1
|
Sáez PL, Vallejos V, Sancho-Knapik D, Cavieres LA, Ramírez CF, Bravo LA, Javier Peguero-Pina J, Gil-Pelegrín E, Galmés J. Leaf hydraulic properties of Antarctic plants: effects of growth temperature and its coordination with photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2013-2026. [PMID: 38173309 DOI: 10.1093/jxb/erad474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
One of the well-documented effects of regional warming in Antarctica is the impact on flora. Warmer conditions modify several leaf anatomical traits of Antarctic vascular plants, increasing photosynthesis and growth. Given that CO2 and water vapor partially share their diffusion pathways through the leaf, changes in leaf anatomy could also affect the hydraulic traits of Antarctic plants. We evaluated the effects of growth temperature on several anatomical and hydraulic parameters of Antarctic plants and assessed the trait co-variation between these parameters and photosynthetic performance. Warmer conditions promoted an increase in leaf and whole plant hydraulic conductivity, correlating with adjustments in carbon assimilation. These adjustments were consistent with changes in leaf vasculature, where Antarctic species displayed different strategies. At higher temperature, Colobanthus quitensis decreased the number of leaf xylem vessels, but increased their diameter. In contrast, in Deschampsia antarctica the diameter did not change, but the number of vessels increased. Despite this contrasting behavior, some traits such as a small leaf diameter of vessels and a high cell wall rigidity were maintained in both species, suggesting a water-conservation response associated with the ability of Antarctic plants to cope with harsh environments.
Collapse
Affiliation(s)
- Patricia L Sáez
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
- Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
| | - Valentina Vallejos
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, y Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Domingo Sancho-Knapik
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España
| | - Lohengrin A Cavieres
- Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Constanza F Ramírez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, y Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - José Javier Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España
| | - Eustaquio Gil-Pelegrín
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, INAGEA-Universitat de les Illes Balears, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
2
|
Frippiat C, Noel F. Efficiency of a novel forensic room-temperature DNA storage medium. Forensic Sci Int Genet 2014; 9:81-4. [PMID: 24528585 DOI: 10.1016/j.fsigen.2013.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 10/09/2013] [Accepted: 11/30/2013] [Indexed: 11/25/2022]
Abstract
The success of forensic genetics has led to considerable numbers of DNA samples that must be stored. Thus, the ability to preserve the integrity of forensic samples is essential. The possibility of retesting these samples after many years should be guaranteed. DNA storage typically requires the use of freezers. Recently, a new method that enables DNA to be stored at room temperature was developed. This technology is based on the principles of anhydrobiosis and thus permits room-temperature storage of DNA. This study evaluates the ability of this technology to preserve DNA samples mimicking true mixture casework samples for long periods of time. Mixed human DNA from 2 or 3 persons and at low concentrations was dried and stored for a period ranging from 6 months to 2 years in the presence of a desiccant. The quality of the stored DNA was evaluated based on quantitative peak height results from Short Tandem Repeat (STR) genotyping and the number of observed alleles. Furthermore, we determined whether this matrix has a potential inhibitory or enhancing effect on the PCR genotyping reactions. In our previous work, we demonstrated the considerable potential of this new technology. The present study complements our previous work. Our results show that after 2 years of aging at room temperature, there is a decrease in the number of observed alleles and in the peak height of these alleles.
Collapse
Affiliation(s)
- Christophe Frippiat
- National Institute of Criminalistics and Criminology, Chaussée de Vilvoorde 100, 1120 Brussels, Belgium.
| | - Fabrice Noel
- National Institute of Criminalistics and Criminology, Chaussée de Vilvoorde 100, 1120 Brussels, Belgium
| |
Collapse
|
3
|
Evaluation of novel forensic DNA storage methodologies. Forensic Sci Int Genet 2010; 5:386-92. [PMID: 20837408 DOI: 10.1016/j.fsigen.2010.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 11/24/2022]
Abstract
An issue in forensic sciences is the secure storage of extracted DNA. Most of the time, DNA is frozen at -20°C or -80°C. Recently, new room temperature DNA storage technologies have been developed based on anhydrobiosis. Two products use this technology: Qiasafe (Qiagen) and Gentegra (Genvault). In this study we focused on the recent Gentegra product and initiated a comparison versus -20°C and Qiasafe storage. We compared the quantity and quality of DNA stored using anhydrobiosis technology against DNA stored at -20°C, by performing STR profiling after short term storage. Furthermore, we studied the quantity and integrity of DNA after long term storage. Our results prove the high potential of this technology but it seems to be extraction dependent. Phenol/chloroform extracted DNA could be stored using the Gentegra matrix for more than 6 months without any obvious degradation. However, DNA extracted using magnetic beads could not be safely stored over the same period. Adaptations are therefore required to store this kind of samples.
Collapse
|
4
|
Reardon W, Chakrabortee S, Pereira TC, Tyson T, Banton MC, Dolan KM, Culleton BA, Wise MJ, Burnell AM, Tunnacliffe A. Expression profiling and cross-species RNA interference (RNAi) of desiccation-induced transcripts in the anhydrobiotic nematode Aphelenchus avenae. BMC Mol Biol 2010; 11:6. [PMID: 20085654 PMCID: PMC2825203 DOI: 10.1186/1471-2199-11-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 01/19/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Some organisms can survive extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living mycophagous nematode Aphelenchus avenae can be induced to enter anhydrobiosis by pre-exposure to moderate reductions in relative humidity (RH) prior to extreme desiccation. This preconditioning phase is thought to allow modification of the transcriptome by activation of genes required for desiccation tolerance. RESULTS To identify such genes, a panel of expressed sequence tags (ESTs) enriched for sequences upregulated in A. avenae during preconditioning was created. A subset of 30 genes with significant matches in databases, together with a number of apparently novel sequences, were chosen for further study. Several of the recognisable genes are associated with water stress, encoding, for example, two new hydrophilic proteins related to the late embryogenesis abundant (LEA) protein family. Expression studies confirmed EST panel members to be upregulated by evaporative water loss, and the majority of genes was also induced by osmotic stress and cold, but rather fewer by heat. We attempted to use RNA interference (RNAi) to demonstrate the importance of this gene set for anhydrobiosis, but found A. avenae to be recalcitrant with the techniques used. Instead, therefore, we developed a cross-species RNAi procedure using A. avenae sequences in another anhydrobiotic nematode, Panagrolaimus superbus, which is amenable to gene silencing. Of 20 A. avenae ESTs screened, a significant reduction in survival of desiccation in treated P. superbus populations was observed with two sequences, one of which was novel, while the other encoded a glutathione peroxidase. To confirm a role for glutathione peroxidases in anhydrobiosis, RNAi with cognate sequences from P. superbus was performed and was also shown to reduce desiccation tolerance in this species. CONCLUSIONS This study has identified and characterised the expression profiles of members of the anhydrobiotic gene set in A. avenae. It also demonstrates the potential of RNAi for the analysis of anhydrobiosis and provides the first genetic data to underline the importance of effective antioxidant systems in metazoan desiccation tolerance.
Collapse
Affiliation(s)
- Wesley Reardon
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Sohini Chakrabortee
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Tiago Campos Pereira
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
- Department of Biology, FFCLRP, University of Sao Paulo, 14040-901, Brazil
| | - Trevor Tyson
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Matthew C Banton
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | - Katharine M Dolan
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
- Applied Biosystems, Lingley House, 120 Birchwood Boulevard, Warrington, Cheshire, WA3 7QH, UK
| | - Bridget A Culleton
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Michael J Wise
- School of Biomedical and Chemical Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Ann M Burnell
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Alan Tunnacliffe
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| |
Collapse
|