio-selective medium
(TCBS), and colonies with morphological resemblance to V.
cholerae were isolated. The cultures were identified phenotypically
using a dichotomous key based on biochemical characteristics. The total DNA
extracted was amplified by PCR to detect ompW and by multiplex
PCR to detect the virulence genes ctx, tcp,
zot and rfbO1. The results of the
phenotypic and genotypic identification were compared. Nine strains of
V. cholerae were identified phenotypically, five of which
were confirmed by detection of the species-specific gene ompW.
The dichotomous key was efficient at differentiating environmental strains of
V. cholerae. Strains of V. cholerae were
found in all four estuaries, but none possessed virulence genes.
Collapse
Affiliation(s)
| | - Soraya da Silva Neves
- Federal University of Ceará, Department of Fisheries Engineering, Campus Universitário do Pici, UFC, Fortaleza, Ceará, Brazil
| | | | | | - Rodrigo Maggioni
- Marine Sciences Institute (LABOMAR), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Ernesto Hofer
- The Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
11
|
Wang H, Ayala JC, Benitez JA, Silva AJ. RNA-seq analysis identifies new genes regulated by the histone-like nucleoid structuring protein (H-NS) affecting Vibrio cholerae virulence, stress response and chemotaxis. PLoS One 2015; 10:e0118295. [PMID: 25679988 PMCID: PMC4332508 DOI: 10.1371/journal.pone.0118295] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/13/2015] [Indexed: 12/20/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) functions as a transcriptional silencer by binding to AT-rich sequences at bacterial promoters. However, H-NS repression can be counteracted by other transcription factors in response to environmental changes. The identification of potential toxic factors, the expression of which is prevented by H-NS could facilitate the discovery of new regulatory proteins that may contribute to the emergence of new pathogenic variants by anti-silencing. Vibrio cholerae hns mutants of the El Tor biotype exhibit altered virulence, motility and environmental stress response phenotypes compared to wild type. We used an RNA-seq analysis approach to determine the basis of the above hns phenotypes and identify new targets of H-NS transcriptional silencing. H-NS affected the expression of 18% of all predicted genes in a growth phase-dependent manner. Loss of H-NS resulted in diminished expression of numerous genes encoding methyl-accepting chemotaxis proteins as well as chemotaxis toward the attractants glycine and serine. Deletion of hns also induced an endogenous envelope stress response resulting in elevated expression of rpoE encoding the extracytoplamic sigma factor E (σE). The RNA-seq analysis identified new genes directly repressed by H-NS that can affect virulence and biofilm development in the El Tor biotype cholera bacterium. We show that H-NS and the quorum sensing regulator HapR silence the transcription of the vieSAB three-component regulatory system in El Tor biotype V. cholerae. We also demonstrate that H-NS directly represses the transcription of hlyA (hemolysin), rtxCA (the repeat in toxin or RTX), rtxBDE (RTX transport) and the biosynthesis of indole. Of these genes, H-NS occupancy at the hlyA promoter was diminished by overexpression of the transcription activator HlyU. We discuss the role of H-NS transcriptional silencing in phenotypic differences exhibited by V. cholerae biotypes.
Collapse
Affiliation(s)
- Hongxia Wang
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, United States of America
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Julio C. Ayala
- University of Alabama at Birmingham Department of Microbiology, Birmingham, Alabama, United States of America
| | - Jorge A. Benitez
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, United States of America
| | - Anisia J. Silva
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Lux TM, Lee R, Love J. Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii. Front Microbiol 2014; 5:435. [PMID: 25191313 PMCID: PMC4139957 DOI: 10.3389/fmicb.2014.00435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/31/2014] [Indexed: 11/15/2022] Open
Abstract
We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change.
Collapse
Affiliation(s)
- Thomas M Lux
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| | - Rob Lee
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| | - John Love
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| |
Collapse
|
13
|
The LuxR-type regulator VpsT negatively controls the transcription of rpoS, encoding the general stress response regulator, in Vibrio cholerae biofilms. J Bacteriol 2013; 196:1020-30. [PMID: 24363348 DOI: 10.1128/jb.00993-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera is a waterborne diarrheal disease caused by Vibrio cholerae strains of serogroups O1 and O139. Expression of the general stress response regulator RpoS and formation of biofilm communities enhance the capacity of V. cholerae to persist in aquatic environments. The transition of V. cholerae between free-swimming (planktonic) and biofilm life-styles is regulated by the second messenger cyclic di-GMP (c-di-GMP). We previously reported that increasing the c-di-GMP pool by overexpression of a diguanylate cyclase diminished RpoS expression. Here we show that c-di-GMP repression of RpoS expression is eliminated by deletion of the genes vpsR and vpsT, encoding positive regulators of biofilm development. To determine the mechanism of this regulation, we constructed a strain expressing a vpsT-FLAG allele from native transcription and translation signals. Increasing the c-di-GMP pool induced vpsT-FLAG expression. The interaction between VpsT-FLAG and the rpoS promoter was demonstrated by chromatin immunoprecipitation. Furthermore, purified VpsT interacted with the rpoS promoter in a c-di-GMP-dependent manner. Primer extension analysis identified two rpoS transcription initiation sites located 43 bp (P1) and 63 bp (P2) upstream of the rpoS start codon. DNase I footprinting showed that the VpsT binding site at the rpoS promoter overlaps the primary P1 transcriptional start site. Deletion of vpsT significantly enhanced rpoS expression in V. cholerae biofilms that do not make HapR. This result suggests that VpsT and c-di-GMP contribute to the transcriptional silencing of rpoS in biofilms prior to cells entering the quorum-sensing mode.
Collapse
|
14
|
The histone-like nucleoid structuring protein (H-NS) is a repressor of Vibrio cholerae exopolysaccharide biosynthesis (vps) genes. Appl Environ Microbiol 2012; 78:2482-8. [PMID: 22287003 DOI: 10.1128/aem.07629-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity of Vibrio cholerae to form biofilms has been shown to enhance its survival in the aquatic environment and play important roles in pathogenesis and disease transmission. In this study, we demonstrated that the histone-like nucleoid structuring protein is a repressor of exopolysaccharide (vps) biosynthesis genes and biofilm formation.
Collapse
|
15
|
Jutla AS, Akanda AS, Islam S. Tracking Cholera in Coastal Regions using Satellite Observations. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 2010; 46:651-662. [PMID: 21072249 PMCID: PMC2975368 DOI: 10.1111/j.1752-1688.2010.00448.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cholera remains a significant health threat across the globe. The pattern and magnitude of the seven global pandemics suggest that cholera outbreaks primarily originate in coastal regions and then spread inland through secondary means. Cholera bacteria show strong association with plankton abundance in coastal ecosystems. This review study investigates relationship(s) between cholera incidence and coastal processes and explores utility of using remote sensing data to track coastal plankton blooms, using chlorophyll as a surrogate variable for plankton abundance, and subsequent cholera outbreaks. Most studies over the last several decades have primarily focused on the microbiological and epidemiological understanding of cholera outbreaks. Accurate identification and mechanistic understanding of large scale climatic, geophysical and oceanic processes governing cholera-chlorophyll relationship is important for developing cholera prediction models. Development of a holistic understanding of these processes requires long and reliable chlorophyll dataset(s), which are beginning to be available through satellites. We have presented a schematic pathway and a modeling framework that relate cholera with various hydroclimatic and oceanic variables for understanding disease dynamics using latest advances in remote sensing. Satellite data, with its unprecedented spatial and temporal coverage, have potentials to monitor coastal processes and track cholera outbreaks in endemic regions.
Collapse
Affiliation(s)
- Antarpreet S Jutla
- WE REASoN (Water and Environmental Research, Education, and Actionable Solutions Network), Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155
| | - Ali S Akanda
- WE REASoN, Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155
| | - Shafiqul Islam
- Civil and Environmental Engineering, School of Engineering, Water and Diplomacy, The Fletcher School of Law and Diplomacy, Bernard M. Gordon Senior Faculty Fellow in Engineering. 113 Anderson Hall, 200 College Avenue, Tufts University, Medford, MA 02155 Shafiqul Islam
| |
Collapse
|
16
|
Gu J, Neary J, Cai H, Moshfeghian A, Rodriguez SA, Lilburn TG, Wang Y. Genomic and systems evolution in Vibrionaceae species. BMC Genomics 2009; 10 Suppl 1:S11. [PMID: 19594870 PMCID: PMC2709254 DOI: 10.1186/1471-2164-10-s1-s11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has facilitated the exploration of the mechanisms underlying genome plasticity. The family Vibrionaceae is found in the Gammaproteobacteria and is abundant in aquatic environments. Taxa from the family Vibrionaceae are diversified in their life styles; some species are free living, others are symbiotic, and others are human pathogens. This diversity makes this family a useful set of model organisms for studying bacterial evolution. This evolution is driven by several forces, among them gene duplication and lateral gene transfer, which are believed to provide raw material for functional redundancy and novelty. The resultant gene copy increase in one genome is then detected as lineage-specific expansion (LSE). Results Here we present the results of a detailed comparison of the genomes of eleven Vibrionaceae strains that have distinct life styles and distinct phenotypes. The core genome shared by all eleven strains is composed of 1,882 genes, which make up about 31%–50% of the genome repertoire. We further investigated the distribution and features of genes that have been specifically expanded in one unique lineage of the eleven strains. Abundant duplicate genes have been identified in the eleven Vibrionaceae strains, with 1–11% of the whole genomes composed lineage specific radiations. These LSEs occurred in two distinct patterns: the first type yields one or more copies of a single gene; we call this a single gene expansion. The second pattern has a high evolutionary impact, as the expansion involves two or more gene copies in a block, with the duplicated block located next to the original block (a contiguous block expansion) or at some distance from the original block (a discontiguous block expansion). We showed that LSEs involve genes that are tied to defense and pathogenesis mechanisms as well as in the fundamental life cycle of Vibrionaceae species. Conclusion Our results provide evidence of genome plasticity and rapid evolution within the family Vibrionaceae. The comparisons point to sources of genomic variation and candidates for lineage-specific adaptations of each Vibrionaceae pathogen or nonpathogen strain. Such lineage specific expansions could reveal components in bacterial systems that, by their enhanced genetic variability, can be tied to responses to environmental challenges, interesting phenotypes, or adaptive pathogenic responses to host challenges.
Collapse
Affiliation(s)
- Jianying Gu
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Production and sequence validation of a complete full length ORF collection for the pathogenic bacterium Vibrio cholerae. Proc Natl Acad Sci U S A 2008; 105:4364-9. [PMID: 18337508 DOI: 10.1073/pnas.0712049105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cholera, an infectious disease with global impact, is caused by pathogenic strains of the bacterium Vibrio cholerae. High-throughput functional proteomics technologies now offer the opportunity to investigate all aspects of the proteome, which has led to an increased demand for comprehensive protein expression clone resources. Genome-scale reagents for cholera would encourage comprehensive analyses of immune responses and systems-wide functional studies that could lead to improved vaccine and therapeutic strategies. Here, we report the production of the FLEXGene clone set for V. cholerae O1 biovar eltor str. N16961: a complete-genome collection of ORF clones. This collection includes 3,761 sequence-verified clones from 3,887 targeted ORFs (97%). The ORFs were captured in a recombinational cloning vector to facilitate high-throughput transfer of ORF inserts into suitable expression vectors. To demonstrate its application, approximately 15% of the collection was transferred into the relevant expression vector and used to produce a protein microarray by transcribing, translating, and capturing the proteins in situ on the array surface with 92% success. In a second application, a method to screen for protein triggers of Toll-like receptors (TLRs) was developed. We tested in vitro-synthesized proteins for their ability to stimulate TLR5 in A549 cells. This approach appropriately identified FlaC, and previously uncharacterized TLR5 agonist activities. These data suggest that the genome-scale, fully sequenced ORF collection reported here will be useful for high-throughput functional proteomic assays, immune response studies, structure biology, and other applications.
Collapse
|
18
|
The cyclic AMP receptor protein modulates colonial morphology in Vibrio cholerae. Appl Environ Microbiol 2007; 73:7482-7. [PMID: 17921282 DOI: 10.1128/aem.01564-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inactivation of the quorum-sensing regulator HapR causes Vibrio cholerae El Tor biotype strain C7258 to adopt a rugose colonial morphology that correlates with enhanced biofilm formation. V. cholerae mutants lacking the cyclic AMP (cAMP) receptor protein (CRP) produce very little HapR, which results in elevated expression of Vibrio exopolysaccharide (vps) genes and biofilm compared to the wild type. However, Deltacrp mutants still exhibited smooth colonial morphology and expressed reduced levels of vps genes compared to isogenic hapR mutants. In this study we demonstrate that deletion of crp and cya (adenylate cyclase) converts a rugose DeltahapR mutant to a smooth one. The smooth DeltahapR Deltacrp and DeltahapR Deltacya double mutants could be converted back to rugose by complementation with crp and cya, respectively. CRP was found to enhance the expression of VpsR, a strong activator of vps expression, but to diminish transcription of VpsT. Ectopic expression of VpsR in smooth DeltahapR Deltacrp and DeltahapR Deltacya double mutants restored rugose colonial morphology. Lowering intracellular cAMP levels in a DeltahapR mutant by the addition of glucose diminished VpsR expression and colonial rugosity. On the basis of our results, we propose a model for the regulatory input of CRP on exopolysaccharide biosynthesis.
Collapse
|
19
|
Nag S, Chaudhuri K. Differential regulation of interchromosomal copies of ToxR-induced genes. Can J Microbiol 2007; 53:992-9. [PMID: 17898856 DOI: 10.1139/w07-066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Vibrio cholerae, ToxR transcriptionally activates a number of virulence genes in response to various environmental signals. In the present study, transcription profiling by macroarray was carried out with 13 pairs of genes, one copy of which is present in each chromosome under ToxR-inducing (pH 6.5, osmolarity 66 mmol/L, 30 degrees C) and ToxR-repressing (pH 8.5, osmolarity 300 mmol/L, 37 degrees C) conditions followed by high pH (8.5) and low pH (6.5) conditions to eliminate pH effect. The genes dacAII, tagEII, secDII, pmmI, pmmII, and immII showed increased expression in the ToxR-inducing conditions, but not at low pH, suggesting that the expression of these genes might be regulated by ToxR. The expression of pmmII, dacAII, tagEII, secDII, and immII genes decreased significantly in the toxR insertion mutant as determined by RT-PCR, whereas the expression of the chromosome I copy of pmm increased in toxR mutant compared with wild-type cells. Thus, the chromosome II copy of these genes, which show increased expression under ToxR-inducing conditions, are all regulated by ToxR in V. cholerae, whereas the chromosome I copy of pmm may be regulated by other factors under ToxR-inducing conditions.
Collapse
Affiliation(s)
- Sanjay Nag
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | | |
Collapse
|
20
|
Jahid IK, Silva AJ, Benitez JA. Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl Environ Microbiol 2006; 72:7043-9. [PMID: 16950899 PMCID: PMC1636151 DOI: 10.1128/aem.00924-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vibrio cholerae, the causative agent of Asiatic cholera, has been reported to make large quantities of polyphosphate. Inorganic polyphosphate is a ubiquitous molecule with a variety of functions in prokaryotic and eukaryotic cells. We constructed a V. cholerae mutant with a deletion in the polyphosphate kinase (ppk) gene. The mutant was defective in polyphosphate biosynthesis. Deletion of ppk had no significant effect on production of cholera toxin, hemagglutinin/protease, motility, biofilm formation, and colonization of the suckling mouse intestine. The wild type and mutant had similar growth rates in rich and minimal medium and exhibited similar phosphate uptake and alkaline phosphatase induction. In contrast to ppk mutants from other gram-negative bacteria, the V. cholerae mutant survived prolonged starvation in LB medium and artificial seawater basal salts. The ppk mutant was significantly more sensitive to low pH, high salinity, and oxidative stress when it was cultured in low-phosphate minimal medium. The ppk mutant failed to induce catalase when it was downshifted to phosphorus-limiting conditions. Furthermore, the increased sensitivity of the ppk mutant to environmental stressors in phosphate-limited medium correlated with a diminished capacity to synthesize ATP from intracellular reservoirs. We concluded that polyphosphate protects V. cholerae from environmental stresses under phosphate limitation conditions. It has been proposed that toxigenic V. cholerae can survive in estuaries and brackish waters in which phosphorus and/or nitrogen can be a limiting nutrient. Thus, synthesis of large polyphosphate stores could enhance the ability of V. cholerae to survive in the aquatic environment.
Collapse
Affiliation(s)
- Iqbal K Jahid
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr. SW, Atlanta, GA 30310-1495, USA
| | | | | |
Collapse
|
21
|
Reen FJ, Almagro-Moreno S, Ussery D, Boyd EF. The genomic code: inferring Vibrionaceae niche specialization. Nat Rev Microbiol 2006; 4:697-704. [PMID: 16894340 DOI: 10.1038/nrmicro1476] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Vibrionaceae show a wide range of niche specialization, from free-living forms to those attached to biotic and abiotic surfaces, from symbionts to pathogens and from estuarine inhabitants to deep-sea piezophiles. The existence of complete genome sequences for closely related species from varied aquatic niches makes this group an excellent case study for genome comparison.
Collapse
Affiliation(s)
- F Jerry Reen
- F. Jerry Reen and Salvador Almagro Moreno are at the Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | | | | | | |
Collapse
|
22
|
Shi J, Romero PR, Schoolnik GK, Spormann AM, Karp PD. Evidence supporting predicted metabolic pathways for Vibrio cholerae: gene expression data and clinical tests. Nucleic Acids Res 2006; 34:2438-44. [PMID: 16682451 PMCID: PMC1458520 DOI: 10.1093/nar/gkl310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrio cholerae, the etiological agent of the diarrheal illness cholera, can kill an infected adult in 24 h. V.cholerae lives as an autochthonous microbe in estuaries, rivers and coastal waters. A better understanding of its metabolic pathways will assist the development of more effective treatments and will provide a deeper understanding of how this bacterium persists in natural aquatic habitats. Using the completed V.cholerae genome sequence and PathoLogic software, we created VchoCyc, a pathway-genome database that predicted 171 likely metabolic pathways in the bacterium. We report here experimental evidence supporting the computationally predicted pathways. The evidence comes from microarray gene expression studies of V.cholerae in the stools of three cholera patients [D. S. Merrell, S. M. Butler, F. Qadri, N. A. Dolganov, A. Alam, M. B. Cohen, S. B. Calderwood, G. K. Schoolnik and A. Camilli (2002) Nature, 417, 642–645.], from gene expression studies in minimal growth conditions and LB rich medium, and from clinical tests that identify V.cholerae. Expression data provide evidence supporting 92 (53%) of the 171 pathways. The clinical tests provide evidence supporting seven pathways, with six pathways supported by both methods. VchoCyc provides biologists with a useful tool for analyzing this organism's metabolic and genomic information, which could lead to potential insights into new anti-bacterial agents. VchoCyc is available in the BioCyc database collection ().
Collapse
Affiliation(s)
- Jing Shi
- Biomedical Informatics Program, MC 5429, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
23
|
Braun M, Thöny-Meyer L. Cytochrome c maturation and the physiological role of c-type cytochromes in Vibrio cholerae. J Bacteriol 2005; 187:5996-6004. [PMID: 16109941 PMCID: PMC1196146 DOI: 10.1128/jb.187.17.5996-6004.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae lives in different habitats, varying from aquatic ecosystems to the human intestinal tract. The organism has acquired a set of electron transport pathways for aerobic and anaerobic respiration that enable adaptation to the various environmental conditions. We have inactivated the V. cholerae ccmE gene, which is required for cytochrome c biogenesis. The resulting strain is deficient of all c-type cytochromes and allows us to characterize the physiological role of these proteins. Under aerobic conditions in rich medium, V. cholerae produces at least six c-type cytochromes, none of which is required for growth. Wild-type V. cholerae produces active fumarate reductase, trimethylamine N-oxide reductase, cbb3 oxidase, and nitrate reductase, of which only the fumarate reductase does not require maturation of c-type cytochromes. The reduction of nitrate in the medium resulted in the accumulation of nitrite, which is toxic for the cells. This suggests that V. cholerae is able to scavenge nitrate from the environment only in the presence of other nitrite-reducing organisms. The phenotypes of cytochrome c-deficient V. cholerae were used in a transposon mutagenesis screening to search for additional genes required for cytochrome c maturation. Over 55,000 mutants were analyzed for nitrate reductase and cbb3 oxidase activity. No transposon insertions other than those within the ccm genes for cytochrome c maturation and the dsbD gene, which encodes a disulphide bond reductase, were found. In addition, the role of a novel CcdA-like protein in cbb3 oxidase assembly is discussed.
Collapse
Affiliation(s)
- Martin Braun
- Institut für Mikrobiologie, ETH Hönggerberg, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland.
| | | |
Collapse
|
24
|
Nandi B, Nandy RK, Sarkar A, Ghose AC. Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology (Reading) 2005; 151:2975-2986. [PMID: 16151208 DOI: 10.1099/mic.0.27995-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The outer-membrane protein OmpW ofVibrio choleraewas studied with respect to its structure, functional properties and regulation of expression. On SDS-PAGE, the membrane-associated form of OmpW protein (solubilized by either 0·1 % or 2 % SDS at 25 °C) migrated as a monomer of 19 kDa that changed to 21 kDa on boiling. The protein was hyperexpressed inEscherichia coliin the histidine-tagged form and the purified His6-OmpW (heated or unheated) migrated as a 23 kDa protein on SDS-PAGE. Circular dichroism and Fourier-transform infrared spectroscopic analyses of the recombinant protein showed the presence ofβ-structures (∼40 %) with minor amounts (8–15 %) ofα-helix. These results were consistent with those obtained by computational analysis of the sequence data of the protein using the secondary structure prediction program Jnet. The recombinant protein did not exhibit any porin-like property in a liposome-swelling assay. An antiserum to the purified protein induced a moderate level (66·6 % and 33·3 % at 1 : 50 and 1 : 100 dilutions, respectively) of passive protection against live vibrio challenge in a suckling mouse model. OmpW-deficient mutants ofV. choleraestrains were generated by insertion mutagenesis. In a competitive assay in mice, the intestinal colonization activities of these mutants were found to be either only marginally diminished (for O1 strains) or 10-fold less (for an O139 strain) as compared to those of the corresponding wild-type strains. The OmpW protein was expressedin vivoas well asin vitroin liquid culture medium devoid of glucose. Interestingly, the glucose-dependent regulation of OmpW expression was less prominent in a ToxR−mutant ofV. cholerae. Further, the expression of OmpW protein was found to be dependent onin vitrocultural conditions such as temperature, salinity, and availability of nutrients or oxygen. These results suggest that the modulation of OmpW expression by environmental factors may be linked to the adaptive response of the organism under stress conditions.
Collapse
Affiliation(s)
- Bisweswar Nandi
- Department of Microbiology, Bose Institute, Kolkata-700 054, India
| | - Ranjan K Nandy
- National Institute of Cholera and Enteric Diseases, P33 CIT Road, Scheme XM, Kolkata-700 010, India
| | - Amit Sarkar
- Department of Microbiology, Bose Institute, Kolkata-700 054, India
| | - Asoke C Ghose
- National Institute of Cholera and Enteric Diseases, P33 CIT Road, Scheme XM, Kolkata-700 010, India
- Department of Microbiology, Bose Institute, Kolkata-700 054, India
| |
Collapse
|
25
|
Abstract
Vibrios are ubiquitous and abundant in the aquatic environment. A high abundance of vibrios is also detected in tissues and/or organs of various marine algae and animals, e.g., abalones, bivalves, corals, fish, shrimp, sponges, squid, and zooplankton. Vibrios harbour a wealth of diverse genomes as revealed by different genomic techniques including amplified fragment length polymorphism, multilocus sequence typing, repetetive extragenic palindrome PCR, ribotyping, and whole-genome sequencing. The 74 species of this group are distributed among four different families, i.e., Enterovibrionaceae, Photobacteriaceae, Salinivibrionaceae, and Vibrionaceae. Two new genera, i.e., Enterovibrio norvegicus and Grimontia hollisae, and 20 novel species, i.e., Enterovibrio coralii, Photobacterium eurosenbergii, V. brasiliensis, V. chagasii, V. coralliillyticus, V. crassostreae, V. fortis, V. gallicus, V. hepatarius, V. hispanicus, V. kanaloaei, V. neonatus, V. neptunius, V. pomeroyi, V. pacinii, V. rotiferianus, V. superstes, V. tasmaniensis, V. ezurae, and V. xuii, have been described in the last few years. Comparative genome analyses have already revealed a variety of genomic events, including mutations, chromosomal rearrangements, loss of genes by decay or deletion, and gene acquisitions through duplication or horizontal transfer (e.g., in the acquisition of bacteriophages, pathogenicity islands, and super-integrons), that are probably important driving forces in the evolution and speciation of vibrios. Whole-genome sequencing and comparative genomics through the application of, e.g., microarrays will facilitate the investigation of the gene repertoire at the species level. Based on such new genomic information, the taxonomy and the species concept for vibrios will be reviewed in the next years.
Collapse
Affiliation(s)
- Fabiano L Thompson
- Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium.
| | | | | |
Collapse
|
26
|
Abstract
Differences in gene repertoire among bacterial genomes are usually ascribed to gene loss or to lateral gene transfer from unrelated cellular organisms. However, most bacteria contain large numbers of ORFans, that is, annotated genes that are restricted to a particular genome and that possess no known homologs. The uniqueness of ORFans within a genome has precluded the use of a comparative approach to examine their function and evolution. However, by identifying sequences unique to monophyletic groups at increasing phylogenetic depths, we can make direct comparisons of the characteristics of ORFans of different ages in the Escherichia coli genome, and establish their functional status and evolutionary rates. Relative to the genes ancestral to gamma-Proteobacteria and to those genes distributed sporadically in other prokaryotic species, ORFans in the E. coli lineage are short, A+T rich, and evolve quickly. Moreover, most encode functional proteins. Based on these features, ORFans are not attributable to errors in gene annotation, limitations of current databases, or to failure of methods for detecting homology. Rather, ORFans in the genomes of free-living microorganisms apparently derive from bacteriophage and occasionally become established by assuming roles in key cellular functions.
Collapse
Affiliation(s)
- Vincent Daubin
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
27
|
Hommais F, Laurent-Winter C, Labas V, Krin E, Tendeng C, Soutourina O, Danchin A, Bertin P. Effect of mild acid pH on the functioning of bacterial membranes in Vibrio cholerae. Proteomics 2002; 2:571-9. [PMID: 11987131 DOI: 10.1002/1615-9861(200205)2:5<571::aid-prot571>3.0.co;2-g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this paper, we initiated the first two-dimensional electrophoresis map of Vibrio cholerae, the aetiological agent of cholera disease. In this pathogen the efficient adaptation to detrimental conditions plays an important role in its survival in both the aquatic reservoir and human intestine. By proteome analysis we investigated the effect of mild acid treatment on the physiology of V. cholerae. More than 50 proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and database searching. Amongst them, pH regulated proteins belong to various functional classes such as intermediary metabolism and bacterial envelope. Several proteins whose accumulation level was decreased in response to acidic pH are known to be involved in the organization and the functioning of membranes, including lipopolysaccharide. Consistent with this, we observed an increased susceptibility to hydrophobic drugs, a loss of motility and a reduction in the ability to form a biofilm in cells grown at pH 6. Our results suggest that V. cholerae is able to sense a moderate decrease in pH and to modify accordingly its structure and physiology.
Collapse
Affiliation(s)
- Florence Hommais
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chaudhuri K. Lessons to be learned from studying Vibrio cholerae in model systems. Genome Biol 2001; 2:INTERACTIONS1003. [PMID: 11532208 PMCID: PMC138950 DOI: 10.1186/gb-2001-2-8-interactions1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A response to The complete genome sequence of Vibrio cholerae: a tale of two chromosomes and of two lifestyles, by Gary K Schoolnik and Fitnat H Yildiz, Genome Biology 2000 1:reviews1016.1-1016.3.
Collapse
Affiliation(s)
- Keya Chaudhuri
- Indian Institute of Chemical Biology, Calcutta 700032, India. E-mail:
| |
Collapse
|