1
|
Amjadian S, Fatemi MJ, Moradi S, Hesaraki M, Mohammadi P. mir-182-5p regulates all three phases of inflammation, proliferation, and remodeling during cutaneous wound healing. Arch Dermatol Res 2024; 316:274. [PMID: 38796528 DOI: 10.1007/s00403-024-03079-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/22/2023] [Accepted: 04/26/2024] [Indexed: 05/28/2024]
Abstract
Wound healing is a highly programmed process, in which any abnormalities result in scar formation. MicroRNAs are potent regulators affecting wound repair and scarification. However, the function of microRNAs in wound healing is not fully understood. Here, we analyzed the expression and function of microRNAs in patients with cutaneous wounds. Cutaneous wound biopsies from patients with either hypertrophic scarring or normal wound repair were collected during inflammation, proliferation, and remodeling phases. Fourteen candidate microRNAs were selected for expression analysis by qRT-PCR. The expression of genes involved in inflammation, angiogenesis, proliferation, and migration were measured using qRT-PCR. Cell cycle and scratch assays were used to explore the proliferation and migration rates. Flow cytometry analysis was employed to examine TGF-β, αSMA and collagen-I expression. Target gene suggestion was performed using Enrichr tool. The results showed that miR-16-5p, miR-152-3p, miR-125b-5p, miR-34c-5p, and miR-182-5p were revealed to be differentially expressed between scarring and non-scarring wounds. Based on the expression patterns obtained, miR-182-5p was selected for functional studies. miR-182-5p induced RELA expression synergistically upon IL-6 induction in keratinocytes and promoted angiogenesis. miR-182-5p prevented keratinocyte migration, while overexpressed TGF-β3 following induction of inflammation. Moreover, miR-182-5p enhanced fibroblast proliferation, migration, differentiation, and collagen-1 expression. FoxO1 and FoxO3 were found to potentially serve as putative gene targets of miR-182-5p. In conclusion, miR-182-5p is differentially expressed between scarring and non-scarring wounds and affect the behavior of cells involved in cutaneous wound healing. Deregulated expression of miR-182-5p adversely affects the proper transition of wound healing phases, resulting in scar formation.
Collapse
Affiliation(s)
- Sara Amjadian
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parvaneh Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Cai W, Li C, Li J, Song J, Zhang S. Integrated Small RNA Sequencing, Transcriptome and GWAS Data Reveal microRNA Regulation in Response to Milk Protein Traits in Chinese Holstein Cattle. Front Genet 2021; 12:726706. [PMID: 34712266 PMCID: PMC8546187 DOI: 10.3389/fgene.2021.726706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/21/2021] [Indexed: 01/04/2023] Open
Abstract
Milk protein is one of the most important economic traits in the dairy industry. Yet, the regulatory network of miRNAs for the synthesis of milk protein in mammary is poorly understood. Samples from 12 Chinese Holstein cows with three high ( ≥ 3.5%) and three low ( ≤ 3.0%) phenotypic values for milk protein percentage in lactation and non-lactation were examined through deep small RNA sequencing. We characterized 388 known and 212 novel miRNAs in the mammary gland. Differentially expressed analysis detected 28 miRNAs in lactation and 52 miRNAs in the non-lactating period with a highly significant correlation with milk protein concentration. Target prediction and correlation analysis identified some key miRNAs and their targets potentially involved in the synthesis of milk protein. We analyzed for enrichments of GWAS signals in miRNAs and their correlated targets. Our results demonstrated that genomic regions harboring DE miRNA genes in lactation were significantly enriched with GWAS signals for milk protein percentage traits and that enrichments within DE miRNA targets were significantly higher than in random gene sets for the majority of milk production traits. This integrated study on the transcriptome and posttranscriptional regulatory profiles between significantly differential phenotypes of milk protein concentration provides new insights into the mechanism of milk protein synthesis, which should reveal the regulatory mechanisms of milk secretion.
Collapse
Affiliation(s)
- Wentao Cai
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Animal and Avian Science, University of Maryland, College Park, MD, United States
| | - Cong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, MD, United States
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Rodríguez-Varela MS, Mucci S, Videla-Richardson GA, Isaja L, Sevlever GE, Scassa ME, Romorini L. miR-302 family, miR-145 and miR-296 temporal expression profile along the cell cycle of human pluripotent stem cells. Gene Expr Patterns 2021; 40:119168. [PMID: 33503507 DOI: 10.1016/j.gep.2021.119168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Human pluripotent stem cells (hPSCs), like embryonic (hESCs) and induced pluripotent stem cells (hiPSCs), exhibit an unusual cell cycle structure characterized by a short G1 phase and cells being most of time in S phase. hPSCs are receptive to differentiation cues during their transition through G1 phase when lineage determination is decided. Although several MicroRNAs (miRNAs) have been shown to target transcripts that directly or indirectly coordinate the cell cycle of pluripotent cells, its temporal expression profile along hPSCs cell cycle remains poorly characterized. miR-145 and miR-296 are induced during differentiation and silence the self-renewal and pluripotency program. miR-302 family is essential for hPSCs stemness and its expression decreases during differentiation. We aimed to study how the aforementioned miRNAs are regulated along the cell cycle of hPSCs. We demonstrated by pharmacological synchronization and block and release experiments that miR-145, miR-296 and miR-302 family are periodically expressed in hPSCs. Importantly, miR-302 family expression is induced at G1/S boundary and remained high at S phase, presumably to impede differentiation onset. Besides, we confirmed by a gene ontology analysis that many validated miR-302 family target genes are involved in cell cycle regulation.
Collapse
Affiliation(s)
- María Soledad Rodríguez-Varela
- Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Ruta 9, Km 52.5, Belén de Escobar, Provincia de Buenos Aires, B1625XAF, Argentina.
| | - Sofía Mucci
- Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Ruta 9, Km 52.5, Belén de Escobar, Provincia de Buenos Aires, B1625XAF, Argentina.
| | - Guillermo Agustín Videla-Richardson
- Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Ruta 9, Km 52.5, Belén de Escobar, Provincia de Buenos Aires, B1625XAF, Argentina.
| | - Luciana Isaja
- Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Ruta 9, Km 52.5, Belén de Escobar, Provincia de Buenos Aires, B1625XAF, Argentina.
| | - Gustavo Emilio Sevlever
- Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Ruta 9, Km 52.5, Belén de Escobar, Provincia de Buenos Aires, B1625XAF, Argentina.
| | - María Elida Scassa
- Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Ruta 9, Km 52.5, Belén de Escobar, Provincia de Buenos Aires, B1625XAF, Argentina.
| | - Leonardo Romorini
- Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Ruta 9, Km 52.5, Belén de Escobar, Provincia de Buenos Aires, B1625XAF, Argentina.
| |
Collapse
|
4
|
Hwang M, Park HH, Han MH, Choi H, Lee KY, Lee YJ, Kim JM, Cheong JH, Ryu JI, Ko Y, Koh SH. Chemoradiotherapy Alters Protein Expression in Glioblastoma Multiforme. J Clin Neurol 2020; 16:725-728. [PMID: 33029989 PMCID: PMC7541983 DOI: 10.3988/jcn.2020.16.4.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mina Hwang
- Department of Neurology, Hanyang University Guri Hospital, Guri, Korea
| | - Hyun Hee Park
- Department of Neurology, Hanyang University Guri Hospital, Guri, Korea
| | - Myung Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea.
| | - Hojin Choi
- Department of Neurology, Hanyang University Guri Hospital, Guri, Korea
| | - Kyu Yong Lee
- Department of Neurology, Hanyang University Guri Hospital, Guri, Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University Guri Hospital, Guri, Korea
| | - Jae Min Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea
| | - Jin Hwan Cheong
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea
| | - Je Il Ryu
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea
| | - Yong Ko
- Department of Neurosurgery, Hanyang University Medical Center, Seoul, Korea
| | - Seong Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri, Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea.
| |
Collapse
|
5
|
Ávila-Flores A, Arranz-Nicolás J, Mérida I. Transcriptional Activity of FOXO Transcription Factors Measured by Luciferase Assays. Methods Mol Biol 2019; 1890:91-102. [PMID: 30414147 DOI: 10.1007/978-1-4939-8900-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Forkhead box O (FOXO) family of transcription factors translates environmental cues into gene expression. FOXO factors are crucial for the maintenance of cell homeostasis, with important roles in cell fate decisions and differentiation. Identification of FOXO target genes requires strict validation by several methods. Luciferase-based reporters are a valuable starting point for determining the transcription-promoting capacity of potential FOXO-binding sites in candidate genes. Luciferase, an enzyme found in bioluminescent organisms catalyzes oxidation of luciferin to produce oxyluciferin together with light, which can be easily detected and measured with a luminometer. Due to their many advantages, transcriptional assays based on luciferase activity are widely used; they are easy, highly reproducible, and very sensitive. Continued improvements in luciferase-based vectors and measurement reagents confer considerable versatility. Luciferase-based reporters are also a reliable approach in the search for unknown components in the signaling pathways that control FOXO factor activity.We previously reported that FOXO transcription factors control expression of the enzyme diacylglycerol kinase α (DGKα) in T cells. DGKα consumes diacylglycerol, a lipid that activates several mitogenic pathways. Here, we describe the use of a luciferase-based promoter bearing the FOXO-binding sites of the DGKα gene to explore the relationship between the expression of this enzyme and stress conditions in NIH3T3 mouse fibroblasts. Our data support a role for FOXO factors in promoting high DGKα levels in conditions of growth factor deprivation. DGKα regulation by FOXO factors correlates with the reported alterations in DGKα expression during cell transformation and cancer progression.
Collapse
Affiliation(s)
- Antonia Ávila-Flores
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
6
|
Temporal changes of microRNA gga-let-7b and gga-let-7i expression in chickens challenged with subgroup J avian leukosis virus. Vet Res Commun 2017; 41:219-226. [PMID: 28190219 DOI: 10.1007/s11259-017-9681-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 02/08/2017] [Indexed: 12/20/2022]
Abstract
Two important microRNAs, gga-let-7b and gga-let-7i were examined for the relative expression in liver and bone marrow tissues from specific pathogen free chickens that were challenged either with GD1109 or NX0101 strain of subgroup J avian leukosis virus (ALV-J). The GD1109 strain of ALV-J reportedly causes hemangioma (HE) and NX0101 reportedly causes myeloma (ML) in susceptible chickens. Temporal changes of both gga-let-7b and gga-let-7i expression in ALV-J infected chickens were observed in contrast to its counterpart of a non-infected negative control group of chickens (P < 0.05 or P < 0.01) during the first 120 days post infection. Use of the web-based computational DIANA-mirPath software (available at http://microrna.gr/mirpath ), it was predicted that both gga-let-7b and gga-let-7i were involved in multiple pathways including signaling pathways, such as MAPK, TGF-beta, Notch, Wnt, mTOR, Cell cycle, P53 and Jak-STAT. Combining our experimental data with reports on the microRNAs, we suggest that both gga-let-7i and gga-let-7b may also act as tumor suppressors in chicken, especially play a critical role in tumorigenesis induced by ALV-J.
Collapse
|
7
|
Shim JH, Lee SJ, Gim H, Kim HJ, Han T, Kim JG, Lim EY, Kim YT, Kim BJ. Regulation of the pacemaker activities in cultured interstitial cells of Cajal by Citrus unshiu peel extracts. Mol Med Rep 2016; 14:3908-16. [PMID: 27572234 DOI: 10.3892/mmr.2016.5689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 08/09/2016] [Indexed: 11/06/2022] Open
Abstract
The Citrus unshiu peel has been widely used for the treatment of gastrointestinal (GI) disorders in Eastern traditional medicine. The present study aimed to investigate the effects of Citrus unshiu peel extract (CPE) on the pacemaker activity of the GI tract in cultured interstitial cells of Cajal (ICCs) derived from the mouse small intestine. The whole‑cell patch‑clamp configuration was used to record pacemaker potentials. In current clamp mode, exposure to CPE caused membrane pacemaker depolarization in a concentration‑dependent manner. In the presence of the muscarinic M2 receptor antagonist, methoctramine, CPE induced membrane pacemaker depolarization, whereas treatment with the muscarinic M3 receptor antagonist, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide, inhibited CPE‑induced responses. When the pipette solution contained guanosine 5'-(β-thio) diphosphate trilithium salt (1 mM), CPE marginally induced membrane pacemaker depolarization. In addition, CPE‑induced membrane pacemaker depolarization was inhibited following exposure to the active phospholipase C (PLC) inhibitor U‑73122, but not the inactive PLC inhibitor U‑73343. In the presence of a p42/p44 mitogen‑activated protein kinase (MAPK) inhibitor (PD98059), a p38 MAPK inhibitor (SB203580) or a c‑jun NH2‑terminal kinase (JNK) II inhibitor, CPE failed to induce membrane pacemaker depolarization. These results suggest that CPE may affect GI motility through modulating ICC pacemaker activity by activating the muscarinic M3 receptor and inducing the G‑protein dependent PLC and MAPK signaling pathways.
Collapse
Affiliation(s)
- Ji Hwan Shim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Soo Jin Lee
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Huijin Gim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Taewon Han
- Research Group of Innovative Special Food, Korea Food Research Institute, Seongnam, Gyeonggi 13539, Republic of Korea
| | - Jae Goo Kim
- Research Group of Innovative Special Food, Korea Food Research Institute, Seongnam, Gyeonggi 13539, Republic of Korea
| | - Eun Yeong Lim
- Research Group of Innovative Special Food, Korea Food Research Institute, Seongnam, Gyeonggi 13539, Republic of Korea
| | - Yun Tai Kim
- Research Group of Innovative Special Food, Korea Food Research Institute, Seongnam, Gyeonggi 13539, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| |
Collapse
|
8
|
Maldotti M, Incarnato D, Neri F, Krepelova A, Rapelli S, Anselmi F, Parlato C, Basile G, Dettori D, Calogero R, Oliviero S. The long intergenic non-coding RNA CCR492 functions as a let-7 competitive endogenous RNA to regulate c-Myc expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1322-32. [PMID: 27344374 DOI: 10.1016/j.bbagrm.2016.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/06/2016] [Accepted: 06/22/2016] [Indexed: 02/03/2023]
Abstract
In mammals the cell-cycle progression through the G1 phase is a tightly regulated process mediated by the transcriptional activation of early genes in response to mitogenic stimuli, whose dysregulation often leads to tumorigenesis. We here report the discovery by RNA-seq of cell-cycle regulated (CCR) long intergenic non-coding RNAs (lincRNAs), potentially involved in the control of the cell-cycle progression. We identified 10 novel lincRNAs expressed in response to serum treatment in mouse embryonic fibroblasts (MEFs) and in BALB/c fibroblasts, comparably to early genes. By loss-of-function experiments we found that lincRNA CCR492 is required for G1/S progression, localizes in the cell cytoplasm and contains 4 let-7 microRNA recognition elements (MREs). Mechanistically, CCR492 functions as a competing endogenous RNA (ceRNA) to antagonize the function of let-7 microRNAs, leading to the de-repression of c-Myc. Moreover, we show that ectopic expression of CCR492 along with a constitutively active H-Ras promotes cell transformation. Thus, we identified a new lincRNA expressed as an early gene in mammalian cells to regulate the cell-cycle progression by upregulating c-Myc expression.
Collapse
Affiliation(s)
- Mara Maldotti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Danny Incarnato
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Francesco Neri
- Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Anna Krepelova
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Stefania Rapelli
- Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Francesca Anselmi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Caterina Parlato
- Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Giulia Basile
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy
| | - Daniela Dettori
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Nizza 52, Torino, Italy
| | - Raffaele Calogero
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Nizza 52, Torino, Italy
| | - Salvatore Oliviero
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
9
|
Miller KJ, Brown DA, Ibrahim MM, Ramchal TD, Levinson H. MicroRNAs in skin tissue engineering. Adv Drug Deliv Rev 2015; 88:16-36. [PMID: 25953499 DOI: 10.1016/j.addr.2015.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/04/2015] [Accepted: 04/25/2015] [Indexed: 01/08/2023]
Abstract
35.2 million annual cases in the U.S. require clinical intervention for major skin loss. To meet this demand, the field of skin tissue engineering has grown rapidly over the past 40 years. Traditionally, skin tissue engineering relies on the "cell-scaffold-signal" approach, whereby isolated cells are formulated into a three-dimensional substrate matrix, or scaffold, and exposed to the proper molecular, physical, and/or electrical signals to encourage growth and differentiation. However, clinically available bioengineered skin equivalents (BSEs) suffer from a number of drawbacks, including time required to generate autologous BSEs, poor allogeneic BSE survival, and physical limitations such as mass transfer issues. Additionally, different types of skin wounds require different BSE designs. MicroRNA has recently emerged as a new and exciting field of RNA interference that can overcome the barriers of BSE design. MicroRNA can regulate cellular behavior, change the bioactive milieu of the skin, and be delivered to skin tissue in a number of ways. While it is still in its infancy, the use of microRNAs in skin tissue engineering offers the opportunity to both enhance and expand a field for which there is still a vast unmet clinical need. Here we give a review of skin tissue engineering, focusing on the important cellular processes, bioactive mediators, and scaffolds. We further discuss potential microRNA targets for each individual component, and we conclude with possible future applications.
Collapse
|
10
|
Zhao JJ, Lin J, Zhu D, Wang X, Brooks D, Chen M, Chu ZB, Takada K, Ciccarelli B, Admin S, Tao J, Tai YT, Treon S, Pinkus G, Kuo WP, Hideshima T, Bouxsein M, Munshi N, Anderson K, Carrasco R. miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/β-catenin/BCL9 pathway. Cancer Res 2014; 74:1801-13. [PMID: 24599134 DOI: 10.1158/0008-5472.can-13-3311-t] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Wnt/β-catenin signaling underlies the pathogenesis of a broad range of human cancers, including the deadly plasma cell cancer multiple myeloma. In this study, we report that downregulation of the tumor suppressor microRNA miR-30-5p is a frequent pathogenetic event in multiple myeloma. Evidence was developed that miR-30-5p downregulation occurs as a result of interaction between multiple myeloma cells and bone marrow stromal cells, which in turn enhances expression of BCL9, a transcriptional coactivator of the Wnt signaling pathway known to promote multiple myeloma cell proliferation, survival, migration, drug resistance, and formation of multiple myeloma cancer stem cells. The potential for clinical translation of strategies to re-express miR-30-5p as a therapeutic approach was further encouraged by the capacity of miR-30c and miR-30 mix to reduce tumor burden and metastatic potential in vivo in three murine xenograft models of human multiple myeloma without adversely affecting associated bone disease. Together, our findings offer a preclinical rationale to explore miR-30-5p delivery as an effective therapeutic strategy to eradicate multiple myeloma cells in vivo.
Collapse
Affiliation(s)
- Jian-Jun Zhao
- Authors' Affiliations: Department of Medical Oncology; Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute; Harvard School of Public Health; Department of Pathology, Brigham & Women's Hospital; Department of Developmental Biology, Harvard School of Dental Medicine; Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and Experimental Therapies, H. Lee Moffitt Cancer Center, Florida; and Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Metlapally R, Gonzalez P, Hawthorne FA, Tran-Viet KN, Wildsoet CF, Young TL. Scleral micro-RNA signatures in adult and fetal eyes. PLoS One 2013; 8:e78984. [PMID: 24205357 PMCID: PMC3804513 DOI: 10.1371/journal.pone.0078984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
Abstract
Introduction In human eyes, ocular enlargement/growth reflects active extracellular matrix remodeling of the outer scleral shell. Micro-RNAs are small non-coding RNAs that regulate gene expression by base pairing with target sequences. They serve as nodes of signaling networks. We hypothesized that the sclera, like most tissues, expresses micro-RNAs, some of which modulate genes regulating ocular growth. In this study, the scleral micro-RNA expression profile of rapidly growing human fetal eyes was compared with that of stable adult donor eyes using high-throughput microarray and quantitative PCR analyses. Methods Scleral samples from normal human fetal (24 wk) and normal adult donor eyes were obtained (n=4 to 6, each group), and RNA extracted. Genome-wide micro-RNA profiling was performed using the Agilent micro-RNA microarray platform. Micro-RNA target predictions were obtained using Microcosm, TargetScan and PicTar algorithms. TaqMan® micro-RNA assays targeting micro-RNAs showing either highest significance, detection, or fold differences, and collagen specificity, were applied to scleral samples from posterior and peripheral ocular regions (n=7, each group). Microarray data were analyzed using R, and quantitative PCR data with 2^-deltaCt methods. Results Human sclera was found to express micro-RNAs, and comparison of microarray results for adult and fetal samples revealed many to be differentially expressed (p<0.01, min p= 6.5x1011). Specifically, fetal sclera showed increased expression of mir-214, let-7c, let-7e, mir-103, mir-107, and mir-98 (1.5 to 4 fold changes, p<0.01). However, no significant regionally specific differences .i.e., posterior vs. peripheral sclera, were observed for either adult or fetal samples. Conclusion For the first time, micro-RNA expression has been catalogued in human sclera. Some micro-RNAs show age-related differential regulation, higher in the sclera of rapidly growing fetal eyes, consistent with a role in ocular growth regulation. Thus micro-RNAs represent potential targets for ocular growth manipulation, related to myopia and/or other disorders such as scleral ectasia.
Collapse
Affiliation(s)
- Ravikanth Metlapally
- School of Optometry, University of California, Berkeley, California, United States of America
- * E-mail:
| | - Pedro Gonzalez
- Duke Eye Center, Duke University Health System, Durham, North Carolina, United States of America
| | - Felicia A. Hawthorne
- Center for Human Genetics, Duke University, Durham, North Carolina, United States of America
| | - Khanh-Nhat Tran-Viet
- Center for Human Genetics, Duke University, Durham, North Carolina, United States of America
| | - Christine F. Wildsoet
- School of Optometry, University of California, Berkeley, California, United States of America
| | - Terri L. Young
- Duke Eye Center, Duke University Health System, Durham, North Carolina, United States of America
- Center for Human Genetics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
12
|
Jones PH, Okeoma CM. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated BST-2/tetherin regulation. Cell Signal 2013; 25:2752-61. [PMID: 24036213 DOI: 10.1016/j.cellsig.2013.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
BST-2 is a virus restriction factor whose expression is principally induced by IFNα through the type I IFN receptor. However, expression of BST-2 is modulated by mitogens, notably the TLR4 agonist - LPS, via mechanisms that are poorly understood. In this study, the role of TLR4 pathway on BST-2 expression was examined. We demonstrate that the TLR4/PI3K signaling pathway regulates both constitutive and LPS-induced BST-2 expression. LPS stimulation induces BST-2 expression in a manner dependent on TLR4/TRIF/IRF3 pathway. Genetic deletion or pharmacological inhibition of signaling through TLR4, as well as, the deletion of the TRIF and IRF3 genes blunts BST-2 induction by LPS. However, MYD88-/- cells have enhanced BST-2 levels and respond to LPS-mediated induction of BST-2. High level of BST-2 in MYD88 null cells is dependent on IFNβ since antibody-mediated neutralization of IFNβ synthesis results in reduced BST-2 levels in these cells. Similar to the effect of MYD88, inhibition of PI3K activity elevates basal BST-2 level and augments LPS-induced BST-2 expression. Importantly, BST-2 regulation via TLR4 and PI3K is transcriptionally controlled. We discovered that actinomycin D-mediated blocking of gene transcription and inhibition of protein synthesis with cycloheximide result in impairment of BST-2 mRNA expression. Taken together, our results demonstrate that activation of TLR4 results in TRIF/IRF3-mediated positive regulation of BST-2 or MYD88/PI3K-directed negative regulation of BST-2. Thus, our findings enlist BST-2 as one of the genes regulated by PI3K downstream of TLR4 and identify the TLR4/PI3K signaling as a novel pathway that controls BST-2 expression.
Collapse
Affiliation(s)
- Philip H Jones
- Department of Microbiology, University of Iowa, Carver College of Medicine, Iowa City, IA, United States
| | | |
Collapse
|
13
|
Xiong L, Jiang W, Zhou R, Mao C, Guo Z. Identification and analysis of the regulatory network of Myc and microRNAs from high-throughput experimental data. Comput Biol Med 2013; 43:1252-60. [PMID: 23930820 DOI: 10.1016/j.compbiomed.2013.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/15/2022]
Abstract
As a transcription factor, c-Myc exerts significant influence in cancer development by regulating transcription of a large number of target genes including microRNAs. However, details of regulatory networks composed of Myc, microRNAs, and microRNA target genes are still unclear. Here, at system level, we built a comprehensive Myc-regulated miRNAs (Myc-miRNAs) regulatory network through the integration of experimentally validated high-throughput data and computational predictions. Using miRNA genomic information with ChIP-PET, we identified 30 Myc-miRNAs and found most of these Myc-miRNAs target genes were significantly enriched in cell cycle, apoptosis, cell proliferation GO terms and Myc-regulated signaling pathways, using gene sets enrichment analysis. We found most Myc-miRNAs involved in Myc-related cancer pathways expressed abnormally in Myc-associated tumors through the integration of diverse types of experimental data. Based upon Myc target genes identified by ChIP-chip assays, we identified that 1031 Myc-miRNAs feed-forward loops (FFLs) were significantly different from those obtained by chance; also, 11 high-quality FFLs were extracted from experimentally validated interactions. Finally, we built the miRNA-protein interaction network of experimentally validated Myc-miRNAs and discussed the more complex network composed of several FFLs networks. As shown in this study, we performed comprehensive analysis of the Myc-miRNAs regulatory network and provided potential Myc-miRNAs target genes which were involved in Myc pathway and cancer-related biological processes.
Collapse
Affiliation(s)
- Lili Xiong
- School of Life Sciences and Bioengineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | | | | | | | | |
Collapse
|
14
|
Polioudakis D, Bhinge AA, Killion PJ, Lee BK, Abell NS, Iyer VR. A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Res 2013; 41:2239-54. [PMID: 23303785 PMCID: PMC3575845 DOI: 10.1093/nar/gks1452] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transition of mammalian cells from quiescence to proliferation is accompanied by the differential expression of several microRNAs (miRNAs) and transcription factors. However, the interplay between transcription factors and miRNAs in modulating gene regulatory networks involved in human cell proliferation is largely unknown. Here we show that the miRNA miR-22 promotes proliferation in primary human cells, and through a combination of Argonaute-2 immunoprecipitation and reporter assays, we identified multiple novel targets of miR-22, including several cell-cycle arrest genes that mediate the effects of the tumor-suppressor p53. In addition, we found that miR-22 suppresses interferon gene expression by directly targeting high mobility group box-1 and interferon regulatory factor (IRF)-5, preventing activation of IRF3 and NF-κB, which are activators of interferon genes. The expression of interferon genes is elevated in quiescent cells and their expression is inhibitory for cell proliferation. In addition, we find that miR-22 is activated by the transcription factor Myc when quiescent cells enter proliferation and that miR-22 inhibits the Myc transcriptional repressor MXD4, mediating a feed-forward loop to elevate Myc expression levels. Our results implicate miR-22 in downregulating the anti-proliferative p53 and interferon pathways and reveal a new transcription factor–miRNA network that regulates the transition of primary human cells from quiescence to proliferation.
Collapse
Affiliation(s)
- Damon Polioudakis
- Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, and Section of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University Station A4800, Austin, Texas 78712-0159, USA
| | | | | | | | | | | |
Collapse
|
15
|
Schmitz U, Wolkenhauer O. Web resources for microRNA research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 774:225-50. [PMID: 23377976 DOI: 10.1007/978-94-007-5590-1_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last decade thousands of microRNAs (miRNAs) have been discovered in all kinds of taxa. The ever growing number of identified miRNA genes required ordered cataloging and annotation. This has led to the development of miRNA web resources.MiRNA web resources can be referred to either as web accessible databases (repositories) or web applications that provide a defined computational task upon user request. Today, more than three dozen web accessible resources exist that gather, organize and annotate all kinds of miRNA related data. According to the type of data or data processing method, these miRNA web resources can be classified as miRNA sequence and annotation databases, resources and tools for predicted as well as experimentally validated targets, databases of miRNA regulation and expression, functional annotation and mapping databases and a number of other tools and resources that are species-specific or focus on particular phenotypes.This chapter provides an overview of the different types of miRNA web resources and their purpose and gives some examples for each category. Furthermore, some valuable miRNA web applications will be introduced. Finally, strategies for miRNA data retrieval and associated risks and pitfalls will be discussed.
Collapse
Affiliation(s)
- Ulf Schmitz
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| | | |
Collapse
|
16
|
Bogen KT. Efficient tumorigenesis by mutation-induced failure to terminate microRNA-mediated adaptive hyperplasia. Med Hypotheses 2012. [PMID: 23183421 DOI: 10.1016/j.mehy.2012.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Seven current contending cancer theories consider different sets of critical events as sufficient for tumorigenesis. These theories, most recently the microRNA dysregulation (MRD) theory, have overlapping attributes and extensive empirical support, but also some discrepancies, and some do not address both benign and malignant tumorigenesis. By definition, the most efficient tumorigenic pathways will dominate under conditions that selectively activate those pathways. The MRD theory provides a mechanistic basis to combine elements of the current theories into a new hypothesis that: (i) tumors arise most efficiently under stress that induces and sustains either protective or regenerative states of adaptive hyperplasia (AH) that normally are epigenetically maintained unless terminated; and (ii) if dysregulated by a somatic mutation that prevents normal termination, these two AH states can generate benign and malignant tumors, respectively. This hypothesis, but not multistage cancer theory, predicts that key participating AH-stem-cell populations expand markedly when triggered by stress, particularly chronic metabolic or oxidative stress, mechanical irritation, toxic exposure, wounding, inflammation, and/or infection. This hypothesis predicts that microRNA expression patterns in benign vs. malignant tumor tissue will correlate best with those governing protective vs. regenerative AH in that tissue, and that tumors arise most efficiently inmutagen-exposed stem cells that either happen to be in, or incidentally later become recruited into, an AH state.
Collapse
Affiliation(s)
- Kenneth T Bogen
- DrPH DABT, Exponent Inc., Health Sciences, 475, 14th Street, Ste 400, Oakland, CA 94612, USA.
| |
Collapse
|
17
|
14-3-3 protein and ATRAP bind to the soluble class IIB phosphatidylinositol transfer protein RdgBβ at distinct sites. Biochem Soc Trans 2012; 40:451-6. [DOI: 10.1042/bst20110770] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PITPs (phosphatidylinositol transfer proteins) are characterized by the presence of the PITP domain whose biochemical properties of binding and transferring PI (phosphatidylinositol) are well studied. Despite their wide-spread expression in both unicellular and multicellular organisms, they remain functionally uncharacterized. An emerging theme is that individual PITPs play highly specific roles in either membrane trafficking or signal transduction. To identify specific roles for PITPs, identification of interacting molecules would shed light on their molecular function. In the present paper, we describe binding partners for the class IIB PITP RdgBβ (retinal degeneration type Bβ). RdgBβ is a soluble PITP but is unique in that it contains a region of disorder at its C-terminus following its defining N-terminal PITP domain. The C-terminus of RdgBβ is phosphorylated at two serine residues, Ser274 and Ser299, which form a docking site for 14-3-3 proteins. Binding to 14-3-3 proteins protects RdgBβ from degradation that occurs at the proteasome after ubiquitination. In addition to binding 14-3-3, the PITP domain of RdgBβ interacts with the Ang II (angiotensin II)-associated protein ATRAP (Ang II receptor-associated protein). ATRAP is also an interacting partner for the AT1R (Ang II type 1 receptor). We present a model whereby RdgBβ functions by being recruited to the membrane by ATRAP and release of 14-3-3 from the C-terminus allows the disordered region to bind a second membrane to create a membrane bridge for lipid transfer, possibly under the control of Ang II.
Collapse
|
18
|
|
19
|
Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, Kadowitz PJ, Izadpanah R. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 2011; 8:215-25. [PMID: 22265741 DOI: 10.1016/j.scr.2011.11.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/14/2011] [Accepted: 11/03/2011] [Indexed: 02/07/2023] Open
Abstract
Tissue resident mesenchymal stem cells (MSCs) are known to participate in tissue regeneration that follows cell turnover, apoptosis, or necrosis. It has been long known that aging impedes an organism's repair/regeneration capabilities. In order to study the age associated changes, the molecular characteristics of adipose tissue derived MSCs (ASCs) from three age groups of healthy volunteers, i.e., young, middle aged, and aged were investigated. The number and multilineage differentiation potential of ASCs declined with age. Aging reduces the proliferative capacity along with increases in cellular senescence. A significant increase in quiescence of G2 and S phase was observed in ASCs from aged donors. The expression of genes related to senescence such as CHEK1 and cyclin-dependent kinase inhibitor p16(ink4a) was increased with age, however genes of apoptosis were downregulated. Further, an age-dependent abnormality in the expression of DNA break repair genes was observed. Global microRNA analysis revealed an abnormal expression of mir-27b, mir-106a, mir-199a, and let-7. In ubiquitously distributed adipose tissue (and ASCs), aging brings about important alterations, which might be critical for tissue regeneration and homeostasis. Our findings therefore provide a better understanding of the mechanism(s) involved in stem cell aging and regenerative potential, and this in turn may affect tissue repair that declines with aging.
Collapse
Affiliation(s)
- Eckhard U Alt
- Applied Stem Cell Laboratory, Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
A group of small non-coding RNA molecules, termed microRNAs (miRNAs), have generated considerable interest in recent years due to their central role in a growing number of biologic processes. Serving as post-transcriptional regulators of gene expression, miRNAs have also emerged as critical factors in the pathogenesis of many diseases. As a result, they show great potential as accurate diagnostic and prognostic markers, as well as viable therapeutic targets for treating disease. It has been proposed that miRNAs play a significant role in cutaneous wound repair and that aberrant miRNA expression may result in disorganized or poor healing. Specific patterns of miRNA expression have been identified in wound healing models. miRNAs are important regulators of leucocyte function and the cytokine network, and are necessary for endothelial cell migration and capillary formation. These molecules also control proliferation and differentiation of wound-specific cells and can determine extracellular matrix composition. This article reviews the evidence for miRNA regulation of inflammation, angiogenesis, fibroblast function, keratinocyte function, and apoptosis, which are essential components for effective wound repair. The future potential for improving wound healing outcomes using miRNA-based therapies is also discussed.
Collapse
|
21
|
Belacortu Y, Paricio N. Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev Dyn 2011; 240:2379-404. [PMID: 21953647 DOI: 10.1002/dvdy.22753] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 11/11/2022] Open
Abstract
Understanding the molecular basis of wound healing and regeneration in vertebrates is one of the main challenges in biology and medicine. This understanding will lead to medical advances allowing accelerated tissue repair after wounding, rebuilding new tissues/organs and restoring homeostasis. Drosophila has emerged as a valuable model for studying these processes because the genetic networks and cytoskeletal machinery involved in epithelial movements occurring during embryonic dorsal closure, larval imaginal disc fusion/regeneration, and epithelial repair are similar to those acting during wound healing and regeneration in vertebrates. Recent studies have also focused on the use of Drosophila adult stem cells to maintain tissue homeostasis. Here, we review how Drosophila has contributed to our understanding of these processes, primarily through live-imaging and genetic tools that are impractical in mammals. Furthermore, we highlight future research areas where this insect may provide novel insights and potential therapeutic strategies for wound healing and regeneration.
Collapse
Affiliation(s)
- Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | | |
Collapse
|
22
|
Tullai JW, Graham JR, Cooper GM. A GSK-3-mediated transcriptional network maintains repression of immediate early genes in quiescent cells. Cell Cycle 2011; 10:3072-7. [PMID: 21900749 DOI: 10.4161/cc.10.18.17321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) plays a central role in cell survival and proliferation, in part by the regulation of transcription. Unlike most protein kinases, GSK-3 is active in quiescent cells in the absence of growth factor signaling. In a recent series of studies, we employed a systems-level approach to understanding the transcription network regulated by GSK-3 in a quiescent cell model. We identified a group of immediate early genes that were upregulated in quiescent cells solely by the inhibition of GSK-3 in the absence of growth factor stimulation. Computational analysis of the upstream sequences of these genes identified statistically over-represented binding sites for the transcription factors CREB, NFκB and AP-1, and the roles of these factors in regulating expression of GSK-3 target genes were verified by chromatin immunoprecipitation and RNA interference. In quiescent cells, GSK-3 inhibits CREB, NFκB and AP-1, thereby maintaining repression of their target genes and contributing to maintenance of cell cycle arrest.
Collapse
|
23
|
Multiple platform assessment of the EGF dependent transcriptome by microarray and deep tag sequencing analysis. BMC Genomics 2011; 12:326. [PMID: 21699700 PMCID: PMC3141672 DOI: 10.1186/1471-2164-12-326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/23/2011] [Indexed: 01/02/2023] Open
Abstract
Background Epidermal Growth Factor (EGF) is a key regulatory growth factor activating many processes relevant to normal development and disease, affecting cell proliferation and survival. Here we use a combined approach to study the EGF dependent transcriptome of HeLa cells by using multiple long oligonucleotide based microarray platforms (from Agilent, Operon, and Illumina) in combination with digital gene expression profiling (DGE) with the Illumina Genome Analyzer. Results By applying a procedure for cross-platform data meta-analysis based on RankProd and GlobalAncova tests, we establish a well validated gene set with transcript levels altered after EGF treatment. We use this robust gene list to build higher order networks of gene interaction by interconnecting associated networks, supporting and extending the important role of the EGF signaling pathway in cancer. In addition, we find an entirely new set of genes previously unrelated to the currently accepted EGF associated cellular functions. Conclusions We propose that the use of global genomic cross-validation derived from high content technologies (microarrays or deep sequencing) can be used to generate more reliable datasets. This approach should help to improve the confidence of downstream in silico functional inference analyses based on high content data.
Collapse
|
24
|
Bertero T, Gastaldi C, Bourget-Ponzio I, Imbert V, Loubat A, Selva E, Busca R, Mari B, Hofman P, Barbry P, Meneguzzi G, Ponzio G, Rezzonico R. miR-483-3p controls proliferation in wounded epithelial cells. FASEB J 2011; 25:3092-105. [PMID: 21676945 DOI: 10.1096/fj.10-168401] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanisms that regulate keratinocyte migration and proliferation in wound healing remain largely unraveled, notably regarding possible involvements of microRNAs (miRNAs). Here we disclose up-regulation of miR-483-3p in 2 distinct models of wound healing: scratch-injured cultures of human keratinocytes and wounded skin in mice. miR-483-3p accumulation peaks at the final stage of the wound closure process, consistent with a role in the arrest of "healing" progression. Using an in vitro wound-healing model, videomicroscopy, and 5-bromo-2'-uridine incorporation, we observed that overexpression of miR-483-3p inhibits keratinocyte migration and proliferation, whereas delivery of anti-miR-483-3p oligonucleotides sustains keratinocyte proliferation beyond the closure of the wound, compared with irrelevant anti-miR treatment. Expression profiling of keratinocytes transfected with miR-483-3p identified 39 transcripts that were both predicted targets of miR-483-3p and down-regulated after miR-483-3p overexpression. Luciferase reporter assays, Western blot analyses, and silencing by specific siRNAs finally established that kinase MK2, cell proliferation marker MKI67, and transcription factor YAP1 are direct targets of miR-483-3p that control keratinocyte proliferation. miR-483-3p-mediated down-regulation of MK2, MKI67, and YAP1 thus represents a novel mechanism controlling keratinocyte growth arrest at the final steps of reepithelialization.
Collapse
|
25
|
MicroRNAs and the cell cycle. Biochim Biophys Acta Mol Basis Dis 2011; 1812:592-601. [PMID: 21315819 DOI: 10.1016/j.bbadis.2011.02.002] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 12/11/2022]
Abstract
The control of cell proliferation by microRNAs (miRNAs) is well established and the alteration of these small, non-coding RNAs may contribute to tumor development by perturbing critical cell cycle regulators. Oncogenic miRNAs may facilitate cell cycle entry and progression by targeting CDK inhibitors or transcriptional repressors of the retinoblastoma family. On the other hand, tumor suppressor miRNAs induce cell cycle arrest by downregulating multiple components of the cell cycle machinery. Recent data also suggest that miRNAs act co-ordinately with transcriptional factors involved in cell cycle regulation such as c-MYC, E2F or p53. These miRNAs not only can potentiate the function of these factors but they may also limit the excessive translation of cell cycle proteins upon mitogenic or oncogenic stimuli to protect cells from replicative stress. The implications of these regulatory networks in cell proliferation and human disease are discussed.
Collapse
|
26
|
Cockcroft S, Garner K. Function of the phosphatidylinositol transfer protein gene family: is phosphatidylinositol transfer the mechanism of action? Crit Rev Biochem Mol Biol 2011; 46:89-117. [DOI: 10.3109/10409238.2010.538664] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Lee BK, Bhinge AA, Iyer VR. Wide-ranging functions of E2F4 in transcriptional activation and repression revealed by genome-wide analysis. Nucleic Acids Res 2011; 39:3558-73. [PMID: 21247883 PMCID: PMC3089461 DOI: 10.1093/nar/gkq1313] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The E2F family of transcription factors has important roles in cell cycle progression. E2F4 is an E2F family member that has been proposed to be primarily a repressor of transcription, but the scope of its binding activity and functions in transcriptional regulation is not fully known. We used ChIP sequencing (ChIP-seq) to identify around 16 000 E2F4 binding sites which potentially regulate 7346 downstream target genes with wide-ranging functions in DNA repair, cell cycle regulation, apoptosis, and other processes. While half of all E2F4 binding sites (56%) occurred near transcription start sites (TSSs), ∼20% of sites occurred more than 20 kb away from any annotated TSS. These distal sites showed histone modifications suggesting that E2F4 may function as a long-range regulator, which we confirmed by functional experimental assays on a subset. Overexpression of E2F4 and its transcriptional cofactors of the retinoblastoma (Rb) family and its binding partner DP-1 revealed that E2F4 acts as an activator as well as a repressor. E2F4 binding sites also occurred near regulatory elements for miRNAs such as let-7a and mir-17, suggestive of regulation of miRNAs by E2F4. Taken together, our genome-wide analysis provided evidence of versatile roles of E2F4 and insights into its functions.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
28
|
Abstract
MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate miRNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease.
Collapse
Affiliation(s)
- Line Marie Holst
- Department of Dermatology, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark.
| | | | | |
Collapse
|
29
|
Schreml S, Szeimies RM, Prantl L, Landthaler M, Babilas P. Wound healing in the 21st century. J Am Acad Dermatol 2010; 63:866-81. [DOI: 10.1016/j.jaad.2009.10.048] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 10/23/2009] [Accepted: 10/23/2009] [Indexed: 01/13/2023]
|
30
|
Wilmink GJ, Roth CL, Ibey BL, Ketchum N, Bernhard J, Cerna CZ, Roach WP. Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperones 2010; 15:1027-38. [PMID: 20352393 PMCID: PMC3024070 DOI: 10.1007/s12192-010-0189-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small RNAs that play a critical role in the coordination of fundamental cellular processes. Recent studies suggest that miRNAs participate in the cellular stress response (CSR), but their specific involvement remains unclear. In this study, we identify a group of thermally regulated miRNAs (TRMs) that are associated with the CSR. Using miRNA microarrays, we show that dermal fibroblasts differentially express 123 miRNAs when exposed to hyperthermia. Interestingly, only 27 of these miRNAs are annotated in the current Sanger registry. We validated the expression of the annotated miRNAs using qPCR techniques, and we found that the qPCR and microarray data was in well agreement. Computational target-prediction studies revealed that putative targets for the TRMs are heat shock proteins and Argonaute-2-the core functional unit of RNA silencing. These results indicate that cells express a specific group of miRNAs when exposed to hyperthermia, and these miRNAs may function in the regulation of the CSR. Future studies will be conducted to determine if other cells lines differentially express these miRNAs when exposed to hyperthermia.
Collapse
Affiliation(s)
- Gerald J Wilmink
- National Academy of Sciences, NRC Research Associate Program, 500 Fifth Street, N.W., Washington, DC, 20001, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ali YO, Kitay BM, Zhai RG. Dealing with misfolded proteins: examining the neuroprotective role of molecular chaperones in neurodegeneration. Molecules 2010; 15:6859-87. [PMID: 20938400 PMCID: PMC3133442 DOI: 10.3390/molecules15106859] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 01/19/2023] Open
Abstract
Human neurodegenerative diseases arise from a wide array of genetic and environmental factors. Despite the diversity in etiology, many of these diseases are considered "conformational" in nature, characterized by the accumulation of pathological, misfolded proteins. These misfolded proteins can induce cellular stress by overloading the proteolytic machinery, ultimately resulting in the accumulation and deposition of aggregated protein species that are cytotoxic. Misfolded proteins may also form aberrant, non-physiological protein-protein interactions leading to the sequestration of other normal proteins essential for cellular functions. The progression of such disease may therefore be viewed as a failure of normal protein homeostasis, a process that involves a network of molecules regulating the synthesis, folding, translocation and clearance of proteins. Molecular chaperones are highly conserved proteins involved in the folding of nascent proteins, and the repair of proteins that have lost their typical conformations. These functions have therefore made molecular chaperones an active area of investigation within the field of conformational diseases. This review will discuss the role of molecular chaperones in neurodegenerative diseases, highlighting their functional classification, regulation, and therapeutic potential for such diseases.
Collapse
Affiliation(s)
- Yousuf O. Ali
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Brandon M. Kitay
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Graduate Program, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Graduate Program, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-305-243-6316; Fax: +1-305-243-4555
| |
Collapse
|
32
|
mRNA degradation plays a significant role in the program of gene expression regulated by phosphatidylinositol 3-kinase signaling. Mol Cell Biol 2010; 30:5295-305. [PMID: 20855526 DOI: 10.1128/mcb.00303-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Control of gene expression by the phosphatidylinositol (PI) 3-kinase/Akt pathway plays an important role in mammalian cell proliferation and survival, and numerous transcription factors and genes regulated by PI 3-kinase signaling have been identified. Because steady-state levels of mRNA are regulated by degradation as well as transcription, we have investigated the importance of mRNA degradation in controlling gene expression downstream of PI 3-kinase. We previously performed global expression analyses that identified a set of approximately 50 genes that were downregulated following inhibition of PI 3-kinase in proliferating T98G cells. By blocking transcription with actinomycin D, we found that almost 40% of these genes were regulated via effects of PI 3-kinase on mRNA stability. Analyses of β-globin-3' untranslated region (UTR) fusion transcripts indicated that sequences within 3' UTRs were the primary determinants of rapid mRNA decay. Small interfering RNA (siRNA) experiments further showed that knockdown of BRF1 or KSRP, both ARE binding proteins (ARE-BPs) regulated by Akt, stabilized the mRNAs of a majority of the downregulated genes but that knockdown of ARE-BPs that are not regulated by PI 3-kinase did not affect degradation of these mRNAs. These results show that PI 3-kinase regulation of mRNA stability, predominantly mediated by BRF1, plays a major role in regulating gene expression.
Collapse
|
33
|
Kim JW, Mori S, Nevins JR. Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Res 2010; 70:4820-8. [PMID: 20516112 DOI: 10.1158/0008-5472.can-10-0659] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Myc pathway, often deregulated in cancer, is critical in determining cell fate by coordinating a gene expression program that links the control of cell proliferation with cell fate decisions. As such, precise control of the Myc pathway activity must be achieved to ensure faithful execution of appropriate cellular response and to prevent progressing toward a malignant state. With recent highlighted roles of microRNAs (miRNA) as critical components of gene control, we sought to evaluate the extent to which miRNAs may contribute in the execution of Myc function. Combined analysis of mRNA and miRNA expression profiles reveals an integration whereby the Myc-mediated induction of miRNAs leads to the repression of various mRNAs encoding tumor suppressors that block cell proliferation including p21, p27, and Rb. In addition, the proapoptotic PTEN tumor suppressor gene is also repressed by Myc-induced miRNAs, suggesting that Myc-induced miRNAs contribute to the precise control of a transcriptional program that coordinates the balance of cell proliferation and cell death.
Collapse
Affiliation(s)
- Jong Wook Kim
- Duke Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
34
|
Yao G, Yin M, Lian J, Tian H, Liu L, Li X, Sun F. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 2010; 24:540-51. [PMID: 20118412 DOI: 10.1210/me.2009-0432] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Many members of the TGF-beta superfamily are indicated to play important roles in ovarian follicular development, such as affecting granulosa cell function and oocyte maturation. Abnormalities associated with TGF-beta1 signaling transduction could result in female infertility. MicroRNAs (miRNAs), as small noncoding RNAs, were recently found to regulate gene expression at posttranscriptional levels. However, little is known about the role of miRNAs in TGF-beta-mediated granulosa cell proliferation and granulosa cell function. In this study, the miRNA expression profiling was identified from TGF-beta1-treated mouse preantral granulosa cells (GCs), and three miRNAs were found to be significantly up-regulated and 13 miRNAs were down-regulated. Among up-regulated miRNAs, miR-224 was the second most significantly elevated miRNA. This up-regulation was attenuated by treatment of GCs with SB431542 (an inhibitor of TGFbeta superfamily type I receptors, thus blocking phosphorylation of the downstream effectors Smad2/3), indicating that miR-224 expression was regulated by TGF-beta1/Smads pathway. The ectopic expression of miR-224 can enhance TGF-beta1-induced GC proliferation through targeting Smad4. Inhibition of endogenous miR-224 partially suppressed GC proliferation induced by TGF-beta1. In addition, both miR-224 and TGF-beta1 can promote estradiol release from GC, at least in part, through increasing CYP19A1 mRNA levels. This is the first demonstration that miRNAs can control reproductive functions resulting in promoting TGF-beta1-induced GC proliferation and ovarian estrogen release. Such miRNA-mediated effects could be potentially used for regulation of reproductive processes or for treatment of reproductive disorders.
Collapse
Affiliation(s)
- Guidong Yao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Ardekani AM, Naeini MM. The Role of MicroRNAs in Human Diseases. Avicenna J Med Biotechnol 2010; 2:161-79. [PMID: 23407304 PMCID: PMC3558168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 12/17/2010] [Indexed: 12/04/2022] Open
Abstract
MicroRNAs (miRNAs) are short RNA molecules which bind to target mRNAs, resulting in translational repression and gene silencing and are found in all eukaryotic cells. Approximately 2200 miRNA genes have been reported to exist in the mammalian genome, from which over 1000 belong to the human genome. Many major cellular functions such as development, differentiation, growth, and metabolism are known to be regulated by miRNAs. Proximity to other genes in the genome and their locations in introns of coding genes, noncoding genes and exons have been reported to have a major influence on the level of gene expressions in eukaryotic cells. miRNAs are well conserved in eukaryotic system and are believed to be an essential and evolutionary ancient component of gene regulatory networks. Therefore, in recent years miRNAs have been studied as a likely candidate for involvement in most biologic processes and have been implicated in many human diseases.
Collapse
Affiliation(s)
- Ali M. Ardekani
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran,Corresponding author: Ali M. Ardekani, Ph.D., Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. P.O. Box: 19615-1177. Tel: +98 21 22432020. Fax: +98 21 22432021. E-mail:
| | | |
Collapse
|
36
|
A TGFbeta-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J Invest Dermatol 2009; 130:694-705. [PMID: 19812599 DOI: 10.1038/jid.2009.318] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis is a complex disease with widespread skin fibrosis and variable visceral organ involvement. Since transforming growth factor-beta (TGFbeta) has been implicated in driving fibrosis in systemic sclerosis, a mechanism-derived gene expression signature was used to assay TGFbeta-responsive gene expression in the skin of patients with systemic sclerosis (SSc). Primary dermal fibroblasts from patients with diffuse SSc (dSSc) and healthy controls were treated with TGFbeta, and the genome-wide gene expression was measured on DNA microarrays over a time course of 24 hours. Eight hundred and ninety-four probes representing 674 uniquely annotated genes were identified as TGFbeta responsive. Expression of the TGFbeta-responsive signature was examined in skin biopsies from 17 dSSc, seven limited SSc (lSSc), three morphea patients, and six healthy controls. The TGFbeta-responsive signature was expressed in 10 out of 17 dSSc skin biopsies, but was not found in lSSc, morphea, or healthy control biopsies. Expression of dSSC the TGFbeta-responsive signature stratifies patients into two major groups, one of which corresponds to the "diffuse-proliferation" intrinsic subset that showed higher modified Rodnan skin score and a higher likelihood of scleroderma lung disease. The TGFbeta-responsive signature is found in only a subset of dSSc patients who could be targeted by specific therapies.
Collapse
|
37
|
Mérida I, Avila-Flores A, García J, Merino E, Almena M, Torres-Ayuso P. Diacylglycerol kinase alpha, from negative modulation of T cell activation to control of cancer progression. ACTA ACUST UNITED AC 2009; 49:174-88. [PMID: 19534031 DOI: 10.1016/j.advenzreg.2009.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus de Cantoblanco, E-28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
38
|
Maes OC, Sarojini H, Wang E. Stepwise up-regulation of microRNA expression levels from replicating to reversible and irreversible growth arrest states in WI-38 human fibroblasts. J Cell Physiol 2009; 221:109-19. [PMID: 19475566 DOI: 10.1002/jcp.21834] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate diverse genetic expression networks through their control of mRNA stability or translation. Their role in aging mechanisms has been proposed in various model systems. In this report, the expression profiling of 462 human miRNAs in the reversible growth arrest state of quiescence, and irreversible states of replicative senescence and hydrogen peroxide-induced premature senescence, are compared to young replicating lung fibroblasts. Greater numbers of up-regulated than down-regulated miRNAs are observed when cells stop proliferating, particularly in premature senescence, somewhat less in replicative senescence, and less still in quiescence. Several altered miRNA expressions are shared by the three growth arrest states, including the up-regulation of miR-34a, -624, -638 and miR-377, and the down-regulation of miR-365 and miR-512-5p. miRNAs up-regulated in both permanent growth arrest states but not in quiescence include let-7g, miR-26a, -136, -144, -195 and miR-200b. In each of the growth arrest states, miR-34a and let-7f have the most robust up-regulation in H(2)O(2)-induced premature senescence, followed by miR-638 and miR-663 in replicative senescence, and finally, miR-331-3p and miR-595 in quiescence. Our comprehensive evaluation of miRNA target correlations with known biomarkers for replicative senescence suggests that miRNAs may repress pathways controlling not only cell cycle traverse and proliferation, but also insulin-like signaling, DNA repair and apoptosis, all of which are cellular functions deficient in senescent human fibroblasts.
Collapse
Affiliation(s)
- Olivier C Maes
- Gheens Center on Aging, Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
39
|
Wang P, Yu W, Hu Z, Jia L, Iyer VR, Sanders BG, Kline K. Involvement of JNK/p73/NOXA in vitamin E analog-induced apoptosis of human breast cancer cells. Mol Carcinog 2008; 47:436-45. [PMID: 18058804 DOI: 10.1002/mc.20400] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microarray analyses of human MDA-MB-435 breast cancer cells treated with vitamin E analog 2,5,7,8-tetramethyl-2R-(4R,8R,12-trimethyltridecyl) chroman-6-yloxy acetic acid (alpha-TEA) showed over 400 genes to be modulated. Thirty-four genes deemed of interest based on potential involvement in anticancer activities of alpha-TEA fell into six categories: apoptosis related, signal transduction, cell cycle related, cell adhesion and motility, transcriptional regulators, and membrane traffic related. The gene (PMAIP1) for NOXA was studied further. NOXA mRNA and protein levels were elevated in a time and dose-dependent fashion following alpha-TEA treatment. Functional knockdowns using small interfering RNA (siRNA) showed NOXA to contribute to alpha-TEA-induced apoptosis. A correlation between alpha-TEA's ability to upregulate NOXA and induce apoptosis was seen among several human breast cancer cell lines. Efforts to identify upstream regulators of NOXA in alpha-TEA-induced apoptosis identified the necessity of both c-Jun N-terminal kinase (JNK) activation and p73 expression. Additionally, protein levels of full length p73 were decreased by JNK siRNA treatment, suggesting that the signal transduction module of JNK-p73-NOXA is involved in alpha-TEA induced apoptosis of human breast cancer cells. Taken together, these findings suggest a role for JNK activation in mediating full length p73 expression and add to our understanding of the mechanisms of anticancer actions of alpha-TEA, a potential chemotherapeutic agent.
Collapse
Affiliation(s)
- Pei Wang
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Stortelers C, Kerkhoven R, Moolenaar WH. Multiple actions of lysophosphatidic acid on fibroblasts revealed by transcriptional profiling. BMC Genomics 2008; 9:387. [PMID: 18702810 PMCID: PMC2536681 DOI: 10.1186/1471-2164-9-387] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 08/14/2008] [Indexed: 02/03/2023] Open
Abstract
Background Lysophosphatidic acid (LPA) is a lipid mediator that acts through specific G protein-coupled receptors to stimulate the proliferation, migration and survival of many cell types. LPA signaling has been implicated in development, wound healing and cancer. While LPA signaling pathways have been studied extensively, it remains unknown how LPA affects global gene expression in its target cells. Results We have examined the temporal program of global gene expression in quiescent mouse embryonic fibroblasts stimulated with LPA using 32 k oligonucleotide microarrays. In addition to genes involved in growth stimulation and cytoskeletal reorganization, LPA induced many genes that encode secreted factors, including chemokines, growth factors, cytokines, pro-angiogenic and pro-fibrotic factors, components of the plasminogen activator system and metalloproteases. Strikingly, epidermal growth factor induced a broadly overlapping expression pattern, but some 7% of the genes (105 out of 1508 transcripts) showed differential regulation by LPA. The subset of LPA-specific genes was enriched for those associated with cytoskeletal remodeling, in keeping with LPA's ability to regulate cell shape and motility. Conclusion This study highlights the importance of LPA in programming fibroblasts not only to proliferate and migrate but also to produce many paracrine mediators of tissue remodeling, angiogenesis, inflammation and tumor progression. Furthermore, our results show that G protein-coupled receptors and receptor tyrosine kinases can signal independently to regulate broadly overlapping sets of genes in the same cell type.
Collapse
Affiliation(s)
- Catelijne Stortelers
- Division of Cellular Biochemistry and Centre for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | |
Collapse
|
41
|
Kim J, Lee JH, Iyer VR. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One 2008; 3:e1798. [PMID: 18335064 PMCID: PMC2258436 DOI: 10.1371/journal.pone.0001798] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 02/12/2008] [Indexed: 01/16/2023] Open
Abstract
The Myc oncoprotein is a transcription factor involved in a variety of human cancers. Overexpression of Myc is associated with malignant transformation. In normal cells, Myc is induced by mitotic signals, and in turn, it regulates the expression of downstream target genes. Although diverse roles of Myc have been predicted from many previous studies, detailed functions of Myc targets are still unclear. By combining chromatin immunoprecipitation (ChIP) and promoter microarrays, we identified a total of 1469 Myc direct target genes, the majority of which are novel, in HeLa cells and human primary fibroblasts. We observed dramatic changes of Myc occupancy at its target promoters in foreskin fibroblasts in response to serum stimulation. Among the targets of Myc, 107 were nuclear encoded genes involved in mitochondrial biogenesis. Genes with important roles in mitochondrial replication and biogenesis, such as POLG, POLG2, and NRF1 were identified as direct targets of Myc, confirming a direct role for Myc in regulating mitochondrial biogenesis. Analysis of target promoter sequences revealed a strong preference for Myc occupancy at promoters containing one of several described consensus sequences, CACGTG, in vivo. This study thus sheds light on the transcriptional regulatory networks mediated by Myc in vivo.
Collapse
Affiliation(s)
- Jonghwan Kim
- Section of Molecular Genetics and Microbiology, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Ji-hoon Lee
- Section of Molecular Genetics and Microbiology, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Vishwanath R. Iyer
- Section of Molecular Genetics and Microbiology, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Hudder A, Novak RF. miRNAs: effectors of environmental influences on gene expression and disease. Toxicol Sci 2008; 103:228-40. [PMID: 18281715 DOI: 10.1093/toxsci/kfn033] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Discovered less than a decade ago, micro-RNAs (miRNAs) have emerged as important regulators of gene expression in mammals. They consist of short nucleic acids, on average approximately 22 nucleotides in length. The miRNAs exert their effect by binding directly to target messenger RNAs (mRNAs) and inhibiting mRNA stability and translation. Each miRNA can bind to multiple targets and many miRNAs can bind to the same target mRNA, allowing for a complex pattern of regulation of gene expression. Once bound to their targets, miRNAs can suppress translation of the mRNA by either sequestration or degradation of the message. Thus, miRNAs function as powerful and sensitive posttranscriptional regulators of gene expression. This review will summarize what is known about miRNA biogenesis, expression, regulation, function, mode of action, and role in disease processes with an emphasis on miRNAs in mammals. We discuss some of the methodology employed in miRNA research and the potential of miRNAs as therapeutic targets. The role of miRNAs in signal transduction and cellular stress is reviewed. Lastly, we identify new exciting avenues of research on the role of miRNAs in toxicogenomics and the possibility of epigenetic effects on gene expression.
Collapse
Affiliation(s)
- Alice Hudder
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan 48201-2654, USA
| | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Genomic analysis has rapidly become commonplace in the study and treatment of complex disease. Several recent studies of gene expression profiling in systemic sclerosis have demonstrated its value in diagnosis and illustrate the potential for this technique in prognostication, as well as the elucidation of the underlying pathogenesis. RECENT FINDINGS Skin biopsies from patients with systemic sclerosis show robust changes in gene profile that precede clinically detectable involvement. Current results suggest that clinically indistinguishable subgroups may be identified with different pathogenesis and outcome. Expression profiling studies of animal models of systemic sclerosis and explanted fibroblasts have helped to reveal the utility and deficiencies of these surrogates in the study of systemic sclerosis. SUMMARY Gene profiling is likely to provide valuable prognostic information in systemic sclerosis patients. Recent advances in sample collection and standardization of analysis mean that longitudinal collection of samples for gene profiling, even in small numbers of patients from different clinical centers, will contribute enormously to our understanding of the disease.
Collapse
|
44
|
Tili E, Michaille JJ, Gandhi V, Plunkett W, Sampath D, Calin GA. miRNAs and their potential for use against cancer and other diseases. Future Oncol 2008; 3:521-37. [PMID: 17927518 DOI: 10.2217/14796694.3.5.521] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
miRNAs are 19-24 nucleotide long noncoding RNAs found in almost all genetically dissected species, including viruses, plants, nematodes, flies, fish, mice and humans. Rapid advances have been made in understanding their physiological functions, while abnormal patterns of miRNA expression have been found in many disease states, most notably human cancer. It is now clear that miRNAs represent a class of genes with a great potential for use in diagnosis, prognosis and therapy. In this review we will focus on the discoveries that elucidate their crucial role in mammalian diseases, particularly in cancer, and propose that miRNA-based gene therapy might become the potential technology of choice in a wide range of human diseases including cancer.
Collapse
Affiliation(s)
- Esmerina Tili
- Ohio State University, Department of Molecular Virology, Immunology & Medical Genetics and Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Terragni J, Graham JR, Adams KW, Schaffer ME, Tullai JW, Cooper GM. Phosphatidylinositol 3-kinase signaling in proliferating cells maintains an anti-apoptotic transcriptional program mediated by inhibition of FOXO and non-canonical activation of NFkappaB transcription factors. BMC Cell Biol 2008; 9:6. [PMID: 18226221 PMCID: PMC2268685 DOI: 10.1186/1471-2121-9-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 01/28/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Phosphatidylinositol (PI) 3-kinase is activated by a variety of growth factor receptors and the PI 3-kinase/Akt signaling pathway is a key regulator of cell proliferation and survival. The downstream targets of PI 3-kinase/Akt signaling include direct regulators of cell cycle progression and apoptosis as well as a number of transcription factors. Growth factor stimulation of quiescent cells leads to robust activation of PI 3-kinase, induction of immediate-early genes, and re-entry into the cell cycle. A lower level of PI 3-kinase signaling is also required for the proliferation and survival of cells maintained in the presence of growth factors, but the gene expression program controlled by PI 3-kinase signaling in proliferating cells has not been elucidated. RESULTS We used microarray analyses to characterize the changes in gene expression resulting from inhibition of PI 3-kinase in proliferating cells. The genes regulated by inhibition of PI 3-kinase in proliferating cells were distinct from genes induced by growth factor stimulation of quiescent cells and highly enriched in genes that regulate programmed cell death. Computational analyses followed by chromatin immunoprecipitations demonstrated FOXO binding to both previously known and novel sites in promoter regions of approximately one-third of the up-regulated genes, consistent with activation of FOXO1 and FOXO3a in response to inhibition of PI 3-kinase. NFkappaB binding sites were similarly identified in promoter regions of over one-third of the down-regulated genes. RelB was constitutively bound to promoter regions in cells maintained in serum, however binding decreased following PI 3-kinase inhibition, indicating that PI 3-kinase signaling activates NFkappaB via the non-canonical pathway in proliferating cells. Approximately 70% of the genes targeted by FOXO and NFkappaB regulate cell proliferation and apoptosis, including several regulators of apoptosis that were not previously known to be targeted by these transcription factors. CONCLUSION PI 3-kinase signaling in proliferating cells regulates a novel transcriptional program that is highly enriched in genes that regulate apoptosis. At least one-third of these genes are regulated either by FOXO transcription factors, which are activated following PI 3-kinase inhibition, or by RelB, which is activated by PI 3-kinase via the non-canonical pathway in proliferating cells.
Collapse
Affiliation(s)
- Jolyon Terragni
- Department of Biology, Boston University, Boston MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Quantitative gene expression assessment identifies appropriate cell line models for individual cervical cancer pathways. BMC Genomics 2007; 8:117. [PMID: 17493265 PMCID: PMC1878486 DOI: 10.1186/1471-2164-8-117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 05/10/2007] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cell lines have been used to study cancer for decades, but truly quantitative assessment of their performance as models is often lacking. We used gene expression profiling to quantitatively assess the gene expression of nine cell line models of cervical cancer. RESULTS We find a wide variation in the extent to which different cell culture models mimic late-stage invasive cervical cancer biopsies. The lowest agreement was from monolayer HeLa cells, a common cervical cancer model; the highest agreement was from primary epithelial cells, C4-I, and C4-II cell lines. In addition, HeLa and SiHa cell lines cultured in an organotypic environment increased their correlation to cervical cancer significantly. We also find wide variation in agreement when we considered how well individual biological pathways model cervical cancer. Cell lines with an anti-correlation to cervical cancer were also identified and should be avoided. CONCLUSION Using gene expression profiling and quantitative analysis, we have characterized nine cell lines with respect to how well they serve as models of cervical cancer. Applying this method to individual pathways, we identified the appropriateness of particular cell lines for studying specific pathways in cervical cancer. This study will allow researchers to choose a cell line with the highest correlation to cervical cancer at a pathway level. This method is applicable to other cancers and could be used to identify the appropriate cell line and growth condition to employ when studying other cancers.
Collapse
|
47
|
Gammell P, Barron N, Kumar N, Clynes M. Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells. J Biotechnol 2007; 130:213-8. [PMID: 17570552 DOI: 10.1016/j.jbiotec.2007.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/02/2007] [Accepted: 04/16/2007] [Indexed: 11/27/2022]
Abstract
This paper describes the first miRNA analysis carried out on hamster cells specifically Chinese hamster ovary (CHO) cells which are the most important cell line for the manufacture of human recombinant biopharmaceutical products. During biphasic culture, an initial phase of rapid cell growth at 37 degrees C is followed by a growth arrest phase induced through reduction of the culture temperature. Growth arrest is associated with many positive phenotypes including increased productivity, sustained viability and an extended production phase. Using miRNA bioarrays generated with probes against human, mouse and rat miRNAs, we have identified 26 differentially expressed miRNAs in CHO-K1 when comparing cells undergoing exponential growth at 37 degrees C to stationary phase cells at 31 degrees C. Five miRNAs were selected for qRT-PCR analysis using specific primer sets to isolate and amplify mature miRNAs. During this analysis, two known growth inhibitory miRNAs, miR-21 and miR-24 were identified as being upregulated during stationary phase growth induced either by temperature shift or during normal batch culture by both bioarray and qRT-PCR. Sequence data confirmed the identity of cgr-miR-21, a novel Cricetulus griseus ortholog of the known miRNA miR-21. This study offers a novel insight into the potential of miRNA regulation of CHO-K1 growth and may provide novel approaches to rational engineering of both cell lines and culture processes to ensure optimal conditions for recombinant protein production.
Collapse
Affiliation(s)
- Patrick Gammell
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | |
Collapse
|
48
|
Matthiesen S, Bahulayan A, Holz O, Racké K. MAPK pathway mediates muscarinic receptor-induced human lung fibroblast proliferation. Life Sci 2007; 80:2259-62. [PMID: 17383686 DOI: 10.1016/j.lfs.2007.02.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/15/2007] [Accepted: 02/22/2007] [Indexed: 11/23/2022]
Abstract
Airway remodelling is a pathological feature of chronic inflammatory and obstructive airway diseases like asthma and COPD wherein fibroblasts contribute to structural alteration processes. We recently reported expression of multiple muscarinic receptors in human lung fibroblasts and demonstrated muscarinic receptor-induced, G(i)-mediated proliferation in these cells. We now explore the underlying intracellular signalling pathways. As a measure of cell proliferation ((3)H)-thymidine incorporation in primary human lung fibroblasts and MRC-5 fibroblasts was increased by about 2 fold in presence of the muscarinic receptor agonist carbachol (10 microM) and this effect could be prevented by the MEK inhibitor PD 98059 (30 microM). Western blot analysis revealed a rapid (within 2 min) activation of p42/44 MAPK (ERK1, ERK2) following exposure to 10 microM carbachol or oxotremorine, effects blocked by tiotropium as well as atropine. In conclusion, the proliferative response of lung fibroblasts to muscarine receptor stimulation is mediated via activation of the classical MEK-ERK MAPK cascade. It is suggested that prevention of cholinergic driven fibroblast proliferation by prolonged blockade of airway muscarinic receptors may contribute to the reported long term beneficial effects of anticholinergics.
Collapse
Affiliation(s)
- Sonja Matthiesen
- Institute of Pharmacology and Toxicology, University of Bonn, Reuterstr. 2b, D-53113 Bonn, Germany.
| | | | | | | |
Collapse
|