1
|
Cheng S, Su L, Guo X, Shao D, Qin Y, Liu X, Chu Q, Zhou X, He Z. Genome-wide development of simple sequence repeats markers and genetic diversity analysis of chayote. BMC PLANT BIOLOGY 2024; 24:603. [PMID: 38926681 PMCID: PMC11201790 DOI: 10.1186/s12870-024-05317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Chayote is a high economic crop in the Cucurbitaceae family, playing an important role in food production, disease treatment and the production of degradable materials in industries. Due to the harsh environment, such as high temperature, drought and frost, some chayote resources are gradually disappearing. It is crucial to collect, characterize, and conserve chayote resources. However, the genetic diversity of chayote resources in China has not been studied so far. RESULTS In this study, we collected 35 individuals of chayote from 14 provinces in China. Subsequently, we found 363,156 SSR motifs from the chayote genome and designed 57 pairs of SSR primers for validation. Out of these, 48 primer pairs successfully amplified bands, with 42 of them showing polymorphism. These 42 primer pairs detected a total of 153 alleles, averaging 3.64 alleles per locus. The polymorphic information content ranged from 0.03 to 0.78, with an average value of 0.41, indicating a high level of polymorphism. Based on the analysis using STRUCTURE, PCoA, and UPGMA methods, the 35 chayote individuals were divided into two major clusters. Through further association analysis, 7 significantly associated SSR markers were identified, including four related to peel color and three related to spine. CONCLUSIONS These molecular markers will contribute to the analysis of genetic diversity and genetic breeding improvement of chayote in the future.
Collapse
Affiliation(s)
- Shaobo Cheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lihong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xin Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Dalong Shao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yanmei Qin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xuanxuan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qianwen Chu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xiaoting Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhongqun He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
2
|
Dallagnol LC, Cônsoli FL. Evolutionary and phylogenetic insights from the mitochondrial genomic analysis of Diceraeus melacanthus and D. furcatus (Hemiptera: Pentatomidae). Sci Rep 2024; 14:12861. [PMID: 38834792 DOI: 10.1038/s41598-024-63584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
The mitochondrial genomes of D. melacanthus and D. furcatus were sequenced and used to investigate the phylogenetic relationships with 54 species of Pentatomidae. Their mitogenomes are 17,197 and 15,444 bp-long, respectively, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22/21 transfer RNA genes, with conserved gene arrangement. Leu, Lys, and Ser were the most common amino acids in their PCGs. PCGs evolutionary analysis indicated their mitogenomes are under purifying selection, and the most conserved genes are from the cytochrome complex, reinforcing their suitability as markers for molecular taxonomy. We identified 490 mtSSRs in 56 Pentatomidae species, with large variation and a positive correlation between mtSSR number and genome size. Three mtSSRs were identified in each Diceraeus species. Only the mtSSR in the nad6 (D. melacanthus) and nad4 (D. furcatus) appear to have application as molecular markers for species characterization. Phylogenetic analysis confirmed the monophyly of Pentatomidae. However, our analysis challenged the monophyly of Pentatominae and Podopinae. We also detected unexpected relationships among some tribes and genera, highlighting the complexity of the internal taxonomic structure of Pentatomidae. Both Diceraeus species were grouped in the same clade with the remaining Carpocorini analyzed.
Collapse
Affiliation(s)
- Lilian Cris Dallagnol
- Insect Interactions Laboratory, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Fernando Luís Cônsoli
- Insect Interactions Laboratory, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
3
|
Fandade V, Singh P, Singh D, Sharma H, Thakur G, Saini S, Kumar P, Mantri S, Bishnoi OP, Roy J. Genome-wide identification of microsatellites for mapping, genetic diversity and cross-transferability in wheat (Triticum spp). Gene 2024; 896:148039. [PMID: 38036075 DOI: 10.1016/j.gene.2023.148039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Wheat (Triticum aestivum L.) is a crucial global staple crop, and is consistently being improved to enhance yield, disease resistance, and quality traits. However, the development of molecular markers is a challenging task due to its hexaploid genome. Molecular marker system such as simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) are helpful for breeding, but SNP has limitations due to its development cost and its conversion to breeder markers. The study proposed an in-silico approach, by utilizing the low-cost transcriptome sequencing of two parental lines, 'TAC 75' and 'WH 1105', to identify polymorphic SSRs for mapping in a recombinant inbred line (RIL) population. This study introduces a new approach to bridge wheat genetics intricacies and next-generation sequencing potential. It presents a comprehensive genome-wide SSR distribution using IWGSC CS RefSeq v2.1 genome assembly and to identify 189 polymorphic loci through in-silico strategy. Of these, 54.76% showed polymorphism between parents, surpassing the traditional low polymorphic success rate. A RIL population screening validated these markers, demonstrating the fitness of identified markers through chi-square tests. The designed SSRs were also validated for genetic diversity analysis in a subset of 37 Indian wheat genotypes and cross-transferability in the wild/relative wheat species. In diversity analysis, a subset of 38 markers revealed 95 alleles (2.5 allele/locus), indicating substantial genetic variation. Population structure analysis unveiled three distinct groups, supported by phylogenetic and PCoA analyses. Further the polymorphic SSRs were also analyzed for SSR-gene association using gene ontology analysis. By utilizing the developing seed transcriptome data within parental lines, the study has enhanced the polymorphic SSR identification precision and facilitated in the RIL population. The undertaken study pioneers the use of transcriptome sequencing and genetic mapping to overcome challenges posed by the intricate wheat genome. This approach offers a cost-effective, less labour-intensive alternative to conventional methods, providing a platform for advancing wheat breeding research.
Collapse
Affiliation(s)
- Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.
| | - Pradeep Singh
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India.
| | - Dalwinder Singh
- Department of Anatomy and cell biology, University of Western Ontario, London, Canada.
| | - Himanshu Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India.
| | - Garima Thakur
- Protection for Plant Varieties and Farmers Rights Authority, New Delhi, India.
| | - Shivangi Saini
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India.
| | - Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.
| | - Shrikant Mantri
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India.
| | - O P Bishnoi
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar- 125004, India.
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali-140306, Punjab, India.
| |
Collapse
|
4
|
Wang Q, Chen X, Meng Y, Niu M, Jia Y, Huang L, Ma W, Liang C, Li Z, Zhao L, Dang Z. The Potential Role of Genic-SSRs in Driving Ecological Adaptation Diversity in Caragana Plants. Int J Mol Sci 2024; 25:2084. [PMID: 38396759 PMCID: PMC10888960 DOI: 10.3390/ijms25042084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Caragana, a xerophytic shrub genus widely distributed in northern China, exhibits distinctive geographical substitution patterns and ecological adaptation diversity. This study employed transcriptome sequencing technology to investigate 12 Caragana species, aiming to explore genic-SSR variations in the Caragana transcriptome and identify their role as a driving force for environmental adaptation within the genus. A total of 3666 polymorphic genic-SSRs were identified across different species. The impact of these variations on the expression of related genes was analyzed, revealing a significant linear correlation (p < 0.05) between the length variation of 264 polymorphic genic-SSRs and the expression of associated genes. Additionally, 2424 polymorphic genic-SSRs were located in differentially expressed genes among Caragana species. Through weighted gene co-expression network analysis, the expressions of these genes were correlated with 19 climatic factors and 16 plant functional traits in various habitats. This approach facilitated the identification of biological processes associated with habitat adaptations in the studied Caragana species. Fifty-five core genes related to functional traits and climatic factors were identified, including various transcription factors such as MYB, TCP, ARF, and structural proteins like HSP90, elongation factor TS, and HECT. The roles of these genes in the ecological adaptation diversity of Caragana were discussed. Our study identified specific genomic components and genes in Caragana plants responsive to heterogeneous habitats. The results contribute to advancements in the molecular understanding of their ecological adaptation, lay a foundation for the conservation and development of Caragana germplasm resources, and provide a scientific basis for plant adaptation to global climate change.
Collapse
Affiliation(s)
- Qinglang Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Xing’er Chen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Yue Meng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Miaomiao Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Yuanyuan Jia
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Lei Huang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Zhiyong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Liqing Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| |
Collapse
|
5
|
Mokhtar MM, Alsamman AM, El Allali A. MegaSSR: a web server for large scale microsatellite identification, classification, and marker development. FRONTIERS IN PLANT SCIENCE 2023; 14:1219055. [PMID: 38162302 PMCID: PMC10757629 DOI: 10.3389/fpls.2023.1219055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/18/2023] [Indexed: 01/03/2024]
Abstract
Next-generation sequencing technologies have opened new avenues for using genomic data to study and develop molecular markers and improve genetic resources. Simple Sequence Repeats (SSRs) as genetic markers are increasingly used in molecular diversity and molecular breeding programs that require bioinformatics pipelines to analyze the large amounts of data. Therefore, there is an ongoing need for online tools that provide computational resources with minimal effort and maximum efficiency, including automated development of SSR markers. These tools should be flexible, customizable, and able to handle the ever-increasing amount of genomic data. Here we introduce MegaSSR (https://bioinformatics.um6p.ma/MegaSSR), a web server and a standalone pipeline that enables the design of SSR markers in any target genome. MegaSSR allows users to design targeted PCR-based primers for their selected SSR repeats and includes multiple tools that initiate computational pipelines for SSR mining, classification, comparisons, PCR primer design, in silico PCR validation, and statistical visualization. MegaSSR results can be accessed, searched, downloaded, and visualized with user-friendly web-based tools. These tools provide graphs and tables showing various aspects of SSR markers and corresponding PCR primers. MegaSSR will accelerate ongoing research in plant species and assist breeding programs in their efforts to improve current genomic resources.
Collapse
Affiliation(s)
- Morad M. Mokhtar
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Benguerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Alsamman M. Alsamman
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Benguerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
- Biotechnology Department, International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Benguerir, Morocco
| |
Collapse
|
6
|
Whole Genome Wide SSR Markers Identification Based on ddRADseq Data. Methods Mol Biol 2023; 2638:59-66. [PMID: 36781635 DOI: 10.1007/978-1-0716-3024-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The advent of advanced NGS technologies have led to the generation of enormous amount of sequence data which further aid in the discovery of the various type of markers such as SSRs, SNPs, InDels, etc. Among all these markers, microsatellite SSR markers can be mined from the ddRADseq data as certain properties of SSR markers make them ideal markers for study. These assist researchers and breeders in diversity analysis and producing new varieties with desired traits. To extract the markers, first, the ddRADseq data is assembled into consensus sequences using STACKS program which are further assembled for mining microsatellites using QDD along with MISA tool.
Collapse
|
7
|
Thiers KLL, da Silva JHM, Vasconcelos DCA, Aziz S, Noceda C, Arnholdt-Schmitt B, Costa JH. Polymorphisms in alternative oxidase genes from ecotypes of Arabidopsis and rice revealed an environment-induced linkage to altitude and rainfall. PHYSIOLOGIA PLANTARUM 2023; 175:e13847. [PMID: 36562612 DOI: 10.1111/ppl.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
We investigated SNPs in alternative oxidase (AOX) genes and their connection to ecotype origins (climate, altitude, and rainfall) by using genomic data sets of Arabidopsis and rice populations from 1190 and 90 ecotypes, respectively. Parameters were defined to detect non-synonymous SNPs in the AOX ORF, which revealed amino acid (AA) changes in AOX1c, AOX1d, and AOX2 from Arabidopsis and AOX1c from rice in comparison to AOX references from Columbia-0 and Japonica ecotypes, respectively. Among these AA changes, Arabidopsis AOX1c_A161E&G165R and AOX1c_R242S revealed a link to high rainfall and high altitude, respectively, while all other changes in Arabidopsis and rice AOX was connected to high altitude and rainfall. Comparative 3D modeling showed that all mutant AOX presented structural differences in relation to the respective references. Molecular docking analysis uncovered lower binding affinity values between AOX and the substrate ubiquinol for most of the identified structures compared to their reference, indicating better enzyme-substrate binding affinities. Thus, our in silico data suggest that the majority of the AA changes found in the available ecotypes will confer better enzyme-subtract interactions and thus indicate environment-related, more efficient AOX activity.
Collapse
Affiliation(s)
- Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | | | | | - Shahid Aziz
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
- Facultad de Ciencias de la ingeniería, Universidad Estatal de Milagro, Milagro, Ecuador
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| |
Collapse
|
8
|
Zhu Y, Zhang X, Yan S, Feng C, Wang D, Yang W, Daud MK, Xiang J, Mei L. SSR identification and phylogenetic analysis in four plant species based on complete chloroplast genome sequences. Plasmid 2023; 125:102670. [PMID: 36828204 DOI: 10.1016/j.plasmid.2023.102670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
The effective utilization of traditional Chinese medicine (TCM) has been challenged by the difficulty to accurately distinguish between similar plant varieties. The stability and conservation of the chloroplast genome can aid in resolving genotypes. Previous studies using nuclear sequences and molecular markers have not effectively differentiated the species from related taxa, such as Machilus leptophylla, Hanceola exserta, Rubus bambusarum, and Rubus henryi. This study aimed to characterize the chloroplast genomes of these four plant species, and analyze their simple sequence repeats (SSRs) and phylogenetic positions. The results demonstrated the four chloroplast genomes consisted of 152.624 kb, 153.296 kb, 156.309 kb, and 158.953 kb in length, involving 124, 130, 129, and 131 genes, respectively. They also contained four specific regions with mononucleotide being the class with the most members. Moreover, these repeating types of SSR were various in individual class. Phylogenetic analysis showed that M. leptophylla was clustered with M. yunnanensis, and H. exserta was confirmed as belonging to the family Ocimeae. Additionally, R. bambusarum and R. henryi were grouped together but differed in their SSR features, indicating that they were not the same species. This research provides evidence for resolving species and contributes new genetic information for further studies.
Collapse
Affiliation(s)
- Yueyi Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xianwen Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shufeng Yan
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Chen Feng
- Lushan Botanical Garden, Chinese Academy of Sciences, Lushan 330000, China
| | - Dongfang Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Muhammad Khan Daud
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Jiqian Xiang
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
| | - Lei Mei
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China; Center of Research and Development, Senium Science Development (Zhejiang) Company Limited, Hangzhou 311121, China.
| |
Collapse
|
9
|
Brhane H, Haileselassie T, Tesfaye K, Ortiz R, Hammenhag C, Abreha KB, Vetukuri RR, Geleta M. Finger millet RNA-seq reveals differential gene expression associated with tolerance to aluminum toxicity and provides novel genomic resources. FRONTIERS IN PLANT SCIENCE 2022; 13:1068383. [PMID: 36570897 PMCID: PMC9780683 DOI: 10.3389/fpls.2022.1068383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/21/2022] [Indexed: 06/01/2023]
Abstract
Eleusine coracana, finger millet, is a multipurpose crop cultivated in arid and semi-arid regions of Africa and Asia. RNA sequencing (RNA-seq) was used in this study to obtain valuable genomic resources and identify genes differentially expressed between Al-tolerant and Al-susceptible genotypes. Two groups of finger millet genotypes were used: Al-tolerant (215836, 215845, and 229722) and Al-susceptible (212462, 215804 and 238323). The analysis of the RNA-seq data resulted in 198,546 unigenes, 56.5% of which were annotated with significant hits in one or more of the following six databases: NR (48.8%), GO (29.7%), KEGG (45%), PlantTFDB (19.0%), Uniprot (49.2%), and NT (46.2%). It is noteworthy that only 220 unigenes in the NR database had significant hits against finger millet sequences suggesting that finger millet's genomic resources are scarce. The gene expression analysis revealed that 322 genes were significantly differentially expressed between the Al-tolerant and Al-susceptible genotypes, of which 40.7% were upregulated while 59.3% were downregulated in Al-tolerant genotypes. Among the significant DEGs, 54.7% were annotated in the GO database with the top hits being ATP binding (GO:0005524) and DNA binding (GO:0003677) in the molecular function, DNA integration (GO:0015074) and cell redox homeostasis in the biological process, as well as cellular anatomical entity and intracellular component in the cellular component GO classes. Several of the annotated DEGs were significantly enriched for their corresponding GO terms. The KEGG pathway analysis resulted in 60 DEGs that were annotated with different pathway classes, of which carbohydrate metabolism and signal transduction were the most prominent. The homologs of a number of significant DEGs have been previously reported as being associated with Al or other abiotic stress responses in various crops, including carboxypeptidase SOL1, HMA3, AP2, bZIP, C3H, and WRKY TF genes. A more detailed investigation of these and other DEGs will enable genomic-led breeding for Al tolerance in finger millet. RNA-seq data analysis also yielded 119,073 SNP markers, the majority of which had PIC values above 0.3, indicating that they are highly informative. Additionally, 3,553 single-copy SSR markers were identified, of which trinucleotide SSRs were the most prevalent. These genomic resources contribute substantially to the enrichment of genomic databases for finger millet, and facilitate future research on this crop.
Collapse
Affiliation(s)
- Haftom Brhane
- Biology Department, Aksum University, Aksum, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute, Ministry of Innovation and Technology, Addis Ababa, Ethiopia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Kibrom B. Abreha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
10
|
Ahmadi AJ, Ahmadikhah A. Occurrence of simple sequence repeats in cDNA sequences of safflower ( Carthamus tinctorius) reveals the importance of SSR-containing genes for cell biology and dynamic response to environmental cues. FRONTIERS IN PLANT SCIENCE 2022; 13:991107. [PMID: 36466261 PMCID: PMC9714374 DOI: 10.3389/fpls.2022.991107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Safflower (Carthamus tinctorius) is a diploid crop plant belonging to the family Asteraceae and is well known as one of important oilseed crops due to edible oil containing unsaturated fatty acids. In recent years it is gaining increased attention for food, pharmaceutical and industrial uses, and hence the updating its breeding methods is necessary. Genic simple sequence repeats (SSRs) in addition of being desire molecular markers, are supposed to influence gene function and the respective phenotype. This study aimed to identify SSRs in cDNA sequences and further analysis of the functional features of the SSR-containing genes to elucidate their role in biological and cellular processes. We identified 1,841 SSR regions in 1,667 cDNA sequences. Among all types of repeats, trinucleotide repeats were the most abundant (35.7%), followed by hexanucleotide (29.6%) and dinucleotide repeats (22.0%). Thirty five SSR primer pairs were validated by PCR reaction, detected a high rate of polymorphism (>57%) among safflower accessions, physically mapped on safflower genome and could clearly discriminate the cultivated accessions from wild relatives. The cDNA-derived SSR markers are suitable for evaluation of genetic diversity, linkage and association mapping studies and genome-based breeding programmes. Occurrence of SSR repeats in biologically-important classes of proteins such as kinases, transferases and transcription factors was inferred from functional analyses, which along with variability of their repeat copies, can endow the cell and whole organism the flexibility of facing with continuously changing environment, and indicate a structure-based evolution mechanism of the genome which acts as an up-to-dating tool for the cell and whole origanism, which is realized in GO terms such as involvement of most SSR-containing genes in biological, cellular and metabolic processes, especially in response to stimulus, response to stress, interaction to other organisms and defense responses.
Collapse
Affiliation(s)
- Ahmad Jawid Ahmadi
- Agronomy Department, Faculty of Agriculture, Higher Education Institute of Samangan, Samangan, Afghanistan
| | - Assadollah Ahmadikhah
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
11
|
Microsatellite analysis and polymorphic marker development based on the full-length transcriptome of Camellia chekiangoleosa. Sci Rep 2022; 12:18906. [PMID: 36344600 PMCID: PMC9640616 DOI: 10.1038/s41598-022-23333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Camellia chekiangoleosa is a popular variety of Oil-camellia that has high oil production and ornamental value. Microsatellite (SSR) markers are the preferred tool for the molecular marker-assisted breeding of C. chekiangoleosa. By focusing on the problems of the low development efficiency of polymorphic SSR markers and the lack of available functional markers in Oil-camellia, we identified 97,510 SSR loci based on the full-length transcriptome sequence of C. chekiangoleosa. An analysis of SSR characteristics showed that mononucleotide (51.29%) and dinucleotide (34.36%) SSRs were the main repeat types. The main SSR distribution areas based on proportion covered were ordered as follows: 5'UTR > 3'UTR > CDS. By comparing our data with those in databases such as GO and KEGG, we obtained functional annotations of unigene sequences containing SSR sites. The data showed that the amplification efficiency of the SSR primers was 51.72%, and the development efficiency of polymorphic SSR primers was 26.72%. Experiments verified that dinucleotide and pentanucleotide SSRs located in UTR regions could produce more polymorphic markers. An investigation into the genetic diversity of several C. chekiangoleosa populations also suggested that the developed SSR markers had higher levels of polymorphism. This study will provide a reference and high-quality markers for the large-scale development of functional SSR markers and genetic research in Oil-camellia.
Collapse
|
12
|
Bharti PK, Husai A. Mining and analysis of microsatellites in human coronavirus genomes using the in-house built Java pipeline. Genomics Inform 2022; 20:e35. [PMID: 36239112 PMCID: PMC9576472 DOI: 10.5808/gi.20033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Microsatellites or simple sequence repeats are motifs of 1 to 6 nucleotides in length present in both coding and non-coding regions of DNA. These are found widely distributed in the whole genome of prokaryotes, eukaryotes, bacteria, and viruses and are used as molecular markers in studying DNA variations, gene regulation, genetic diversity and evolutionary studies, etc. However, in vitro microsatellite identification proves to be time-consuming and expensive. Therefore, the present research has been focused on using an in-house built java pipeline to identify, analyse, design primers and find related statistics of perfect and compound microsatellites in the seven complete genome sequences of coronavirus, including the genome of coronavirus disease 2019, where the host is Homo sapiens. Based on search criteria among seven genomic sequences, it was revealed that the total number of perfect simple sequence repeats (SSRs) found to be in the range of 76 to 118 and compound SSRs from 01 to10, thus reflecting the low conversion of perfect simple sequence to compound repeats. Furthermore, the incidence of SSRs was insignificant but positively correlated with genome size (R2 = 0.45, p > 0.05), with simple sequence repeats relative abundance (R2 = 0.18, p > 0.05) and relative density (R2 = 0.23, p > 0.05). Dinucleotide repeats were the most abundant in the coding region of the genome, followed by tri, mono, and tetra. This comparative study would help us understand the evolutionary relationship, genetic diversity, and hypervariability in minimal time and cost.
Collapse
Affiliation(s)
- P K Bharti
- School of Computer Science, Shri Venkateshwara University, Gajraula 244236, Uttar Pradesh, India
| | - Akhtar Husai
- Department of Computer Science & IT, MJP Rohilkhand University, Bareilly 243006, Uttar Pradesh, India
| |
Collapse
|
13
|
Chen W, Yang H, Zhong S, Zhu J, Zhang Q, Li Z, Ren T, Tan F, Shen J, Li Q, Luo P. Expression Profiles of Microsatellites in Fruit Tissues of Akebia trifoliata and Development of Efficient EST-SSR Markers. Genes (Basel) 2022; 13:1451. [PMID: 36011362 PMCID: PMC9408125 DOI: 10.3390/genes13081451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Akebia trifoliata, a member of the family Lardizabalaceae, has high exploitation potential for multiple economic purposes, so genetic improvements to meet requirements for commercial demand are needed. However, this progress is largely impeded by a lack of effective selection markers. In this study, we obtained 271.49 Gb of clean transcriptomic data from 12 samples (three tissues at four developmental stages) of A. trifoliata fruit. We identified 175,604, 194,370, and 207,906 SSRs from the de novo assembled 416,363, 463,756, and 491,680 unigene sequences obtained from the flesh, seed, and rind tissues, respectively. The profile and proportion of SSR motifs expressed in each fruit tissue and developmental stage were remarkably similar, but many trinucleotide repeats had differential expression levels among different tissues or at different developmental stages. In addition, we successfully designed 16,869 functional EST-SSR primers according to the annotated unigenes. Finally, 94 and 72 primer pairs out of 100 randomly selected primer pairs produced clear bands and polymorphic bands, respectively. These results were also used to elucidate the expression profiles of different tissues at various stages. Additionally, we provided a set of effective, polymorphic, and reliable EST-SSR markers sufficient for accelerating the discovery of metabolic and pathway-specific functional genes for genetic improvement and increased commercial productivity.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China
| | - Huai Yang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengfu Zhong
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Zhu
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiuyi Zhang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Li
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianheng Ren
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China
| | - Feiquan Tan
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinliang Shen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Li
- Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic, Chongqing 408000, China
| | - Peigao Luo
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Vavilova VY, Konopatskaia ID, Blinov AG, Kondratenko EY, Kruchinina YV, Goncharov NP. Genetic Variability of Btr1 Genes in Tetraploid Wheat Species and Aegilops speltoides Tausch. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Maibam A, Lone SA, Ningombam S, Gaikwad K, Amitha Mithra SV, Singh MP, Singh SP, Dalal M, Padaria JC. Transcriptome Analysis of Pennisetum glaucum (L.) R. Br. Provides Insight Into Heat Stress Responses. Front Genet 2022; 13:884106. [PMID: 35719375 PMCID: PMC9201763 DOI: 10.3389/fgene.2022.884106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Pennisetum glaucum (L.) R. Br., being widely grown in dry and hot weather, frequently encounters heat stress at various stages of growth. The crop, due to its inherent capacity, efficiently overcomes such stress during vegetative stages. However, the same is not always the case with the terminal (flowering through grain filling) stages of growth, where recovery from stress is more challenging. However, certain pearl millet genotypes such as 841-B are known to overcome heat stress even at the terminal growth stages. Therefore, we performed RNA sequencing of two contrasting genotypes of pearl millet (841-B and PPMI-69) subjected to heat stress (42°C for 6 h) at flowering stages. Over 274 million high quality reads with an average length of 150 nt were generated, which were assembled into 47,310 unigenes having an average length of 1,254 nucleotides, N50 length of 1853 nucleotides, and GC content of 53.11%. Blastx resulted in the annotation of 35,628 unigenes, and functional classification showed 15,950 unigenes designated to 51 Gene Ontology terms. A total of 13,786 unigenes were allocated to 23 Clusters of Orthologous Groups, and 4,255 unigenes were distributed to 132 functional Kyoto Encyclopedia of Genes and Genomes database pathways. A total of 12,976 simple sequence repeats and 305,759 SNPs were identified in the transcriptome data. Out of 2,301 differentially expressed genes, 10 potential candidate genes were selected based on log2 fold change and adjusted p value parameters for their differential gene expression by qRT-PCR. We were able to identify differentially expressed genes unique to either of the two genotypes, and also, some DEGs common to both the genotypes were enriched. The differential expression patterns suggested that 841-B 6 h has better ability to maintain homeostasis during heat stress as compared to PPMI-69 6 h. The sequencing data generated in this study, like the SSRs and SNPs, shall serve as an important resource for the development of genetic markers, and the differentially expressed heat responsive genes shall be used for the development of transgenic crops.
Collapse
Affiliation(s)
- Albert Maibam
- PG School, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
| | - Showkat Ahmad Lone
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
| | - Sunil Ningombam
- PG School, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
| | - S. V. Amitha Mithra
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
| | - Madan Pal Singh
- Division of Plant Physiology, Indian Council of Agricultural Research -Indian Agricultural Research Institute, New Delhi, India
| | - Sumer Pal Singh
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Monika Dalal
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
| | - Jasdeep Chatrath Padaria
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
- *Correspondence: Jasdeep Chatrath Padaria,
| |
Collapse
|
16
|
Cai Z, Xie Z, Huang L, Wang Z, Pan M, Yu X, Xu S, Luo J. Full-length transcriptome analysis of Adiantum flabellulatum gametophyte. PeerJ 2022; 10:e13079. [PMID: 35287343 PMCID: PMC8917799 DOI: 10.7717/peerj.13079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
Ferns are important components of plant communities on earth, but their genomes are generally very large, with many redundant genes, making whole genome sequencing of ferns prohibitively expensive and time-consuming. This means there is a significant lack of fern reference genomes, making molecular biology research difficult. The gametophytes of ferns can survive independently, are responsible for sexual reproduction and the feeding of young sporophytes, and play an important role in the alternation of generations. For this study, we selected Adiantum flabellulatum as it has both ornamental and medicinal value and is also an indicator plant of acidic soil. The full-length transcriptome sequencing of its gametophytes was carried out using PacBio three-generation sequencing technology. A total of 354,228 transcripts were obtained, and 231,705 coding sequences (CDSs) were predicted, including 5,749 transcription factors (TFs), 2,214 transcription regulators (TRs) and 4,950 protein kinases (PKs). The transcripts annotated by non-redundant protein sequence database (NR), Kyoto encyclopedia of genes and genomes (KEGG), eukaryotic ortholog groups (KOG), Swissprot, protein family (Pfma), nucleotide sequence database (NT) and gene ontology (GO) were 251,501, 197,474, 193,630, 194,639, 195,956, 113,069 and 197,883, respectively. In addition, 138,995 simple sequence repeats (SSRs) and 111,793 long non-coding RNAs (lncRNAs) were obtained. We selected nine chlorophyll synthase genes for qRT-PCR, and the results showed that the full-length transcript sequences and the annotation information were reliable. This study can provide a reference gene set for subsequent gene expression quantification.
Collapse
Affiliation(s)
- Zeping Cai
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Zhenyu Xie
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Luyao Huang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Zixuan Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Min Pan
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Xudong Yu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Shitao Xu
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Jiajia Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
17
|
Characterization and phylogenetic analysis of the complete mitochondrial genome of the pathogenic fungus Ilyonectria destructans. Sci Rep 2022; 12:2359. [PMID: 35149731 PMCID: PMC8837645 DOI: 10.1038/s41598-022-05428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Ilyonectria destructans is a pathogenic fungus causing root rot and other symptoms on trees and many crops. This paper analyses the mitochondrial genome of I. destructans and compares it with other published Nectriaceae mitogenomes. The I. destructans mitogenome appears as a circular DNA molecule of 42,895 bp and an overall GC content of 28.23%. It contains 28 protein-coding genes (15 core protein genes and 13 free-standing ORFs), two rRNAs and 27 tRNAs. The gene content and order were found to be conserved in the mitogenome of I. destructans and other Nectriaceae, although the genome size varies because of the variation in the number and length of intergenic regions and introns. For most core protein-coding genes in Nectriaceae species, Ka/Ks < 1 indicates purifying selection. Among some Nectriaceae representatives, only the rps3 gene was found under positive selection. Phylogenetic analyses based on nucleotide sequences of 15 protein-coding genes divided 45 Hypocreales species into six major clades matching the families Bionectriaceae, Cordycipitaceae, Clavicipitaceae, Ophiocordycipitaceae, Hypocreaceae and Nectriaceae. I. destructans appeared as a sister species to unidentified Ilyonectia sp., closely related to C. ilicicola, N. cinnabarina and a clad of ten Fusarium species and G. moniliformis. The complete mitogenome of I. destructans reported in the current paper will facilitate the study of epidemiology, biology, genetic diversity of the species and the evolution of family Nectriace and the Hypocreales order.
Collapse
|
18
|
DNA-Based Tools to Certify Authenticity of Rice Varieties—An Overview. Foods 2022; 11:foods11030258. [PMID: 35159410 PMCID: PMC8834242 DOI: 10.3390/foods11030258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Rice (Oryza sativa L.) is one of the most cultivated and consumed crops worldwide. It is mainly produced in Asia but, due to its large genetic pool, it has expanded to several ecosystems, latitudes and climatic conditions. Europe is a rice producing region, especially in the Mediterranean countries, that grow mostly typical japonica varieties. The European consumer interest in rice has increased over the last decades towards more exotic types, often more expensive (e.g., aromatic rice) and Europe is a net importer of this commodity. This has increased food fraud opportunities in the rice supply chain, which may deliver mixtures with lower quality rice, a problem that is now global. The development of tools to clearly identify undesirable mixtures thus became urgent. Among the various tools available, DNA-based markers are considered particularly reliable and stable for discrimination of rice varieties. This review covers aspects ranging from rice diversity and fraud issues to the DNA-based methods used to distinguish varieties and detect unwanted mixtures. Although not exhaustive, the review covers the diversity of strategies and ongoing improvements already tested, highlighting important advantages and disadvantages in terms of costs, reliability, labor-effort and potential scalability for routine fraud detection.
Collapse
|
19
|
Liu H, Zhang Y, Wang Z, Su Y, Wang T. Development and Application of EST-SSR Markers in Cephalotaxus oliveri From Transcriptome Sequences. Front Genet 2021; 12:759557. [PMID: 34868238 PMCID: PMC8635753 DOI: 10.3389/fgene.2021.759557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Cephalotaxus oliveri is an endemic conifer of China, which has medicinal and ornamental value. However, the limited molecular markers and genetic information are insufficient for further genetic studies of this species. In this study, we characterized and developed the EST-SSRs from transcriptome sequences for the first time. The results showed that a total of 5089 SSRs were identified from 36446 unigenes with a density of one SSR per 11.1 kb. The most common type was trinucleotide repeats, excluding mononucleotide repeats, followed by dinucleotide repeats. AAG/CTT and AT/AT exhibited the highest frequency in the trinucleotide and dinucleotide repeats, respectively. Of the identified SSRs, 671, 1125, and 1958 SSRs were located in CDS, 3′UTR, and 5′UTR, respectively. Functional annotation showed that the SSR-containing unigenes were involved in growth and development with various biological functions. Among successfully designed primer pairs, 238 primer pairs were randomly selected for amplification and validation of EST-SSR markers and 47 primer pairs were identified as polymorphic. Finally, 28 high-polymorphic primers were used for genetic analysis and revealed a moderate level of genetic diversity. Seven natural C. oliveri sampling sites were divided into two genetic groups. Furthermore, the 28 EST-SSRs had 96.43, 71.43, and 78.57% of transferability rate in Cephalotaxus fortune, Ametotaxus argotaenia, and Pseudotaxus chienii, respectively. These markers developed in this study lay the foundation for further genetic and adaptive evolution studies in C. oliveri and related species.
Collapse
Affiliation(s)
- Hanjing Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuli Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Jian Y, Yan W, Xu J, Duan S, Li G, Jin L. Genome-wide simple sequence repeat markers in potato: abundance, distribution, composition, and polymorphism. DNA Res 2021; 28:6381570. [PMID: 34609514 DOI: 10.1093/dnares/dsab020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 11/14/2022] Open
Abstract
Simple sequence repeats (SSRs) are important sources of genetic diversity and are widely used as markers in genetics and molecular breeding. In this study, we examined four potato genomes of DM1-3 516 R44 (DM) from Solanum phureja, RH89039-16 (RH) from Solanum tuberosum, M6 from Solanum chacoense and Solanum commersonii to determine SSR abundance and distribution and develop a larger list of polymorphic markers for a potentially wide range of uses for the potato community. A total of 1,734,619 SSRs were identified across the four genomes with an average of 433,655 SSRs per genome and 2.31kb per SSR. The most abundant repeat units for mono-, di-, tri-, and tetra-nucleotide SSRs were (A/T)n, (AT/AT)n, (AAT/ATT)n, and (ATAT/ATAT)n, respectively. The SSRs were most abundant (78.79%) in intergenic regions and least abundant (3.68%) in untranslated regions. On average, 168,069 SSRs with unique flanking sequences were identified in the four genomes. Further, we identified 16,245 polymorphic SSR markers among the four genomes. Experimental validation confirmed 99.69% of tested markers could generate target bands. The high-density potato SSR markers developed in this study will undoubtedly facilitate the application of SSR markers for genetic research and marker-pyramiding in potato breeding.
Collapse
Affiliation(s)
- Yinqiao Jian
- Department of Potato, Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wenyuan Yan
- Department of Potato, Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianfei Xu
- Department of Potato, Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Shaoguang Duan
- Department of Potato, Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Guangcun Li
- Department of Potato, Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Liping Jin
- Department of Potato, Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
21
|
Dabral A, Shamoon A, Meena RK, Kant R, Pandey S, Ginwal HS, Bhandari MS. Genome skimming-based simple sequence repeat (SSR) marker discovery and characterization in Grevillea robusta. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1623-1638. [PMID: 34305342 PMCID: PMC8285676 DOI: 10.1007/s12298-021-01035-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Proteaceae, a largely southern hemisphere family consisting of 80 genera distributed in Australia and southern Africa as its centres of greatest diversity, also extends well in northern and southern America. Under this family, Grevillea robusta is a fast-growing species got popularity in farm and avenue plantations. Despite the ecological and economic importance, the species has not yet been investigated for its genetic improvement and genome-based studies. Only a few molecular markers are available for the species or its close relatives, which hinders genomic and population genetics studies. Genetic markers have been intensively applied for the main strategies in breeding programs, especially for the economically important traits. Hence, it is of utmost priority to develop genomic database resources and species-specific markers for studying quantitative genetics in G. robusta. Given this, the present study aimed to develop de novo genome sequencing, robust microsatellites markers, sequence annotation and their validation in different stands of G. robusta in northern India. Library preparation and sequencing were carried out using Illumina paired-end sequencing technology. Approximately, ten gigabases (Gb) sequence data with 70.87 million raw reads assembled into 425,923 contigs (read mapped to 76.48%) comprising 455 Mb genome size (23 × coverage) generated through genome skimming approach. In total, 9421 simple sequence repeat (SSR) primer pairs were successfully designed from 13,335 microsatellite repeats. Afterward, a subset of 161 primer pairs was randomly selected, synthesized and validated. All the tested primers showed successful amplification but only 13 showed polymorphisms. The polymorphic SSRs were further used to estimate the measures of genetic diversity in 12 genotypes each from the states of Punjab, Haryana, Himachal Pradesh and Uttarakhand. Importantly, the average number of alleles (Na), observed heterozygosity (Ho), expected heterozygosity (He), and the polymorphism information content (PIC) were recorded as 2.69, 0.356, 0.557 and 0.388, respectively. The availability of sequence information and newly developed SSR markers could potentially be used in various genetic analyses and improvements through molecular breeding strategies for G. robusta. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01035-w.
Collapse
Affiliation(s)
- Aman Dabral
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand 248 195 India
| | - Arzoo Shamoon
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand 248 195 India
| | - Rajendra K. Meena
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand 248 195 India
| | - Rama Kant
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand 248 195 India
| | - Shailesh Pandey
- Forest Pathology Discipline, Division of Forest Protection, Forest Research Institute, Dehradun, Uttarakhand 248 006 India
| | - Harish S. Ginwal
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand 248 195 India
| | - Maneesh S. Bhandari
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand 248 195 India
| |
Collapse
|
22
|
Characterization of microsatellites in the endangered snow leopard based on the chromosome-level genome. MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Combined Transcriptome Analysis Reveals the Ovule Abortion Regulatory Mechanisms in the Female Sterile Line of Pinus tabuliformis Carr. Int J Mol Sci 2021; 22:ijms22063138. [PMID: 33808669 PMCID: PMC8003466 DOI: 10.3390/ijms22063138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Ovule abortion is a common phenomenon in plants that has an impact on seed production. Previous studies of ovule and female gametophyte (FG) development have mainly focused on angiosperms, especially in Arabidopsis thaliana. However, because it is difficult to acquire information about ovule development in gymnosperms, this remains unclear. Here, we investigated the transcriptomic data of natural ovule abortion mutants (female sterile line, STE) and the wild type (female fertile line, FER) of Pinus tabuliformis Carr. to evaluate the mechanism of ovule abortion during the process of free nuclear mitosis (FNM). Using single-molecule real-time (SMRT) sequencing and next-generation sequencing (NGS), 18 cDNA libraries via Illumina and two normalized libraries via PacBio, with a total of almost 400,000 reads, were obtained. Our analysis showed that the numbers of isoforms and alternative splicing (AS) patterns were significantly variable between FER and STE. The functional annotation results demonstrate that genes involved in the auxin response, energy metabolism, signal transduction, cell division, and stress response were differentially expressed in different lines. In particular, AUX/IAA, ARF2, SUS, and CYCB had significantly lower expression in STE, showing that auxin might be insufficient in STE, thus hindering nuclear division and influencing metabolism. Apoptosis in STE might also have affected the expression levels of these genes. To confirm the transcriptomic analysis results, nine pairs were confirmed by quantitative real-time PCR. Taken together, these results provide new insights into ovule abortion in gymnosperms and further reveal the regulatory mechanisms of ovule development.
Collapse
|
24
|
Panzade KP, Kale SS, Chavan NR, Hatzade B. Genome-wide analysis of Hsp70 and Hsp100 gene families in Ziziphus jujuba. Cell Stress Chaperones 2021; 26:341-353. [PMID: 33184780 PMCID: PMC7925773 DOI: 10.1007/s12192-020-01179-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
The Ziziphus species are naturally tolerant to a range of abiotic stresses. Therefore, it is expected that they are an enriched source of genes conferring stress tolerance. Heat shock proteins (Hsps) play a significant role in plants in imparting tolerance against abiotic stress conditions. To get an insight into potential Hsp function in Ziziphus, we performed a genome-wide analysis and expression study of Hsp70 and Hsp100 gene families in Ziziphus jujuba. We identified 21 and 6 genes of the ZjHsp70 and ZjHsp100 families, respectively. Physiochemical properties, chromosomal location, gene structure, motifs, and protein domain organization were analysed for structural and functional characterization. We identified the contribution of tandem and segmental gene duplications in expansions of ZjHsp70s and ZjHsp100s in Z. jujuba. Promoter analysis suggested that ZjHsp70s and ZjHsp100s perform diverse functions related to abiotic stress. Furthermore, expression analyses revealed that most of the Z. jujuba Hsp genes are differentially expressed in response to heat, drought, and salinity stress. Our analyses suggested ZjHsp70-3, ZjHsp70-5, ZjHsp70-6, ZjHsp70-16, ZjHsp70-17, ZjHsp70-20, ZjHsp100-1, ZjHsp100-2, and ZjHsp100-3 are potential candidates for further functional analysis and with regard to breeding new more resilient strains. The present analysis laid the foundation for understanding the molecular mechanism of Hsps70 and Hsp100 gene families regulating abiotic stress tolerance in Z. jujuba.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- Division of Molecular Biology and Biotechnology, Indian Agriculture Research Institute, New Delhi, 110012 India
| | - Sonam S. Kale
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431007 India
| | - Narendra R. Chavan
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431007 India
| | - Bhupal Hatzade
- Department of Plant Biotechnology, Ajeet Seeds Pvt. Ltd., Aurangabad, 431133 India
| |
Collapse
|
25
|
Jin Z, Sinicrope FA. Prognostic and Predictive Values of Mismatch Repair Deficiency in Non-Metastatic Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13020300. [PMID: 33467526 PMCID: PMC7830023 DOI: 10.3390/cancers13020300] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Universal MMR/MSI testing is standard of care for all patients with newly diagnosed CRC based on multi-society guidelines in the United States. Such testing is intended to identify patients with Lynch Syndrome due to a germline mutation in an MMR gene, but also detects those with sporadic dMMR/MSI-high CRCs. The prognostic utility of MMR/MSI status in non-metastatic colorectal cancer has been studied extensively, yet more limited data are available for its predictive utility. Results have not been entirely consistent due to potential stage-related differences and limited numbers of dMMR/MSI-H patients included in the studies. In this review, we summarize the current evidence for the prognostic and predictive value of dMMR/MSI-H in non-metastatic CRC, and discuss the use of this biomarker for patient management and treatment decisions in clinical practice.
Collapse
|
26
|
Li J, Ye C. Genome-wide analysis of microsatellite and sex-linked marker identification in Gleditsia sinensis. BMC PLANT BIOLOGY 2020; 20:338. [PMID: 32680463 PMCID: PMC7367340 DOI: 10.1186/s12870-020-02551-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Gleditsia sinensis Lam. (Leguminosae), a dioecious perennial arbor, demonstrates important medicinal properties and economic value. These properties can be harnessed depending on the sex of the plant. However, the sex of the plants is difficult to identify accurately through morphological methods before the flowering. RESULTS We used bulked segregant analysis to screen sex-specific simple sequence repeat (SSR) markers in G. sinensis. Five male and five female plants were pooled to form the male and female bulks, respectively, and subjected to whole-genome sequencing. After high-throughput sequencing, 5,350,359 sequences were obtained, in which 2,065,210 SSRs were searched. Among them, the number of duplicated SSRs was the highest. The male plants could reach 857,874, which accounted for 60.86% of the total number of male plants. The female plants could reach 1,447,603, which accounted for 56.25% of the total model of the female plants. Among all the nucleotide repeat types, the A/T-rich motif was the most abundant. A total of 309,516 female strain-specific SSRs were selected by clustering. After designing the primers, the male and female gene pools were amplified, and five pairs of primers (i.e., 27, 34, 36, 39, and 41) were found to amplify the differential bands in the male and female gene pools. Using the five pairs of primers, we performed PCR verification on 10 individuals of known sex, which constructed the gene pool. The female plants amplified a single fragment of lengths (i.e., 186, 305, 266, 203, and 260 bp) and no male plant strip, thereby completing the identification of the male and female sexes of the G. sinensis. CONCLUSIONS This study provides accurate sex identification strategies between female and male plants, thus improving the utilization rate of G. sinensis resources.
Collapse
Affiliation(s)
- Jianjun Li
- College of Life Science, Henan Normal University, Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, Xinxiang, 453007 China
| | - Chenglin Ye
- College of Life Science, Henan Normal University, Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, Xinxiang, 453007 China
| |
Collapse
|
27
|
Gong W, Wang Y, Xie C, Zhou Y, Zhu Z, Peng Y. Whole genome sequence of an edible and medicinal mushroom, Hericium erinaceus (Basidiomycota, Fungi). Genomics 2020; 112:2393-2399. [DOI: 10.1016/j.ygeno.2020.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
|
28
|
Ranathunge C, Wheeler GL, Chimahusky ME, Perkins AD, Pramod S, Welch ME. Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations. Mol Ecol 2020; 29:1704-1716. [PMID: 32285554 DOI: 10.1111/mec.15440] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/15/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022]
Abstract
Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA-Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3,325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2,379. The percentage of variation in gene expression explained by eSTRs ranged from 1%-86% when controlling for population and allele-by-population interaction effects at the 479 eSTRs. Of these eSTRs, 70.4% are in untranslated regions (UTRs). A gene ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis- and trans-regulatory processes. Our findings suggest that a substantial number of transcribed microsatellites can influence gene expression.
Collapse
Affiliation(s)
- Chathurani Ranathunge
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Gregory L Wheeler
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Melody E Chimahusky
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Andy D Perkins
- Department of Computer Science and Engineering, Mississippi State University, Starkville, MS, USA
| | - Sreepriya Pramod
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Mark E Welch
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
29
|
Dang Z, Huang L, Jia Y, Lockhart PJ, Fong Y, Tian Y. Identification of Genic SSRs Provide a Perspective for Studying Environmental Adaptation in the Endemic Shrub Tetraena mongolica. Genes (Basel) 2020; 11:E322. [PMID: 32197402 PMCID: PMC7140860 DOI: 10.3390/genes11030322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 02/03/2023] Open
Abstract
Tetraena mongolica is a xerophytic shrub endemic to desert regions in Inner Mongolia. This species has evolved distinct survival strategies that allow it to adapt to hyper-drought and heterogeneous habitats. Simple sequence repeats (SSRs) may provide a molecular basis in plants for fast adaptation to environmental change. Thus, identifying SSRs and their possible effects on gene behavior has the potential to provide valuable information for studies of adaptation. In this study, we sequenced six individual transcriptomes of T. mongolica from heterogeneous habitats, focused on SSRs located in genes, and identified 811 polymorphic SSRs. Of the identified SSRs, 172, 470, and 76 were located in 5' UTRs, CDSs, and 3' UTRs in 591 transcripts; and AG/CT, AAC/GTT, and AT/AT were the most abundant repeats in each gene region. Functional annotation showed that many of the identified polymorphic SSRs were in genes that were enriched in several GO terms and KEGG pathways, suggesting the functional significance of these genes in the environmental adaptation process. The identification of polymorphic genic SSRs in our study lays a foundation for future studies investigating the contribution of SSRs to regulation of genes in natural populations of T. mongolica and their importance for adaptive evolution of this species.
Collapse
Affiliation(s)
- Zhenhua Dang
- Inner Mongolia Key Laboratory of Grassland Ecology & Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Z.D.); (L.H.); (Y.J.)
| | - Lei Huang
- Inner Mongolia Key Laboratory of Grassland Ecology & Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Z.D.); (L.H.); (Y.J.)
| | - Yuanyuan Jia
- Inner Mongolia Key Laboratory of Grassland Ecology & Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Z.D.); (L.H.); (Y.J.)
| | - Peter J. Lockhart
- School of Fundamental Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand; (P.J.L.); (Y.F.)
| | - Yang Fong
- School of Fundamental Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand; (P.J.L.); (Y.F.)
| | - Yunyun Tian
- Ministry of Education Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
30
|
Qi WH, Lu T, Zheng CL, Jiang XM, Jie H, Zhang XY, Yue BS, Zhao GJ. Distribution patterns of microsatellites and development of its marker in different genomic regions of forest musk deer genome based on high throughput sequencing. Aging (Albany NY) 2020; 12:4445-4462. [PMID: 32155132 PMCID: PMC7093171 DOI: 10.18632/aging.102895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/25/2020] [Indexed: 01/21/2023]
Abstract
Forest musk deer (Moschus berezovskii, FMD) is an endangered artiodactyl species, male FMD produce musk. We have sequenced the whole genome of FMD, completed the genomic assembly and annotation, and performed bioinformatic analyses. Our results showed that microsatellites (SSRs) displayed nonrandomly distribution in genomic regions, and SSR abundances were much higher in the intronic and intergenic regions compared to other genomic regions. Tri- and hexanucleotide perfect (P) SSRs predominated in coding regions (CDSs), whereas, tetra- and pentanucleotide P-SSRs were less abundant. Trifold P-SSRs had more GC-contents in the 5′-untranslated regions (5'UTRs) and CDSs than other genomic regions, whereas mononucleotide P-SSRs had the least GC-contents. The repeat copy numbers (RCN) of the same mono- to hexanucleotide P-SSRs had different distributions in different genomic regions. The RCN of trinucleotide P-SSRs had increased significantly in the CDSs compared to the transposable elements (TEs), intronic and intergenic regions. The analysis of coefficient of variability (CV) of P-SSRs showed that the RCN of mononucleotide P-SSRs had relative higher variation in different genomic regions, followed by the CV pattern of RCN: dinucleotide P-SSRs > trinucleotide P-SSRs > tetranucleotide P-SSRs > pentanucleotide P-SSRs > hexanucleotide P-SSRs. The CV variations of RCN of the same mono- to hexanucleotide P-SSRs were relative higher in the intron and intergenic regions, followed by that in the TEs, and the relative lower was in the 5'UTR, CDSs and 3'UTRs. 58 novel polymorphic SSR loci were detected based on genotyping DNA from 36 captive FMD and 22 SSR markers finally showed polymorphism, stability, and repetition.
Collapse
Affiliation(s)
- Wen-Hua Qi
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Three Gorges Reservoir Famous-region Drug, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, P. R. China.,Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, P. R. China
| | - Ting Lu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, P. R. China
| | - Cheng-Li Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu 611830, P. R. China
| | - Xue-Mei Jiang
- College of Environmental and Chemistry Engineering, Chongqing Three Gorges University, Chongqing 404120, P. R. China
| | - Hang Jie
- Chongqing Engineering Technology Research Center for GAP of Genuine Medicinal Materials, Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, P. R. China
| | - Xiu-Yue Zhang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, P. R. China
| | - Bi-Song Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, P. R. China
| | - Gui-Jun Zhao
- Chongqing Engineering Technology Research Center for GAP of Genuine Medicinal Materials, Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, P. R. China
| |
Collapse
|
31
|
Silva SR, Pinheiro DG, Penha HA, Płachno BJ, Michael TP, Meer EJ, Miranda VFO, Varani AM. Intraspecific Variation within the Utricularia amethystina Species Morphotypes Based on Chloroplast Genomes. Int J Mol Sci 2019; 20:E6130. [PMID: 31817365 PMCID: PMC6940893 DOI: 10.3390/ijms20246130] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/09/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023] Open
Abstract
Utricularia amethystina Salzm. ex A.St.-Hil. & Girard (Lentibulariaceae) is a highly polymorphic carnivorous plant taxonomically rearranged many times throughout history. Herein, the complete chloroplast genomes (cpDNA) of three U. amethystina morphotypes: purple-, white-, and yellow-flowered, were sequenced, compared, and putative markers for systematic, populations, and evolutionary studies were uncovered. In addition, RNA-Seq and RNA-editing analysis were employed for functional cpDNA evaluation. The cpDNA of three U. amethystina morphotypes exhibits typical quadripartite structure. Fine-grained sequence comparison revealed a high degree of intraspecific genetic variability in all morphotypes, including an exclusive inversion in the psbM and petN genes in U. amethystina yellow. Phylogenetic analyses indicate that U. amethystina morphotypes are monophyletic. Furthermore, in contrast to the terrestrial Utricularia reniformis cpDNA, the U. amethystina morphotypes retain all the plastid NAD(P)H-dehydrogenase (ndh) complex genes. This observation supports the hypothesis that the ndhs in terrestrial Utricularia were independently lost and regained, also suggesting that different habitats (aquatic and terrestrial) are not related to the absence of Utricularia ndhs gene repertoire as previously assumed. Moreover, RNA-Seq analyses recovered similar patterns, including nonsynonymous RNA-editing sites (e.g., rps14 and petB). Collectively, our results bring new insights into the chloroplast genome architecture and evolution of the photosynthesis machinery in the Lentibulariaceae.
Collapse
Affiliation(s)
- Saura R. Silva
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Universidade Estadual Paulista (Unesp), Sao Paulo 14884-900, Brazil; (D.G.P.); (H.A.P.)
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Universidade Estadual Paulista (Unesp), Sao Paulo 14884-900, Brazil; (D.G.P.); (H.A.P.)
| | - Helen A. Penha
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Universidade Estadual Paulista (Unesp), Sao Paulo 14884-900, Brazil; (D.G.P.); (H.A.P.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Krakow, Poland;
| | | | | | - Vitor F. O. Miranda
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Universidade Estadual Paulista (Unesp), Sao Paulo 14884-900, Brazil
| | - Alessandro M. Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Universidade Estadual Paulista (Unesp), Sao Paulo 14884-900, Brazil; (D.G.P.); (H.A.P.)
| |
Collapse
|
32
|
Abstract
AbstractMicrosatellites or simple sequence repeats (SSRs) are among the genetic markers most widely utilized in research. This includes applications in numerous fields such as genetic conservation, paternity testing, and molecular breeding. Though ordered draft genome assemblies of camels have been announced, including for the Arabian camel, systemic analysis of camel SSRs is still limited. The identification and development of informative and robust molecular SSR markers are essential for marker assisted breeding programs and paternity testing. Here we searched and compared perfect SSRs with 1–6 bp nucleotide motifs to characterize microsatellites for draft genome sequences of the Camelidae. We analyzed and compared the occurrence, relative abundance, relative density, and guanine-cytosine (GC) content in four taxonomically different camelid species: Camelus dromedarius, C. bactrianus, C. ferus, and Vicugna pacos. A total of 546762, 544494, 547974, and 437815 SSRs were mined, respectively. Mononucleotide SSRs were the most frequent in the four genomes, followed in descending order by di-, tetra-, tri-, penta-, and hexanucleotide SSRs. GC content was highest in dinucleotide SSRs and lowest in mononucleotide SSRs. Our results provide further evidence that SSRs are more abundant in noncoding regions than in coding regions. Similar distributions of microsatellites were found in all four species, which indicates that the pattern of microsatellites is conserved in family Camelidae.
Collapse
|
33
|
Mahfooz S, Srivastava A, Yadav MC, Tahoor A. Comparative genomics in phytopathogenic prokaryotes reveals the higher relative abundance and density of long-SSRs in the smallest prokaryotic genome. 3 Biotech 2019; 9:340. [PMID: 31478033 DOI: 10.1007/s13205-019-1872-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/13/2019] [Indexed: 10/26/2022] Open
Abstract
Frequency and distribution of long-SSRs were studied in 18 phytopathogenic prokaryotes. Higher relative abundance of the long-SSRs was observed in phytopathogenic prokaryotes when compared to non-pathogenic control. The frequency of these SSRs was positively correlated with size and GC content of the genomes of phytopathogenic prokaryotes. Interestingly, phytopathogens with higher GC content in the genome were found to posses longer repeat motifs of SSRs, whereas those having lesser GC content were harbouring shorter repeat motifs. Higher abundance of tri- and hexa-nucleotide repeat motifs were the characteristic of actinomycetes, where as higher abundance of mono- and tetra-nucleotide repeats were the characteristic of the mollicutes. The maximum relative abundance and relative density of SSR were found in the smallest genome of host-adapted pathogen Aster yellow, however, length of microsatellite repeat units was the least. On the basis of presence of SSRs in the housekeeping genes, a phylogenetic relationship between these phytopathogenic prokaryotes was deduced and compared with the phylogeny developed based on 16S ribosomal RNA gene.
Collapse
|
34
|
Wang X, Zhang Y, Qiao L, Chen B. Comparative analyses of simple sequence repeats (SSRs) in 23 mosquito species genomes: Identification, characterization and distribution (Diptera: Culicidae). INSECT SCIENCE 2019; 26:607-619. [PMID: 29484820 PMCID: PMC7379697 DOI: 10.1111/1744-7917.12577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 05/28/2023]
Abstract
Simple sequence repeats (SSRs) exist in both eukaryotic and prokaryotic genomes and are the most popular genetic markers, but the SSRs of mosquito genomes are still not well understood. In this study, we identified and analyzed the SSRs in 23 mosquito species using Drosophila melanogaster as reference at the whole-genome level. The results show that SSR numbers (33 076-560 175/genome) and genome sizes (574.57-1342.21 Mb) are significantly positively correlated (R2 = 0.8992, P < 0.01), but the correlation in individual species varies in these mosquito species. In six types of SSR, mono- to trinucleotide SSRs are dominant with cumulative percentages of 95.14%-99.00% and densities of 195.65/Mb-787.51/Mb, whereas tetra- to hexanucleotide SSRs are rare with 1.12%-4.22% and 3.76/Mb-40.23/Mb. The (A/T)n, (AC/GT)n and (AGC/GCT)n are the most frequent motifs in mononucleotide, dinucleotide and trinucleotide SSRs, respectively, and the motif frequencies of tetra- to hexanucleotide SSRs appear to be species-specific. The 10-20 bp length of SSRs are dominant with the number of 110 561 ± 93 482 and the frequency of 87.25% ± 5.73% on average, and the number and frequency decline with the increase of length. Most SSRs (83.34% ± 7.72%) are located in intergenic regions, followed by intron regions (11.59% ± 5.59%), exon regions (3.74% ± 1.95%), and untranslated regions (1.32% ± 1.39%). The mono-, di- and trinucleotide SSRs are the main SSRs in both gene regions (98.55% ± 0.85%) and exon regions (99.27% ± 0.52%). An average of 42.52% of total genes contains SSRs, and the preference for SSR occurrence in different gene subcategories are species-specific. The study provides useful insights into the SSR diversity, characteristics and distribution in 23 mosquito species of genomes.
Collapse
Affiliation(s)
- Xiao‐Ting Wang
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| | - Yu‐Juan Zhang
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| |
Collapse
|
35
|
Fuentes RR, Chebotarov D, Duitama J, Smith S, De la Hoz JF, Mohiyuddin M, Wing RA, McNally KL, Tatarinova T, Grigoriev A, Mauleon R, Alexandrov N. Structural variants in 3000 rice genomes. Genome Res 2019; 29:870-880. [PMID: 30992303 PMCID: PMC6499320 DOI: 10.1101/gr.241240.118] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/11/2019] [Indexed: 12/24/2022]
Abstract
Investigation of large structural variants (SVs) is a challenging yet important task in understanding trait differences in highly repetitive genomes. Combining different bioinformatic approaches for SV detection, we analyzed whole-genome sequencing data from 3000 rice genomes and identified 63 million individual SV calls that grouped into 1.5 million allelic variants. We found enrichment of long SVs in promoters and an excess of shorter variants in 5′ UTRs. Across the rice genomes, we identified regions of high SV frequency enriched in stress response genes. We demonstrated how SVs may help in finding causative variants in genome-wide association analysis. These new insights into rice genome biology are valuable for understanding the effects SVs have on gene function, with the prospect of identifying novel agronomically important alleles that can be utilized to improve cultivated rice.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- International Rice Research Institute, Laguna 4031, Philippines.,Bioinformatics Group, Wageningen University and Research, 6708 PB Wageningen, the Netherlands
| | | | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de Los Andes, Bogotá 111711, Colombia.,Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali 6713, Colombia
| | - Sean Smith
- Biology Department, Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, USA
| | - Juan Fernando De la Hoz
- Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali 6713, Colombia
| | | | - Rod A Wing
- International Rice Research Institute, Laguna 4031, Philippines.,Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, USA.,King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | | | - Tatiana Tatarinova
- Department of Biology, University of La Verne, La Verne, California 91750, USA.,Vavilov Institute of General Genetics, Moscow 119333, Russia.,A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia.,Laboratory of Forest Genomics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Andrey Grigoriev
- Biology Department, Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, USA
| | - Ramil Mauleon
- International Rice Research Institute, Laguna 4031, Philippines
| | | |
Collapse
|
36
|
Park S, Son S, Shin M, Fujii N, Hoshino T, Park S. Transcriptome-wide mining, characterization, and development of microsatellite markers in Lychnis kiusiana (Caryophyllaceae). BMC PLANT BIOLOGY 2019; 19:14. [PMID: 30621589 PMCID: PMC6325733 DOI: 10.1186/s12870-018-1621-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/27/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Lychnis kiusiana Makino is an endangered perennial herb native to wetland areas in Korea and Japan. Despite its conservational and evolutionary significance, population genetic resources are lacking for this species. Next-generation sequencing has been accepted as a rapid and cost-effective solution for the identification of microsatellite markers in nonmodel plants. RESULTS Using Illumina HiSeq 2000 sequencing technology, we assembled 67,498,600 reads into 91,900 contigs and identified 11,403 microsatellite repeat motifs in 9563 contigs. A total of 4510 microsatellite-containing transcripts had Gene Ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 124 pathways with significant scores. Many microsatellites in the L. kiusiana leaf transcriptome were linked to genes involved in the plant response to light intensity, salt stress, temperature stimulus, and nutrient and water deprivation. A total of 12,486 single-nucleotide polymorphisms (SNPs) were identified on transcripts harboring microsatellites. The analysis of nucleotide substitution rates for 2389 unigenes indicated that 39 genes were under strong positive selection. The primers of 6911 microsatellites were designed, and 40 of 50 selected primer pairs were consistently and successfully amplified from 51 individuals. Twenty-five of these were polymorphic, and the average number of alleles per SSR locus was 6.96, with a range from 2 to 15. The observed and expected heterozygosities ranged from 0.137 to 0.902 and 0.131 to 0.827, respectively, and locus-specific FIS estimates ranged from - 0.116 to 0.290. Eleven of the 25 primer pairs were successfully amplified in three additional species of Lychnis: 56% in L. wilfordii, 64% in L. cognata and 80% in L. fulgens. CONCLUSIONS The transcriptomic SSR markers of Lychnis kiusiana provide a valuable resource for understanding the population genetics, evolutionary history, and effective conservation management of this species. Furthermore, the identified microsatellite loci linked to the annotated genes should be useful for developing functional markers of L. kiusiana. The developed markers represent a potentially valuable source of transcriptomic SSR markers for population genetic analyses with moderate levels of cross-taxon portability.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Sungwon Son
- Plant Conservation Division, Korea National Arboretum, Pocheon, Gyeonggi 11186 South Korea
| | - Myungju Shin
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Noriyuki Fujii
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Takuji Hoshino
- Faculty of Biosphere-Geosphere Science, Okayama University of Science, Kita-ku, Okayama, 700-0005 Japan
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| |
Collapse
|
37
|
Xie J, Li F, Khan NU, Zhu X, Wang X, Zhang Z, Ma X, Zhao Y, Zhang Q, Zhang S, Zhang Z, Li J, Li Z, Zhang H. Identifying natural genotypes of grain number per panicle in rice (Oryza sativa L.) by association mapping. Genes Genomics 2018; 41:283-295. [PMID: 30456522 DOI: 10.1007/s13258-018-0758-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION As one of the main yield components, grain number per panicle (GNP) played critical role in the rice yield improvement. The identification of natural advantageous variations under different situations will promote the sustainable genetic improvement in rice yield. OBJECTIVES This study was designed to identify natural genotypes in a rice mini-core collection, to examine the genotypic effects across the indica and japonica genetic background in different environments, and excavating the superior genotypes that had drove the modern genetic improvement. METHODS The association mapping of GNP was carried out using a mini-core collection including 154 indica and 119 japonica accessions in seven different environments. Genotypic effects of each genotype for each QTL were calculated and genotype frequency distortion between the commercial rice cultivars and landraces was screened by χ2-test. RESULTS In total, 74 QTLs containing stable and sensitive QTLs in various environments were detected. Within them, 20 positive and 24 negative genotypes in indica, and 24 positive and 16 negative genotypes in japonica were identified. When checking the accumulation of positive genotypes identified in indica across cultivars in each of the two subspecies, it indicated that increased number of positive genotypes identified in indica results in the substantially increased GNP in both indica and japonica across all of the environments, while this trend was not obvious for the positive genotypes identified in japonica especially in short day environments. Moreover, the positive and negative genotype frequency distortion between the landraces and commercial rice cultivars indicated that both positive selection of positive genotypes and negative selection of negative genotypes had driven the genetic improvement on GNP. CONCLUSION Our findings suggested that the accumulation of positive genotypes and purifying negative genotypes played equivalently important roles in the improvement of rice yield, but the efficient use for some QTLs or genotypes depends on the comprehensive evaluation of their effect under diverse genetic backgrounds and environments.
Collapse
Affiliation(s)
- Jianyin Xie
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Fengmei Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Najeeb Ullah Khan
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoyang Zhu
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xueqiang Wang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhifang Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoqian Ma
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yan Zhao
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Quan Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Shuyang Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhanying Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
38
|
Singh AK, Chaurasia S, Kumar S, Singh R, Kumari J, Yadav MC, Singh N, Gaba S, Jacob SR. Identification, analysis and development of salt responsive candidate gene based SSR markers in wheat. BMC PLANT BIOLOGY 2018; 18:249. [PMID: 30342465 PMCID: PMC6195990 DOI: 10.1186/s12870-018-1476-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/09/2018] [Indexed: 05/31/2023]
Abstract
BACKGROUND Salinity severely limits wheat production in many parts of the world. Development of salt tolerant varieties represents the most practical option for enhancing wheat production from these areas. Application of marker assisted selection may assist in fast tracking development of salt tolerant wheat varieties. However, SSR markers available in the public domain are not specifically targeted to functional regions of wheat genome, therefore large numbers of these need to be analysed for identification of markers associated with traits of interest. With the availability of a fully annotated wheat genome assembly, it is possible to develop SSR markers specifically targeted to genic regions. We performed extensive analysis to identify candidate gene based SSRs and assessed their utility in characterizing molecular diversity in a panel of wheat genotypes. RESULTS Our analysis revealed, 161 SSR motifs in 94 salt tolerance candidate genes of wheat. These SSR motifs were nearly equally distributed on the three wheat sub-genomes; 29.8% in A, 35.7% in B and 34.4% in D sub-genome. The maximum number of SSR motifs was present in exons (31.1%) followed by promoters (29.8%), 5'UTRs (21.1%), introns (14.3%) and 3'UTRs (3.7%). Out of the 65 candidate gene based SSR markers selected for validation, 30 were found polymorphic based on initial screening and employed for characterizing genetic diversity in a panel of wheat genotypes including salt tolerant and susceptible lines. These markers generated an average of 2.83 alleles/locus. Phylogenetic analysis revealed four clusters. Salt susceptible genotypes were mainly represented in clusters I and III, whereas high and moderate salt tolerant genotypes were distributed in the remaining two clusters. Population structure analysis revealed two sub-populations, sub-population 1 contained the majority of salt tolerant whereas sub-population 2 contained majority of susceptible genotypes. Moreover, we observed reasonably higher transferability of SSR markers to related wheat species. CONCLUSION We have developed salt responsive gene based SSRs in wheat for the first time. These were highly useful in unravelling functional diversity among wheat genotypes with varying responses to salt stress. The identified gene based SSR markers will be valuable genomic resources for genetic/association mapping of salinity tolerance in wheat.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012 India
| | - Shiksha Chaurasia
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012 India
| | - Sundeep Kumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012 India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012 India
| | - Jyoti Kumari
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012 India
| | - Mahesh C. Yadav
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012 India
| | - Nidhi Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012 India
| | - Sonam Gaba
- ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi, 110012 India
| | - Sherry Rachel Jacob
- Division of Germplasm Conservation, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012 India
| |
Collapse
|
39
|
Qi WH, Jiang XM, Yan CC, Zhang WQ, Xiao GS, Yue BS, Zhou CQ. Distribution patterns and variation analysis of simple sequence repeats in different genomic regions of bovid genomes. Sci Rep 2018; 8:14407. [PMID: 30258087 PMCID: PMC6158176 DOI: 10.1038/s41598-018-32286-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/04/2018] [Indexed: 01/23/2023] Open
Abstract
As the first examination of distribution, guanine-cytosine (GC) pattern, and variation analysis of microsatellites (SSRs) in different genomic regions of six bovid species, SSRs displayed nonrandomly distribution in different regions. SSR abundances are much higher in the introns, transposable elements (TEs), and intergenic regions compared to the 3′-untranslated regions (3′UTRs), 5′UTRs and coding regions. Trinucleotide perfect SSRs (P-SSRs) were the most frequent in the coding regions, whereas, mononucleotide P-SSRs were the most in the introns, 3′UTRs, TEs, and intergenic regions. Trifold P-SSRs had more GC-contents in the 5′UTRs and coding regions than that in the introns, 3′UTRs, TEs, and intergenic regions, whereas mononucleotide P-SSRs had the least GC-contents in all genomic regions. The repeat copy numbers (RCN) of the same mono- to hexanucleotide P-SSRs showed significantly different distributions in different regions (P < 0.01). Except for the coding regions, mononucleotide P-SSRs had the most RCNs, followed by the pattern: di- > tri- > tetra- > penta- > hexanucleotide P-SSRs in the same regions. The analysis of coefficient of variability (CV) of SSRs showed that the CV variations of RCN of the same mono- to hexanucleotide SSRs were relative higher in the intronic and intergenic regions, followed by the CV variation of RCN in the TEs, and the relative lower was in the 5′UTRs, 3′UTRs, and coding regions. Wide SSR analysis of different genomic regions has helped to reveal biological significances of their distributions.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, P. R. China
| | - Xue-Mei Jiang
- College of Environmental and Chemistry Engineering, Chongqing Three Gorges University, Chongqing, 404100, P. R. China
| | - Chao-Chao Yan
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Wan-Qing Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan Province, 625014, P. R. China
| | - Guo-Sheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, P. R. China
| | - Bi-Song Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Cai-Quan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, P. R. China.
| |
Collapse
|
40
|
Wang X, Chen W, Luo J, Yao Z, Yu Q, Wang Y, Zhang S, Liu Z, Zhang M, Shen Y. Development of EST-SSR markers and their application in an analysis of the genetic diversity of the endangered species Magnolia sinostellata. Mol Genet Genomics 2018; 294:135-147. [PMID: 30255205 DOI: 10.1007/s00438-018-1493-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
Magnolia sinostellata is an endemic species of Magnoliaceae that is narrowly distributed in the south of Zhejiang Province, China. To explore the genetic diversity and population structure of this endangered species, this study developed sequence tag-simple sequence repeat (EST-SSR) markers based on transcriptome data of M. sinostellata. In total, 25472 SSRs were identified among 110644 unique assembled sequences with a total of 90.83 Mb and an average frequency of 23.02%. The mononucleotide (33.53%) and dinucleotide (42.08%) motifs appeared to be the most abundant. In total, 150 potential loci were randomly selected to validate the quality of the developed SSR markers; an effective PCR rate of 32.00% and a polymorphism rate of 15.33% were obtained for these loci. After performing sequencing and cloning for validation, 23 pairs of SSR primers were retained and used to characterize the genetic diversity and population structure of M. sinostellata. Overall, 204 alleles were amplified. The results of Shannon's information index (I), heterozygosity (Ho), heterozygosity (He) and Nei's expected heterozygosity (H) indicated rich genetic diversity in M. sinostellata. However, the high inbreeding coefficient and differential coefficient suggest that serious genetic drift occurred within populations, and genetic differentiation is apparent among the populations. Consequently, although M. sinostellata has high genetic diversity among populations, it is still in a serious and dangerous condition. Habitat destruction caused by human activities is the main threat to this species, and enhancing the species abundance by adopting some conservation measures should be favourable for saving the species.
Collapse
Affiliation(s)
- Xingli Wang
- School of Landscape and Architecture, Zhejiang A&F University, 666# Wusu Road, Lin'an, 311300, Zhejiang, China
| | - Wenchong Chen
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666# Wusu Road, Lin'an, 311300, Zhejiang, China
| | - Jia Luo
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666# Wusu Road, Lin'an, 311300, Zhejiang, China
| | - Zhangxiu Yao
- Shenzhen Fairy Lake Botanical Garden, 160# Xianhu Road, Shenzhen, 518004, Guangdong, China
| | - Qin Yu
- School of Landscape and Architecture, Zhejiang A&F University, 666# Wusu Road, Lin'an, 311300, Zhejiang, China
| | - Yaling Wang
- Xi'an Botanical Garden of Shaanxi Academy of Science, 17# Cuihua South Road, Xi'an, 710061, Shaanxi, China
| | - Shouzhou Zhang
- Shenzhen Fairy Lake Botanical Garden, 160# Xianhu Road, Shenzhen, 518004, Guangdong, China
| | - Zhigao Liu
- School of Landscape and Architecture, Zhejiang A&F University, 666# Wusu Road, Lin'an, 311300, Zhejiang, China
| | - Mingru Zhang
- School of Landscape and Architecture, Zhejiang A&F University, 666# Wusu Road, Lin'an, 311300, Zhejiang, China
| | - Yamei Shen
- School of Landscape and Architecture, Zhejiang A&F University, 666# Wusu Road, Lin'an, 311300, Zhejiang, China.
| |
Collapse
|
41
|
Comparative analysis on precise distribution-patterns of microsatellites in HIV-1 with differential statistical method. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Yang M, Han N, Li H, Meng L. Transcriptome Analysis and Microsatellite Markers Development of a Traditional Chinese Medicinal Herb Halenia elliptica D. Don (Gentianaceae). Evol Bioinform Online 2018; 14:1176934318790263. [PMID: 30083050 PMCID: PMC6073823 DOI: 10.1177/1176934318790263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/18/2018] [Indexed: 11/22/2022] Open
Abstract
Halenia elliptica is a popular Chinese medicinal herb that is used to treat jaundice disease and virus hepatitis, and its wild populations have been reduced significantly due to overharvesting recently. However, effective conservation could not be implemented because of the lack of genomic information and genetic markers. In this study, a de novo transcriptome of H elliptica was sequenced using the NGS Illumina, and 132 695 unigenes with the length >200 bp (base pairs) were obtained. Among them, a total of 32 109 unigenes were scanned to develop simple sequence repeats (SSRs). Based on NCBI (National Center for Biotechnology Information) nonredundant database (Nr), these SSR sequences were annotated and assigned into gene ontology categories. In addition, we designed 126 pairs of SSR primers for polymerase chain reaction amplification, of which 12 pairs were identified to be polymorphic among 40 individuals from 8 populations. We then used the 12 polymorphic SSRs to construct a UPGMA dendrogram of the 40 individuals. In addition, a significant correlation between the genetic relationship and the geographic distance was found, suggesting a phylogeographic structure in H elliptica. Moreover, 2 of these SSRs were also successfully amplified in a related species Veratrilla baillonii, suggesting their cross-species transferability. Generally, the SSR markers with high polymorphisms identified in this study provide valuable genetic resources and represent an initial step for exploring the genetic diversity and population histories of H elliptica and its related species.
Collapse
Affiliation(s)
- Mingliu Yang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Sciences Yunnan Normal University, Kunming, P. R. China
| | - Nanyu Han
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Sciences Yunnan Normal University, Kunming, P. R. China
| | - Heng Li
- Economic and Management, Luoyang Institute of Science and Technology, Luoyang, P. R. China
| | - Lihua Meng
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Sciences Yunnan Normal University, Kunming, P. R. China
| |
Collapse
|
43
|
Press MO, McCoy RC, Hall AN, Akey JM, Queitsch C. Massive variation of short tandem repeats with functional consequences across strains of Arabidopsis thaliana. Genome Res 2018; 28:1169-1178. [PMID: 29970452 PMCID: PMC6071631 DOI: 10.1101/gr.231753.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/26/2018] [Indexed: 11/24/2022]
Abstract
Short tandem repeat (STR) mutations may comprise more than half of the mutations in eukaryotic coding DNA, yet STR variation is rarely examined as a contributor to complex traits. We assessed this contribution across a collection of 96 strains of Arabidopsis thaliana, genotyping 2046 STR loci each, using highly parallel STR sequencing with molecular inversion probes. We found that 95% of examined STRs are polymorphic, with a median of six alleles per STR across these strains. STR expansions (large copy number increases) are found in most strains, several of which have evident functional effects. These include three of six intronic STR expansions we found to be associated with intron retention. Coding STRs were depleted of variation relative to noncoding STRs, and we detected a total of 56 coding STRs (11%) showing low variation consistent with the action of purifying selection. In contrast, some STRs show hypervariable patterns consistent with diversifying selection. Finally, we detected 133 novel STR-phenotype associations under stringent criteria, most of which could not be detected with SNPs alone, and validated some with follow-up experiments. Our results support the conclusion that STRs constitute a large, unascertained reservoir of functionally relevant genomic variation.
Collapse
Affiliation(s)
- Maximilian O Press
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Rajiv C McCoy
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Ashley N Hall
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
44
|
Parada-Rojas CH, Quesada-Ocampo LM. Analysis of microsatellites from transcriptome sequences of Phytophthora capsici and applications for population studies. Sci Rep 2018; 8:5194. [PMID: 29581516 PMCID: PMC5980080 DOI: 10.1038/s41598-018-23438-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/12/2018] [Indexed: 11/27/2022] Open
Abstract
Phytophthora capsici is a devastating oomycete that affects solanaceous, cucurbitaceous, fabaceous, and other crops in the United States (US) and worldwide. The release of the P. capsici genome allows for design of robust markers for genetic studies. We identified and characterized microsatellites in the P. capsici transcriptome. A subset of 50 microsatellites were assayed in a diverse set of P. capsici isolates and evaluated for polymorphism. Polymorphic microsatellites were confirmed by fragment analysis, and 12 were used for population characterization of 50 P. capsici isolates from different states, hosts, and mating types. Analysis of genetic relationship among isolates revealed significant geographic structure by state. Our findings highlight the usefulness of these 12 microsatellites to characterize the population structure of P. capsici and potential transferability to closely-related Phytophthora spp. since markers are located in coding regions. Our markers will facilitate genetic characterization and complement phenotypic studies of P. capsici populations, which may assist in deployment of disease management strategies.
Collapse
Affiliation(s)
- C H Parada-Rojas
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - L M Quesada-Ocampo
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
45
|
Taheri S, Lee Abdullah T, Yusop MR, Hanafi MM, Sahebi M, Azizi P, Shamshiri RR. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants. Molecules 2018; 23:E399. [PMID: 29438290 PMCID: PMC6017569 DOI: 10.3390/molecules23020399] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 11/17/2022] Open
Abstract
Microsatellites, or simple sequence repeats (SSRs), are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq) and related tools for mining and development of microsatellites in plants.
Collapse
Affiliation(s)
- Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Thohirah Lee Abdullah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Rafii Yusop
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed Musa Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Parisa Azizi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Redmond Ramin Shamshiri
- Smart Farming Technology Research Center, Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
46
|
De novo transcriptome analysis of Rhododendron molle G. Don flowers by Illumina sequencing. Genes Genomics 2018; 40:591-601. [PMID: 29892944 DOI: 10.1007/s13258-018-0662-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
Rhododendron molle G. Don occupies an important phylogenetic node in the genus rhododendron with unique yellow flower and medicinal functions. However, only limited genetic resources and their genome information are available for the generation of rhododendron flowers. The next generation sequencing technologies enables generation of genomic resources in a short time and at a minimal cost, and therefore provide a turning point for rhododendron research. Our goal is to use the genetic information to facilitate the relevant research on flowering and flower color formation in R. molle. In total, 66,026 unigenes were identified, among which 31,298 were annotated in the NCBI non-redundant protein database and 22,410 were annotated in the Swiss-Prot database. Of these annotated unigenes, 9490 and 18,680 unigenes were assigned to clusters of orthologous groups and gene ontology categories, respectively. A total of 7177 genes were mapped to 118 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. In addition, 8266 simple sequence repeats (SSRs) were detected, and these SSRs will undoubtedly benefit rhododendron breeding work. Metabolic pathway analysis revealed that 32 unigenes were predicted to be involved in carotenoid biosynthesis. Our transcriptome revealed 32 engines that encode key enzymes in the carotenoid biosynthesis pathway, including PSY, PDS, LCYB, LCYE, etc. The content of β-carotene was much higher than the other carotenoids throughout the flower development. It was consistent with the key genes expression level in the carotenoid biosynthesis pathway by the Illumina expression profile analysis and the qRT-PCR analysis. Our study identified genes associated with carotenoid biosynthesis in R. molle and provides a valuable resource for understanding the flowering and flower color formation mechanisms in R. molle.
Collapse
|
47
|
Distinct patterns of simple sequence repeats and GC distribution in intragenic and intergenic regions of primate genomes. Aging (Albany NY) 2017; 8:2635-2654. [PMID: 27644032 PMCID: PMC5191860 DOI: 10.18632/aging.101025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/22/2016] [Indexed: 01/23/2023]
Abstract
As the first systematic examination of simple sequence repeats (SSRs) and guanine-cytosine (GC) distribution in intragenic and intergenic regions of ten primates, our study showed that SSRs and GC displayed nonrandom distribution for both intragenic and intergenic regions, suggesting that they have potential roles in transcriptional or translational regulation. Our results suggest that the majority of SSRs are distributed in non-coding regions, such as the introns, TEs, and intergenic regions. In these primates, trinucleotide perfect (P) SSRs were the most abundant repeats type in the 5'UTRs and CDSs, whereas, mononucleotide P-SSRs were the most in the intron, 3'UTRs, TEs, and intergenic regions. The GC-contents varied greatly among different intragenic and intergenic regions: 5'UTRs > CDSs > 3'UTRs > TEs > introns > intergenic regions, and high GC-content was frequently distributed in exon-rich regions. Our results also showed that in the same intragenic and intergenic regions, the distribution of GC-contents were great similarity in the different primates. Tri- and hexanucleotide P-SSRs had the most GC-contents in the 5'UTRs and CDSs, whereas mononucleotide P-SSRs had the least GC-contents in the six genomic regions of these primates. The most frequent motifs for different length varied obviously with the different genomic regions.
Collapse
|
48
|
Mahfooz S, Singh SP, Mishra N, Mishra A. A Comparison of Microsatellites in Phytopathogenic Aspergillus Species in Order to Develop Markers for the Assessment of Genetic Diversity among Its Isolates. Front Microbiol 2017; 8:1774. [PMID: 28979242 PMCID: PMC5611378 DOI: 10.3389/fmicb.2017.01774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022] Open
Abstract
The occurrence of Microsatellites (SSRs) has been witnessed in most of the fungal genomes however its abundance varies across species. In the present study, we analyzed the frequency of SSRs in the whole genome and transcripts of two phyto-pathogenic (Aspergillus niger and Aspergillus terreus) and compared them with two non-pathogenic (Aspergillus nidulans and Aspergillus oryzae) Aspergillus. Higher relative abundance and relative density of SSRs were observed in the whole genome and transcript sequences of the pathogenic Aspergillus when compared to the non-pathogenic. The relative abundance and density of SSRs were positively correlated with the G+C content of transcripts. Among the different classes of SSR, the percentage of tetra-nucleotide SSRs were maximum in A. niger (36.7%) and A. oryzae (35.9%) whereas A. nidulans and A. terreus preferred tri-nucleotide SSRs (38.2 and 42.1%) in whole genome sequences. In transcripts, tri-nucleotide SSRs were the most abundant whereas di-nucleotide SSRs were the least favored. Motif conservation study among the transcripts revealed conservation of only 27% motif within Aspergillus species. Furthermore, a similar relationship among the Ascomycetes was obtained on the basis of motif conservation and conserved genes (rDNA). To analyze the diversity present within the Indian isolates of Aspergillus, primers were successfully designed for 692 motifs in A. niger and A. terreus of which 20 were selected for diversity analysis. Among all the markers amplified, 10 markers (83.3%) were polymorphic, whereas remaining two markers (16.6%) were monomorphic. Ten polymorphic markers acquired in this investigation showed the utility of recently created SSR markers in the assessment of genetic diversity among various isolates of Aspergillus.
Collapse
Affiliation(s)
| | | | | | - Aradhana Mishra
- Division of Plant Microbe Interaction, CSIR-National Botanical Research InstituteLucknow, India
| |
Collapse
|
49
|
Characterization of porcine simple sequence repeat variation on a population scale with genome resequencing data. Sci Rep 2017; 7:2376. [PMID: 28539617 PMCID: PMC5443785 DOI: 10.1038/s41598-017-02600-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/13/2017] [Indexed: 12/23/2022] Open
Abstract
Simple sequence repeats (SSRs) are used as polymorphic molecular markers in many species. They contribute very important functional variations in a range of complex traits; however, little is known about the variation of most SSRs in pig populations. Here, using genome resequencing data, we identified ~0.63 million polymorphic SSR loci from more than 100 individuals. Through intensive analysis of this dataset, we found that the SSR motif composition, motif length, total length of alleles and distribution of alleles all contribute to SSR variability. Furthermore, we found that CG-containing SSRs displayed significantly lower polymorphism and higher cross-species conservation. With a rigorous filter procedure, we provided a catalogue of 16,527 high-quality polymorphic SSRs, which displayed reliable results for the analysis of phylogenetic relationships and provided valuable summary statistics for 30 individuals equally selected from eight local Chinese pig breeds, six commercial lean pig breeds and Chinese wild boars. In addition, from the high-quality polymorphic SSR catalogue, we identified four loci with potential loss-of-function alleles. Overall, these analyses provide a valuable catalogue of polymorphic SSRs to the existing pig genetic variation database, and we believe this catalogue could be used for future genome-wide genetic analysis.
Collapse
|
50
|
Munusamy P, Zolotarov Y, Meteignier LV, Moffett P, Strömvik MV. De novo computational identification of stress-related sequence motifs and microRNA target sites in untranslated regions of a plant translatome. Sci Rep 2017; 7:43861. [PMID: 28276452 PMCID: PMC5343461 DOI: 10.1038/srep43861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/31/2017] [Indexed: 01/24/2023] Open
Abstract
Gene regulation at the transcriptional and translational level leads to diversity in phenotypes and function in organisms. Regulatory DNA or RNA sequence motifs adjacent to the gene coding sequence act as binding sites for proteins that in turn enable or disable expression of the gene. Whereas the known DNA and RNA binding proteins range in the thousands, only a few motifs have been examined. In this study, we have predicted putative regulatory motifs in groups of untranslated regions from genes regulated at the translational level in Arabidopsis thaliana under normal and stressed conditions. The test group of sequences was divided into random subgroups and subjected to three de novo motif finding algorithms (Seeder, Weeder and MEME). In addition to identifying sequence motifs, using an in silico tool we have predicted microRNA target sites in the 3′ UTRs of the translationally regulated genes, as well as identified upstream open reading frames located in the 5′ UTRs. Our bioinformatics strategy and the knowledge generated contribute to understanding gene regulation during stress, and can be applied to disease and stress resistant plant development.
Collapse
Affiliation(s)
- Prabhakaran Munusamy
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Yevgen Zolotarov
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | | | - Peter Moffett
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Martina V Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| |
Collapse
|